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Abstract 
This work presents a numerical approach for the automatic adjustment of parameters of the Mazars Damage Model, applied to a thermo-
hydro-mechanical modeling of concrete structures.  The procedure is based on a Scientific Workflow System (SWS) that addresses the 
combinatorial universe of adjustable parameters by minimizing the number of simulations required for optimized results. Not only does 
SWS improve efficiency, by also makes the strategy easier when compared to manual procedures. The adopted algorithm is developed in 
an intuitive script language and employs a distributed computational environment. Comparison to experimental data indicates that the 
proposed methodology was efficient and effective in improving the analysis, by minimizing errors and saving processing time. 
 
Keywords: Scientific Workflow System, Damage Modeling, Parameters Adjustment. 

 
 

Modelo termo-hidro-mecánico de ajuste de parámetros mediante un 
sistema científico de flujo de trabajo distribuido 

 
Resumen 
Este trabajo presenta una estrategia numérica para el ajuste automático de parámetros del Modelo de Daño de Mazars, aplicado a un modelado termo-
hidro-mecánico de estructuras de concreto. El procedimiento se basa en un sistema de flujo de trabajo científico (SWS) que aborda el universo 
combinatorio de parámetros ajustables al minimizar el número de simulaciones requeridas para obtener resultados optimizados. SWS no sólo mejora 
la eficiencia, sino que también facilita la estrategia en comparación con los procedimientos manuales. El algoritmo adoptado se desarrolla en un 
lenguaje de escritura intuitivo y emplea un ambiente computacional distribuido. La comparación con los datos experimentales indica que la 
metodología propuesta fue eficiente y efectiva para mejorar el análisis, minimizando los errores y ahorrando tiempo de procesamiento. 
 
Palabras clave: Sistema de flujo de trabajo científico, Modelo de Daño, Ajuste de Parámetros. 

 
 
 

1.  Introduction 
 
Computational modeling is an important and useful tool for the 

scientific knowledge applied to several areas of human activity, 
such as engineering and biological sciences. Its contribution 
regards economical and ethical aspects of conducting experiments, 
as well as efficiency improvements related to data manipulation 
[1]. 

However, the application of computational methods to 
simulation, in general, involves theoretical complexity. In general, 
                                                      
How to cite: Lage-Bonifácio, A., de Oliveira-Amaral, R., Resende-Farage, M. C., de Barros-Barbosa, C. & de Souza-Barbosa, F., Thermo-hydro-mechanical model parameters 
adjustment via a distributed scientific workflow system. DYNA 84(200), pp. 46-52, 2017. 

in-silico experimentation requires researchers to have a 
multidisciplinary profile - demanding knowledge beyond a 
specific study area - often related to mathematical and 
computational techniques. 

The present work consists of a numerical procedure for 
adjusting model parameters. The proposed methodology aims to 
treat the addressed problem efficiently while reducing the 
difficulties mentioned above. The approach consists of 
implementing an operational strategy to minimize the 
combinatorial space of adjustable parameters and, consequently, 
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increasing the operational efficiency by means of a Scientific 
Workflow System (SWS) which automates the process and 
accelerates its execution via distributed processing [2,3]. 

In order to address the difficulty inherent to processing on a 
complex operating environment, it was employed herein a SWS 
named Scientific Workflow Automation in Distributed Environment 
(SWADE). SWADE is a system based on web services which 
allows the researcher to focus attention on the development and 
execution of the workflow, minimizing the handling of distributed 
and heterogeneous computing environment technical concepts. 

SWADE was applied herein to the estimation of a number of 
characteristic parameters of the Mazars Mechanical Damage 
Model [4] via inverse analysis procedures. Those parameters were 
obtained from experimental curves obtained from concrete 
specimens subjected to high temperatures [5]. 

The following sections present: an overview of important 
concepts and definitions dealt in the present work; an architectural 
view of the ad hoc SWS; the application of SWADE to a 
Computational Mechanics problem and, finally, some conclusions 
on the results obtained with the adopted approach. 

