
 

 

 
 

 

© The author; licensee Universidad Nacional de Colombia.  
DYNA 83 (199), pp. 57-62, December 2016. Medellín. ISSN 0012-7353 Printed, ISSN 2346-2183 Online 

DOI: http://dx.doi.org/10.15446/dyna.v83n199.54578 

Automated detection of photoreceptors in in-vivo retinal images• 
 
Piero Rangel-Fonseca, a,b  Armando Gomez-Vieyra, c  Daniel Malacara-Hernandez a  & Mario C. Wilson d 
 

a Centro de Investigaciones en Óptica, León, Guanajuato, México. pierorf@gmail.com, dmalacara@cio.mx 
b Laboratorio de Visión Robótica e Inteligencia Artificial, Universidad de Guanajuato, Salamanca, Guanajuato, México. piero@laviria.org  

c Laboratorio de Sistemas Complejos, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Azcapotzalco, D.F., México. 
agvte@correo.azc.uam.mx  

d Centro de Investigaciones en Óptica, León, Guanajuato, 37150, México.  
d CONACYT - CICESE, Ensenada, B.C. México. mwilson@cicese.mx  

 
Received: December 8th, de 2015. Received in revised form: August 8th, 2016. Accepted: August 26th, 2016 

 
Abstract 
The inclusion of adaptive optics (AO) into ophthalmic imaging technology has allowed the study of histological elements of retina in-vivo, such as 
photoreceptors, retinal pigment epithelium (RPE) cells, retinal nerve fiber layer and ganglion cells. The high-resolution images obtained with 
ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify using manual methods. Thus, robust, automated 
analysis tools that can provide reproducible quantitative information about the tissue under examination are required. Automated algorithms have been 
developed to detect the position of individual photoreceptor cells and characterize the RPE mosaic. In this work, an algorithm is presented for the 
detection of photoreceptors. The algorithm has been tested in synthetic and real images acquired with an Adaptive Optics Scanning Laser 
Ophthalmoscope (AOSLO) and compared with the one developed by Li and Roorda. It is shown that both algorithms have similar performance on 
synthetic and cones-only images, but the one here proposed shows more accurate measurements when it is used for cones-rods detection in real images.  
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Detección automatizada de fotorreceptores en imágenes retinianas 
in-vivo 

 
Resumen 
La inclusión de la óptica adaptativa (adaptive optics, AO) en la tecnología de imágenes oftálmicas ha permitido el estudio in-vivo de los elementos 
histológicos de retina, como los fotorreceptores, células del epitelio pigmentario de la retina (retinal pigment ephitelium, RPE), la capa de fibras 
nerviosas de la retina y células ganglionares. Las imágenes de alta resolución obtenidas con dispositivos oftálmicos con AO son ricos en 
información, que es difícil y/o tediosa de cuantificar por medio de métodos manuales. Por lo tanto, se requieren herramientas de análisis 
automatizadas robustas que puedan proporcionar información cuantitativa reproducible del tejido bajo examen. Algoritmos automatizados han sido 
desarrollados para detectar la posición de células individuales fotorreceptoras y caracterizar el mosaico RPE. En este trabajo, se presenta un 
algoritmo para la detección de los fotorreceptores. El algoritmo ha sido probado en imágenes sintéticas y reales adquiridas con un oftalmoscopio 
de barrido láser con óptica adaptativa (Adaptive Optics Scanning Laser Ophthalmoscope, AOSLO) y comparado con el desarrollado por Li y 
Roorda. Se muestra que ambos algoritmos tienen un rendimiento similar en imágenes sintéticas e imágenes con sólo conos, pero el algoritmo 
propuesto muestra mediciones más precisas cuando se utiliza para la detección de conos-bastones en imágenes reales. 
 
Palabras clave: Fotorreceptores; óptica adaptativa; procesamiento de imágenes. 

 
 
 

1.  Introduction 
 
Typically, the retina is shown to have several layers: inner 

limiting membrane, retinal nerve fiber layer (RNFL), retinal 
ganglion cell layer, inner plexiform layer, inner nuclear layer, 
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outer plexiform layer, outer nuclear layer, external limiting 
membrane, photoreceptor layer and retinal pigment 
epithelium (RPE) layer [1]. The RNFL conducts signals from 
the eye. The ganglion cell layer contains the cell bodies of 
ganglion cells and displaced amacrine cells; the ganglion cell 
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dendrites are in the plexiform layer, where they receive 
bipolar cell and amacrine cell inputs, while their axons are in 
the RNFL. The photoreceptors are responsible for visual 
transduction, the transformation of light energy into electrical 
energy, a process called isomerization [2,3]. Finally, the RPE 
is vital for the maintenance of photoreceptor function, since 
it contains nutrients and enzymes [4]. 