 
2.  Important concepts and definitions 

 
2.1.  Overview of the experimental data 

 
The experimental data employed as reference herein were 

obtained at the Laboratoire de Mécanique et Matériaux du Génie 
Civil (L2MGC), University of Cergy-Pontoise, France [6,7]. Tested 
specimens consisted of concrete-rock bilayers made of 
conventional concrete and high performance concrete and 
limestone (Fig. 1), aiming to reproduce a typical sample of a tunnel 
structure. The goal was to submit the double layered blocks to 
temperatures up to 600 °C and 750 °C, measuring the temperature 
evolution at specific points along the height and observing the 
different effects of temperature on the two types of concrete, rock 
and interface region. 

Fig. 2 shows the scheme adopted to monitor the temperature 
evolution during the thermal tests. For each sample five 
thermocouples were installed along the central axis of the prismatic 
sample, arranged in the following positions: the upper surface of 
the concrete, half of concrete layer, rock-concrete interface, half of 
rock layer and the bottom surface of the rock. The blocks were 
isolated with fiberglass (except for the upper surface, which was 
directly exposed to heating) so as to assure one-directional heating 
- for simplification purposes concerning the numerical simulations. 
Fig. 3, 4 show the typical aspect of the concrete blocks after 
heating, clearing denoting the damages.  

It well known that temperature evolution depends on the 
integrity of the tested materials. Hence, experimental information 
obtained from these tests were adopted in the present study, as 
described in section 2.2. 

Further details concerning the experimental procedures and the 
THM model are available in references [7-9]. 

 
2.2.  Parameters Adjustment for Mazars Model 

 
Concrete is a material that suffers mechanical degradation 

when exposed to high temperatures. This effect may be 
represented by means of damage models, such as the Mazars 
Model [4]. In outline, the model assumes that tensile 

deformations lead to distributed microcracks in the material, 
which causes degradation and affects the macrostructural 
behavior of the concrete. 

The Mazars Damage is represented by a scalar quantity 
named Damage variable, D, dependent on six characteristic 
parameters obtained from destructive mechanical tests 
accomplished on concrete samples: 𝐴𝐴𝑡𝑡, 𝐵𝐵𝑡𝑡 , 𝐴𝐴𝑐𝑐, 𝐵𝐵𝑐𝑐, 𝜀𝜀𝑑𝑑0 and 𝛽𝛽. 
These six parameters are extracted for stress-strain curves. 
The D variable is given by eq. (1)-(3). 

 

 
Figure 1. Bilayer samples made of concrete and rock. 
Source: Ferreira, 2014. 

 

 
Figure 2. Geometry of samples and location of thermocouples. 
Source: Ferreira, 2014. 

 

  
(a) Heated surface (b) Lateral surface 

Figure 3. CC-600 after heating. 
Source: Ferreira, 2014. 

 

  
(a) Heated surface (b) Lateral surface 

Figure 4. CC-750 after heating. 
Source: Ferreira, 2014. 
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𝐷𝐷𝑡𝑡 = �1−
𝜀𝜀𝑑𝑑0(1 − 𝐴𝐴𝑡𝑡)

𝜀𝜀̂
−

𝐴𝐴𝑡𝑡
exp[𝐵𝐵𝑡𝑡(𝜀𝜀̂ − 𝜀𝜀𝑑𝑑0)]� (1) 

  

𝐷𝐷𝑐𝑐 = �1 −
𝜀𝜀𝑑𝑑0(1− 𝐴𝐴𝑐𝑐)

𝜀𝜀̂
−

𝐴𝐴𝑐𝑐
exp[𝐵𝐵𝑐𝑐(𝜀𝜀̂ − 𝜀𝜀𝑑𝑑0)]� (2) 

  
𝐷𝐷 = 𝛼𝛼𝑡𝑡

𝛽𝛽𝐷𝐷𝑡𝑡 + 𝛼𝛼𝑐𝑐
𝛽𝛽𝐷𝐷𝑐𝑐 (3) 

 
where 𝜀𝜀̂ is equivalent deformation, 𝛽𝛽 is a scalar value intrinsic 

to the material, and 𝛼𝛼𝑡𝑡
𝛽𝛽 + 𝛼𝛼𝑐𝑐

𝛽𝛽 = 1.  D assumes values ranging 
from 0 to 1 and is a means of quantifying the mechanical damage 
through gradual decreasing the elasticity module. Eq. (4) 
indicates the adapted Hooke Law for such a condition.  