In the retina, there are two types of photoreceptors: cones 
and rods. Structurally, the photoreceptors are different in 
shape, as their names indicate, and in size, rods being longer 
than cones, and cones wider than rods; they also have 
different functional properties that affect our perception.  
Cones cover all the retina, although higher density is in the 
fovea, where there are no rods. There are about 120 million 
rods, and they are in the periphery of the retina [2,4,5]. 

It is very important to know where the photoreceptors, 
cones and rods, are located and how many photoreceptors there 
are in the retina, which could be used to monitor the evolution 
of therapies for ocular globe diseases. A method previously 
used for cell detection and their characterization is shown in 
[6]; it uses adaptive optics scanning light ophthalmoscopy 
(AOSLO), which has become an important tool for the study 
of retinal diseases [6-22]. Our interest is primarily in detecting 
the cones and rods. Since changes in the photoreceptor mosaic 
may precede cell death, it is possible that morphometric 
changes can be measured before larger damages are observed, 
allowing early therapeutic intervention. 

Accuracy in the detection and classification of patterns in 
biomedical images is central to detecting and monitoring 
tissue damage, as well as to quantifying its extent. Hence, it 
is necessary to have robust and reliable methods for 
classifying and quantifying retinal structures in in-vivo 
retinal images. This is the reason why, in recent years, there 
has been an increased attention to this area [6-8,22-29], and 
it spurred our interest in developing a more efficient 
algorithm for the detection of retinal cones and rods. The 
algorithm that we propose quantifies and locates the 
photoreceptors using the local maximum value, maximum 
absolute deviation and binary operations. 

This paper is organized as follows. In section 2, the methods 
used for the development of the algorithm, as well as the 
generation of synthetic and real AO images, are discussed. In 
section 3, the comparison between the algorithm proposed by 
Li and Roorda and the one here presented is undertaken. 
Finally, the main discussion and conclusions are in section 4. 

 
2.  Method 

 
2.1.  Algorithm 

 
The aim of the algorithm is to quantify and locate 

photoreceptors in in-vivo retinal images. Fig. 1 shows the 
schematic representation of the algorithm. 

 
2.1.1.  Adaptive threshold using local maximum values 

 
Let I(x,y) be a bidimensional intensity function (a matrix) 

where x and y are the spatial coordinates of a pixel; let 
Imax(x,y) be the local maximum value within a window of 3x3 
pixels, being: 

 
Figure 1. Schematic representation of the algorithm 
Source: The authors 

 
 
𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎(𝒎𝒎,𝒚𝒚) = 𝒎𝒎𝒎𝒎𝒎𝒎{𝑰𝑰(𝒎𝒎 + 𝒔𝒔,𝒚𝒚 + 𝒕𝒕)|−𝟏𝟏 ≤ 𝒔𝒔

≤ 𝟏𝟏 𝒎𝒎𝒂𝒂𝒂𝒂 − 𝟏𝟏 ≤ 𝒕𝒕 ≤ 𝟏𝟏|} 
 

(1) 

Thereby, F1(x,y) is defined as follows: 
 

𝑭𝑭𝟏𝟏(𝒎𝒎,𝒚𝒚) = �𝟏𝟏     𝒊𝒊𝒊𝒊 𝑰𝑰(𝒎𝒎,𝒚𝒚) == 𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎(𝒎𝒎,𝒚𝒚)
𝟎𝟎        𝒊𝒊𝒊𝒊 𝑰𝑰(𝒎𝒎,𝒚𝒚) ≠ 𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎(𝒎𝒎,𝒚𝒚) (2) 

 
2.1.2.  Adaptive threshold using absolute deviation 

 
Let M(x,y) be the maximum absolute deviation (Eq. 3), 

which determines the sufficient variance in intensity, with n 
being the number of elements, and let Imax(x,y) be the local 
maximum value (Eq. 1). Then, let m be a threshold that 
determines the sufficient variance in intensity of I(x,y). 