 
𝜎𝜎 = 𝐸𝐸0(1 − 𝐷𝐷)𝜖𝜖 (4) 

 
where 𝜎𝜎 is the stress, 𝜀𝜀 is the strain and 𝐸𝐸0 is the elasticity 

module of the undamaged material. 
In spite of the simplicity of the model expressed by 

eq. (1)-(4), the experimental parameters 𝐴𝐴𝑡𝑡, 𝐵𝐵𝑡𝑡 , 𝐴𝐴𝑐𝑐, 𝐵𝐵𝑐𝑐, 𝜀𝜀𝑑𝑑0 and 
𝛽𝛽 are not easy to measure. It is due to the brittle characteristic of 
concretes, which makes it rather difficult to obtain the appropriate 
stress-strain curve under tension. An alternative methodology 
consists of inverse analysis - which is possible with the help of 
experimental data concerning 𝐸𝐸 evolution under varied 
deleterious solicitations. 

The present experiment consisted of the evaluation of the six 
Mazars parameters from experimental data comprising the 
evolution of E for a concrete subjected to varying temperatures, 
obtained by [6]. Then, experimental evolution of the damage 
variable 𝐷𝐷 is given by eq. (5). 

 

𝐷𝐷(𝑇𝑇) = 1 −
𝐸𝐸(𝑇𝑇)
𝐸𝐸0

 (5) 

 
The mechanical behavior of the concrete structures under 

high temperatures was simulated through a transient 
nonlinear thermo-hydro-mechanical model (THM) and the 
Mazars Model. The software applied to the analysis was the 
CAST3M, which is an open source Finite Element code 
developed in the programming language Gibiane [10]. Since 
experimental information was not available to directly 
identify the Mazars parameters, it was adopted an adjustment 
procedure consisting, basically, on the following steps: 
• applying the THM model, via CAST3M, with a set of 

Mazars parameters; 
• numerical evaluation of temperature evolution curves; 
• comparison of the numerical curves to their experimental 

counterparts. 
 

2.3.  Scientific Workflow 
 
A scientific workflow is a description of the steps 

needed to execute a particular experiment, including its 
artifacts and processes. A scientific workflow system 

(SWS) is a computational tool to automate workflows’ 
execution, helping researches to create and execute 
computational experiments, giving access to services and 
information available in a computing environment [11].  
However, other definitions may be found in [12-14]. The 
key feature of SWSs is the flexibility, i.e., making it easy 
to maintain workflows; employing heterogeneous data; 
tracking execution; and analyzing results. These 
characteristics are paramount to the efficiency of research 
activities [15]. 

A large number of SWS tools are available for use [16], 
but these tools are focused on specific set of functionalities. 
As an example, VisTrails is oriented towards an efficient 
mechanism for tracking experiments, also known as 
provenance [17]. Kepler presents significant results on the 
interface to handle building blocks of experiments, as well 
as the composition of computational models [18]. 
However, the methodology proposed herein presents 
important characteristics such as the possibility to extend 
the set of executable actions; abstraction of the 
technological complexity; and a distributed and 
heterogeneous computational environment.  

 
3-  SWADE Architecture 

 
The lightweight code of SWADE allows new building 

blocks, such as C programs or web-services, through simple 
annotations in a XML file. SWADE also allows easy 
insertion of new processing nodes in the system, making the 
processing capacity scalable. To the end, the machine’s 
owner, connected to the local network or Internet, just needs 
to install a small packet of web-services that implements the 
SWADE protocols. 

The set of communicating nodes distribute the task of 
interpreting workflow descriptions; scheduling and 
executing tasks. The nodes also perform client activities, 
allowing user interaction with the system, creating and 
monitoring the execution of experiments; inserting and 
removal of new processing nodes in the system; among 
others. 

The scheduling job has the collaboration of all nodes, 
but its main behavior is centralized. One of the nodes 
assumes the role of a main scheduler, in order to centralize 
information that allows the balancing while processing 
multiple workflows. Currently, SWADE presents the 
FIFO (First In, First Out) scheduling policy, which ensures 
that the demands are processed at arrival order, according 
to the availability of the servers. Fig. 5 illustrates this 
structure. 