 

𝑴𝑴(𝒎𝒎,𝒚𝒚) = �� � |𝑰𝑰(𝒎𝒎 + 𝒔𝒔,𝒚𝒚 + 𝒕𝒕) − 𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎(𝒎𝒎,𝒚𝒚)|
𝟏𝟏

𝒕𝒕=−𝟏𝟏

𝟏𝟏

𝒔𝒔=−𝟏𝟏

� /𝒂𝒂 
(3) 

 
Thereby, F2(x,y) is defined as shown in Eq. 4.  
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𝑭𝑭𝟐𝟐(𝒎𝒎,𝒚𝒚) = �𝟏𝟏        𝒊𝒊𝒊𝒊 𝑴𝑴(𝒎𝒎,𝒚𝒚) ≥ 𝒎𝒎
𝟎𝟎        𝒊𝒊𝒊𝒊 𝑴𝑴(𝒎𝒎,𝒚𝒚) < 𝒎𝒎 

 
(4) 

The next step in this stage is the generation of a binary 
image G(x,y) using Eq. 5, through the logic operation AND 
of the results from Eqs. 2 and 4. 

 
𝑮𝑮(𝒎𝒎,𝒚𝒚) = 𝑭𝑭𝟏𝟏(𝒎𝒎,𝒚𝒚) ∙ 𝑭𝑭𝟐𝟐(𝒎𝒎,𝒚𝒚) 

 (5) 

2.1.3.  Binary operations 
 
Eq. 6 is a binary function that works within a window of 

3 X 3 pixels; it was designed to reduced over-detection of 
cells, where over-detection of a cell can be represented as 
elements a1, a2, …, a33 shown in Figs. 2. Element a1 from 
Fig. X can be represented by a binary function  𝒎𝒎𝟏𝟏 = 𝒊𝒊𝟏𝟏𝟏𝟏���� +
𝒊𝒊𝟏𝟏𝟐𝟐 + 𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟐𝟐𝟏𝟏 + 𝒊𝒊𝟐𝟐𝟐𝟐���� + 𝒊𝒊𝟐𝟐𝟏𝟏 + 𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟏𝟏𝟐𝟐 + 𝒊𝒊𝟏𝟏𝟏𝟏; where 𝒊𝒊𝟏𝟏𝟏𝟏 =
𝑰𝑰(𝒎𝒎−𝟏𝟏,𝒚𝒚−𝟏𝟏), 𝒊𝒊𝟏𝟏𝟐𝟐 = 𝑰𝑰(𝒎𝒎,𝒚𝒚−𝟏𝟏), 𝒊𝒊𝟏𝟏𝟏𝟏 = 𝑰𝑰(𝒎𝒎+𝟏𝟏,𝒚𝒚−𝟏𝟏), 𝒊𝒊𝟐𝟐𝟏𝟏 = 𝑰𝑰(𝒎𝒎−𝟏𝟏,𝒚𝒚), 
𝒊𝒊𝟐𝟐𝟐𝟐 = 𝑰𝑰(𝒎𝒎,𝒚𝒚) , 𝒊𝒊𝟐𝟐𝟏𝟏 = 𝑰𝑰(𝒎𝒎+𝟏𝟏,𝒚𝒚), 𝒊𝒊𝟏𝟏𝟏𝟏 = 𝑰𝑰(𝒎𝒎−𝟏𝟏,𝒚𝒚+𝟏𝟏), 𝒊𝒊𝟏𝟏𝟐𝟐 = 𝑰𝑰(𝒎𝒎,𝒚𝒚+𝟏𝟏) 
and 𝒊𝒊𝟏𝟏𝟏𝟏 = 𝑰𝑰(𝒎𝒎+𝟏𝟏,𝒚𝒚+𝟏𝟏); which means that the central element 
𝒊𝒊𝟐𝟐𝟐𝟐 is eliminated to avoid over-detection. Thus, every 
element from Fig. 2 can be represented by a binary function 
where the central element  𝒊𝒊𝟐𝟐𝟐𝟐 has been eliminated, and it is 
based on that fact that every element can be represented by a 
binary function, and the combination of all these functions 
yields cell location.  This equation was reduced by the Quine-
McCluskey method; afterward, Postulates and Theorems of 
Boolean Algebra were used to minimize it. This binary 
function is applied onto the image I(x,y). Later, the obtained 
image is rotated 180 degrees, H(x,y) = rotate180(B(x,y)), 
with the goal of eliminating the multiple detection in the 
opposite direction. Then, Eq. 6 is applied onto the rotated 
image H(x,y). Finally, the result is rotated back to the original 
orientation. This process is performed until algorithm 
convergence is reached. 