The implemented language to define workflows allows: 
sequencing of actions, iteration, conditional execution, 
parallel execution, passing parameters, variables and 
asynchronous execution. The system provides further actions 
for composing workflows. Such actions may vary in nature, 
for example: an operating system command (Windows or 
Linux); an executable program (Java or C); third-party tools 
that can be executed from the command line (MATLAB or 
Cast3M); web services; among others, with no need of 
recompiling the system. 
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Figure 5. SWADE’s Architecture describing your communication network. 
Source: The authors. 

 
 

 
Figure 6. SWADE client interface with simple script sample. 
Source: The authors. 

 
 
New actions are given a mnemonic name to be used 

within the workflow description language, and are 
recognized by SWADE at runtime along with the associated 
parameters. 

The addition of new actions may be managed in a 
distributed way, by any client node of the system. The 
technical details of the action activation are encapsulated in 
XML based configuration files, and loaded only once, at 
deployment time, making the action available to the user in 
the form of a function call, such as castem("script.dgibi"). 

The interface to build, activate and monitor the execution 
of scientific workflows is shown in Fig. 6, which also 
illustrates the syntax of SWADE's language. The detailed 
presentation of the workflow is out of the scope of the present 
work. 

 
4.  Adjustment Strategies  

 
Firstly, the operation of computing simulations was 

performed manually and took a long period of 

experimentation. On these tests, the six characteristic 
parameters of the material were manually adjusted. 
Comparison to experimental information resulted in a 
minimum error of 0.13760, calculated via the Root Mean 
Square Error (RMSE). The set of manual parameters was: 
𝐴𝐴𝑡𝑡 = 1.0, 𝐵𝐵𝑡𝑡 = 5𝑥𝑥104, 𝐴𝐴𝑐𝑐 = 1.5,  
𝐵𝐵𝑐𝑐 = 1500, 𝜀𝜀𝑑𝑑0 = 10−4 and 𝛽𝛽 = 1.06. 

Aiming to improve the efficiency and efficacy of the 
procedure, it was created a systematic adjustment strategy for 
running Cast3M with varied parameters. Based on laboratory 
and empirical information, reference [4] states that the six 
parameters may range according to eq. (6). 

A Sensitivity Analysis (SA) [19] was carried out in order 
to identify the extent at which the Mazars model depends on 
each input parameter, so as to determine which quantity 
contributes the most to the output variability and, possibly, 
requires further research to strengthen the knowledge base 
and to reduce the output uncertainty. 

 
1.0 ≤ 𝐴𝐴𝑐𝑐 ≤  1.5 
0.7 ≤ 𝐴𝐴𝑡𝑡 ≤  1.0 

10−5  ≤ 𝜀𝜀𝑑𝑑0 ≤  10−4 
1000 ≤  𝐵𝐵𝑐𝑐 ≤  2000 

104  ≤  𝐵𝐵𝑡𝑡 ≤  105 
1.0 ≤   𝛽𝛽 ≤  1.2 

(6) 

 
Fig. 7 presents the SA for the six input parameters: 𝐴𝐴𝑡𝑡, 

𝐵𝐵𝑡𝑡 , 𝐴𝐴𝑐𝑐, 𝐵𝐵𝑐𝑐, 𝜀𝜀𝑑𝑑0 and 𝛽𝛽. In this study, the lower bound of all 
parameters was taken as the basis for comparison result. 
Moreover, the search space of each parameter, comprising 
the values between the upper and lower bounds, was divided 
into ten equal parts to be used in the simulations: one 
parameter was varied at a time while the others remained 
fixed as the base values. 

It can be seen in the Fig. 7 that 𝐴𝐴𝑐𝑐 and 𝐵𝐵𝑐𝑐 were the most 
influent parameters for the output variability while 𝐴𝐴𝑡𝑡 was 
the least influencing parameter. Therefore, the 𝐴𝐴𝑐𝑐 and 𝐵𝐵𝑐𝑐 
values demand a higher degree of discretization compared to 
the others, while processing the numerical experiments. 