 
𝐵𝐵(𝑥𝑥,𝑦𝑦) = 𝒊𝒊𝟐𝟐𝟐𝟐 ∙ [𝒊𝒊𝟏𝟏𝟏𝟏���� + 𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟐𝟐𝟏𝟏 + 𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟏𝟏𝟐𝟐 +
𝒊𝒊𝟏𝟏𝟏𝟏] ⋅ [𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟏𝟏𝟏𝟏���� + 𝒊𝒊𝟏𝟏𝟐𝟐 + 𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟐𝟐𝟏𝟏 + (𝒊𝒊𝟏𝟏𝟏𝟏 ⋅ 𝒊𝒊𝟐𝟐𝟏𝟏����)] ⋅
[𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟐𝟐𝟏𝟏 + 𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟐𝟐𝟏𝟏���� + (𝒊𝒊𝟏𝟏𝟐𝟐 ∙ 𝒊𝒊𝟏𝟏𝟏𝟏����) + (𝒊𝒊𝟏𝟏𝟏𝟏���� ⋅
𝒊𝒊𝟏𝟏𝟐𝟐)] ⋅ [𝒊𝒊𝟏𝟏𝟐𝟐���� + 𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟏𝟏𝟐𝟐 + 𝒊𝒊𝟏𝟏𝟏𝟏 + (𝒊𝒊𝟏𝟏𝟏𝟏���� ⋅ 𝒊𝒊𝟐𝟐𝟏𝟏) +
(𝒊𝒊𝟏𝟏𝟏𝟏���� ⋅ 𝒊𝒊𝟐𝟐𝟏𝟏)] ⋅ [𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟏𝟏𝟐𝟐 + 𝒊𝒊𝟐𝟐𝟏𝟏���� + 𝒊𝒊𝟏𝟏𝟏𝟏���� + 𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟐𝟐𝟏𝟏 +
(𝒊𝒊𝟏𝟏𝟏𝟏���� ⋅ 𝒊𝒊𝟏𝟏𝟐𝟐)] ⋅ {𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟏𝟏𝟐𝟐 + 𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊𝟏𝟏𝟐𝟐���� + (𝒊𝒊𝟐𝟐𝟏𝟏 +
𝒊𝒊𝟏𝟏𝟏𝟏����) ⋅ [𝒊𝒊𝟏𝟏𝟏𝟏���� + 𝒊𝒊𝟐𝟐𝟏𝟏 + (𝒊𝒊𝟐𝟐𝟏𝟏 ⋅ 𝒊𝒊𝟏𝟏𝟏𝟏����)]}  
 

(6) 

 
2.2.  Synthetic images 

 
The synthetic images were generated using a pre-

determined number of pseudo-photoreceptors, which in turn 
were generated through the use of a Gaussian function and an 
elliptical one [30]. The pseudo-photoreceptors varied at 
random in terms of size and reflectance, and they were 
symmetrically (in equidistant square and hexagonal arrays) 
and randomly distributed. Background illumination was 
added to each of the generated images, which corresponds to 
the illumination in the real images acquired with the AOSLO 
utilized at the University of Rochester [18]. 

 
Figure 2. Masks used to obtain the binary function B(x,y), Eq. 6. 
Source: The authors 

 
 

2.3.  Real AO images 
 
We used AOSLO images obtained for current and 

previous experiments at the Center for Visual Science of the 
University of Rochester to test the algorithm. Data shown 
from human participants are from experiments that were 
approved by the Research Subjects Review Board at the 
University of Rochester and adhered to the tenets of the 
Declaration of Helsinki. Participants gave informed written 
consent after the nature of the experiments and any possible 
risks were explained both verbally and in writing. 

 
3.  Results 

 
The algorithm developed by Li and Roorda [6] (Algorithm 1) 

and the algorithm here proposed (Algorithm 2) have been tested 
on synthetic and real images, Fig. 3 shows the results obtained 
with both algorithms on synthetic images. In the caption, we 
show the color code that was used to identify where a pseudo-cell 
was positioned and the results obtained by each algorithm. 