 

 
 
Figure 7. Sensitivity Analysis of input parameters, which contribute the most 
to output variability of Marzars model. 
Source: The authors. 
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Two approaches were adopted herein. Firstly, the 
parameters were considered to vary on an arithmetic 
progression, respecting the intervals given by eq. (6), 
resulting in 6624 different combinations. After processing, 
the RMSE was calculated for every set of parameters, by 
comparison to experimental data. Algorithm 1 presents the 
logic used in this first strategy. 

Secondly, it was assumed broader intervals concerning 
the six parameters, as given in eq. (7). The aim of this 
experiment was to verify whether better results would be 
reached, which could denote the need for further laboratory 
investigation concerning the material’s characteristic 
parameters. A new strategy was adopted for the adjustment, 
according to Algorithm 2, consisting in the following steps: 
1. six equally spaced values were chosen for the first 

parameter: the minimum and the maximum bound values 
and 4 intermediate values; 

2. for each value chosen above, it was set a different 
combination of six parameters;  

3. the six combinations were processed simultaneously; 
4. after processing, execution errors (RMSE) were 

evaluated and the set giving in the best fit result is chosen 
as a reference for the generation of a new set of 
parameters; 

5. If results are improved, repeat the procedure from step 1; 
6. If no improvement is observed, repeat the procedure from 

step 1 - taking the next parameter - or stop the procedure 
after experimenting with all parameters. 
 

Algorithm 1. Scientific Workflow of the first approach. 
 begin 
 initialize_parameters_value; 
 while exists_combination_parameters do 
 execute_simulations_simultaneously; 
 save_rmse; 
 increases_parameters_value; 
 end_while 
 end 

Source: The authors. 
 

1.0 ≤ 𝐴𝐴𝑐𝑐 ≤  2.0 
0.2 ≤ 𝐴𝐴𝑡𝑡 ≤  1.0 

10−5  ≤ 𝜀𝜀𝑑𝑑0 ≤  10−3 
  500 ≤  𝐵𝐵𝑐𝑐 ≤  2000 

102  ≤  𝐵𝐵𝑡𝑡 ≤  105 
0.9 ≤   𝛽𝛽 ≤  1.5 

(7) 

 
In this second strategy, 294 combinations of parameters 

were generated to be processed following Algorithm 2. 
 

Algorithm 2: Scientific Workflow of the second approach. 
 begin 
 initialize_parameters_value; 
 while exists_better_adjustment do 
 execute_simulations_simultaneously; 
 save_rmse; 
 if exists_better_adjustment then 

 redefine_parameters_value; 
 end_if 
 set_new_parameters_value; 
 end_while 
 end 

Source: The authors. 
 

5.  Scientific Workflow Execution 
 
The adopted strategies were mapped to the SWADE 

language for execution. SWADE was configured to operate 
with six server nodes - each node in the system presented the 
following configuration: CPU i7 950 (3.07GHz), 8GB of 
RAM and network with 100M bit/s. 

While mapping the experiment strategy, a number of 
features of the SWADE language where employed so as to 
optimize the use of server nodes running each subset of 
parameters combinations in parallel, according to the number 
of available processing nodes. This approach, applied to the 
two strategies, reduced the experimentation time to 4.65% 
and 0.8% of the sequential execution time (from 27158 to 
4102 and 220 minutes, respectively). 

Fig. 8 shows the error rates obtained for the 6624 sets of 
parameters tested in the first strategy. As one can notice in 
the figure, the error tends to decrease as the sequence of 
executions progresses, as a result of the applied strategy. 

The total processing time demanded for testing all the 
6624 combinations of parameters in the first approach was 68 
hours and 22 minutes. The smallest RMSE achieved after the 
execution of the scientific workflow was 0.11882, which is 
better than the result obtained from them manual adjustment 
procedure. The set of parameters that gave the best result 
was: 𝐴𝐴𝑡𝑡 = 0.7, 𝐵𝐵𝑡𝑡 = 104, 𝐴𝐴𝑐𝑐 = 1.5, 𝐵𝐵𝑐𝑐 = 1000, 𝜀𝜀𝑑𝑑0 =
9𝑥𝑥10−5 and 𝛽𝛽 = 1.18. 