For each function-distribution combination, 1000 
synthetic images of 100x100 pixels in size were generated. 
To those images, we applied algorithms 1 and 2, and the 
results obtained were later evaluated. The outcome of such 
evaluation is shown in Tables 1 and 2. Table 1 shows the 
relative error obtained for each of the combinations, whereas 
Table 2 shows the number of cells that were correctly 
detected as corresponding exactly with the place where the 
center of the pseudo-cells had been positioned. 
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Figure 3. Synthetic images results. (a) Gaussian-Square, (b) Gaussian-
Hexagonal, (c) Gaussian-Random (d) Elliptical-Square, (e) Elliptical-
Hexagonal and (f) Elliptical-Random. Purple points represent correct 
detection for both algorithms; yellow points represent where both algorithms 
fault detecting a cell; cyan points represent where only algorithm 2 detected 
an actual result; magenta points represent where only algorithm 1 detected 
correctly; red points represent a wrong detection with algorithm 1; green 
points represent a wrong detection with algorithm 2; blue points represent 
non detected cells. 
Source: The authors 

 
 

Table 1. 
Relative error obtained from synthetic images 

Function Distribution Pseudo-
cells 

(mean) 

Relative error (%) 
Algorithm 

1 
Algorithm 

2 
 Square 256.00 15.18 6.10 

Gaussian Hexagonal 289.00 0.41 0.42 
 Random 288.14 9.36 3.15 
 Square 256.00 21.77 5.8 

Elliptical Hexagonal 289.00 3.12 3.73 
 Random 288.45 14.09 4.62 

Source: The authors 
 
 

Table 2. 
Correctly detected from synthetic images 

Function Distribution Pseudo-
cells 

(mean) 

Correctly detected (%) 
Algorithm 

1 
Algorithm 2 

 Square 256.00 99.16 100 
Gaussian Hexagonal 289.00 99.42 100 

 Random 288.14 96.70 97.71 
 Square 256.00 91.54 100 

Elliptical Hexagonal 289.00 93.59 100 
 Random 288.45 92.16 97.70 

Source: The authors 
 
 

4.  Discussion and conclusions 
 
For all the images, both real and synthetic, a threshold m = 

2.0 was used to calculate the maximum absolute deviation Mij, 
and it was determined empirically; it is based on different tests 
that we conducted. If m > 2.0, we have a very prominent peak, 
but if m < 2.0, there is a tendency to flatness. The manual count 
presented in Table 3 was carried out on the basis of the authors' 
appreciation. For algorithm [6], cut_off_frequency = 0.61π and 
threshold = 0 were used to test the all the images. 

 
Figure 4. Real human AOSLO images with photoreceptors. red points represent 
the cell location detected with algorithm 1; green points represent the cell location 
detected with algorithm 2; and yellow points represent the result of algorithm 1 and 
2. 
Source: The authors 

 
 

Table 3. 
Cells detected in real AOSLO images 

Figure Manual Algorithm 1 Algorithm 2 
3(a) 305 219 287 
3(b) 168 240 187 
3(c) 279 247 295 
3(d) 151 140 144 
3(e) 152 144 145 

Source: The authors 
 
 
Fig. 4 shows the results obtained on real images. In the 

caption, we describe the color code used to identify the 
outcome of the algorithm that was utilized in each case. Table 
3 shows the number of cells that were manually detected by 
the authors and those detected by each algorithm.  

As shown in Tables 1 and 2 and in Fig. 3, both algorithms 
exhibited similar performances on synthetic images.  

When the algorithm was applied to real images that included 
cones, rods and vascular tissue, Fig. 4 (a - c), the algorithm 
developed by Li and Roorda [6] showed detection of cells in the 
vascular tissue, as well as poor detection of rods. It is evident that 
there are photoreceptors in these zones, but since the vessels cause 
the photoreceptor layer to be below or above the blood vessel, it 
cannot be stated that photoreceptor detection in this zone is 
adequate. 

Both algorithms exhibited similar performances on real 
images that included only cones, Fig. 4 (d, e). It is worth 
mentioning that Li and Roorda's algorithm does not show 
multiple detection for a single photoreceptor, whereas ours does. 

As aforementioned, it is very important and useful to 
know where photoreceptors are located and how many 
photoreceptors there are in the retina, because that 
information could be used for the analysis of the distribution 
and orientation of cones and rods in-vivo as well as to 
monitor the evolution of therapies for retinal diseases. 
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