The numerical values resulting from the execution of the 
second strategy are shown in Fig. 9. The total workflow 
execution time for this approach was 2 hours and 42 minutes 
- 25 times faster than the previous approach. The best RMSE 

 

 
 
Figure 8. RMSE values obtained for the 6624 sets of parameters tested in 
the first approach. 
Source: The authors. 
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Figure 9. RMSE values obtained in each execution with set of distinct 
parameters on second approach. 
Source: The authors. 

 
 

 
 
Figure 10. Curves of damage comparing numerical models to experimental 
data. 
Source: The authors. 

 
 

found in this experiment was 0.06829, representing an 
improvement of 1.7 times compared to the previous result. 
The resulting set of parameters was: 𝐴𝐴𝑡𝑡 = 0.5, 𝐵𝐵𝑡𝑡 = 103,  
𝐴𝐴𝑐𝑐 = 1.932, 𝐵𝐵𝑐𝑐 = 1000, 𝜀𝜀𝑑𝑑0 = 3.3𝑥𝑥10−4 and 𝛽𝛽 = 1.0. 
Considering the limits defined in eq. (6), these procedure 
results in four parameters assuming values outside the 
intervals indicated by reference [4]: 𝐴𝐴𝑡𝑡, 𝐵𝐵𝑡𝑡  𝐴𝐴𝑐𝑐, and 𝜀𝜀𝑑𝑑0. 

For comparison purposes, Fig. 10 confronts the 
experimental damage evolution in time with the curves 
obtained with the 3 sets of parameters obtained herein. The 
curves are named by the corresponding RMSE value. As one 
can see by comparing the 4 curves, the smaller the RMSE 
value, the better is the curve fitting. 

6.  Conclusions 
 
The proposed methodology provided remarkable 

improvement on parameters adjustment, concerning 
efficiency and efficacy aspects. SWADE contributed on the 
following aspects of the in silico experimentation life cycle: 
• The automation of the experiment execution control 

avoided the human intervention that is time consuming 
and error prone; 

• The parallel execution of tasks significantly improved 
execution efficiency; 

• The easy integration of third party software into the 
workflow system, as it was the case with Cast3M. Such 
task may demand a huge effort on other tools as described 
in [15]. 

• SWADE language has a fast learning curve and avoids 
the need for complex technical details inherent to 
distributed and heterogeneous systems. Execution of the 
same task via script languages, such as Python, demands 
much more effort to a non-expert user. 
The adjustment dealt with in the present study may also 

be treated by means of other kinds of approaches, such as 
meta-heuristics used in Evolutionary Computing [20]. 
However, the main contribution herein is to evaluate the 
applicability of ad-hoc SWS, striving to reach good 
experimentation results while keeping a compromise with the 
experimentation process efficiency. 

The use of SWADE succeeds to keep a good balance on 
treating experimentation efficiency at each step of its life 
cycle. This tool may also be applied to automate 
experimentations involving other techniques to solve this 
engineering problem, as mentioned above. 

Some issues to be investigated are: 
• different approaches to choose the granularity for 

variation of the model parameters; 
• application of new methods for parameter adjustment 

[21,22] to improve the search strategy; 
• improvements on the SWADE scheduling algorithms, 

such as the one presented in [23], 
•  refinement of the execution parallelization tasks. 

The results indicate that the proposed methodology may 
evolve to practical real life applications as an auxiliary tool 
for parameters adjustment and, even, as a means of 
evaluating the quality of laboratory data. 

 
Acknowledgements 

 
The authors thank FAPEMIG (Fundação de Amparo à 

Pesquisa do Estado de Minas Gerais), CNPq (Conselho 
Nacional de Desenvolvimento Científico e Tecnológico) and 
CAPES (Coordenação de Aperfeiçoamento de Pessoal de 
Nível Superior) for the financial support. 

 
References 

 
[1] Heymann, M., Understanding and misunderstanding computer 

simulation: The case of atmospheric and climate science - an 
introduction. Studies in History and Philosophy of Science Part B: 
Studies in History and Philosophy of Modern Physics, 41(3), pp. 193-
200, 2010. 



Lage-Bonifácio et al / DYNA 84 (200), pp. 46-52, Marzo, 2017. 

52 

[2] Deelman, E., Gannon, D., Shields, M. and Taylor, I., Workflows and 
e-science: An overview of workflow system features and capabilities. 
Future Generation Computer Systems, 25(5), pp. 528-540, 2009. 

[3] Gannon, D., Taylor, I.J., Deelman, E. and Shields, M., Workflows for 
e-Science. Springer- Verlag London Limited, 2007. 

[4] Mazars, J., Application de la mécanique de l’endommagement au 
comportement non linéaire et à la rupture du béton de structure 
[Application of mechanical damage to the nonlinear behavior and 
rupture of the concrete structure], PhD Thesis, University Pierre ET 
Marie Curie, Paris, 1984. 

[5] Amaral, R.d.O., Análise computacional termo-mecânica de estruturas 
de concreto sujeitas a temperaturas elevadas [Thermo-Mechanical 
Computational Analysis of Concrete Structures Subjected to High 
Temperatures], MSc. Thesis, Postgraduate Program in Computational 
Modeling, Federal University of Juiz de Fora - UFJF, Brazil, 2014. 

[6] Xing, Z., Influence de la nature minéralogique des granulats sur leur 
comportement et celui du béton à haute temperature [Influence of the 
mineralogical nature of the aggregates on their behavior and that of 
the high-temperature concrete], PhD Thesis, Specialization: Civil 
Engineering, Cergy-Pontoise University, France, 2011. 

[7] Xing, Z., Beaucour, A.L., Hebert, R., Noumowe, A. and Ledesert, B., 
Influence of the nature of aggregates on the behaviour of concrete 
subjected to elevated temperature. Cement and concrete research, 
41(4), pp. 392-402, 2011. 

[8] Ferreira, A.P.G., Farage, M.C., Barbosa, F.S., Noumowé, A. and 
Renault, N., Thermo-hydric analysis of concrete–rock bilayers under 
fire conditions. Engineering Structures, 59, pp. 765-775, 2014. 

[9] Ferreira, A., Modelagem dos fenômenos de transporte termo-hídricos 
em meios porosos submetidos a temperaturas elevedas: Aplicação a 
uma bicamada rocha-concreto, MSc. Thesis, Postgraduate Program in 
Computational Modeling, Federal University of Juiz de Fora - UFJF, 
Brazil, 2011. 

[10] Le Fichoux, E., Présentation et utilisation de CASTEM, CEA, 2011, 
92 P. 

[11] Pignotti, E., Edwards, P., Gotts, N. and Polhill, G., Enhancing 
workflow with a semantic description of scientific intent. Web 
Semantics: Science, Services and Agents on the World Wide Web, 
9(2), 2011. 

[12] Seffino, L., Medeiros, C., Rocha, J. and Yi, B., Woodss — A spatial 
decision support system based on workflows. Decision Support 
Systems, 27(1-2), pp. 105-123, 1999. 

[13] Yu, J. and Buyya, R., A taxonomy of scientific workflow systems for 
grid computing. SIGMOD Rec., 34(3), pp. 44-49, 2005. 

[14] Altintas, I., Barney, O. and Jaeger-Frank, E., Provenance collection 
support in the kepler scientific workflow system. Springer Berlin 
Heidelberg, pp. 118-132, 2006. DOI: 10.1007/11890850_14 

[15] Bonifácio, A.L.. Análise de ferramentas computadorizadas para 
suporte à modelagem computacional - Estudo de caso no domínio de 
dinâmica dos corpos deformáveis [Analysis of computerized tools for 
computational modeling support – Case study of the dynamics system 
domain], MSc. Thesis, Postgraduate Program in Computational 
Modeling, Federal University of Juiz de Fora - UFJF, Brazil, 2008. 

[16] Yu, J. and Buyya, R., A taxonomy of workflow management systems 
for grid computing. Journal of Grid Computing, 3(3-4), pp. 171-200, 
2005. 

[17] Bavoil, L., Callahan, S.P., Crossno, P.J., Freire, J., Scheidegger, C.E., 
Silva, C.T. and Vo, H.T., Vistrails: Enabling interactive multiple-
view visualizations. In Visualization, 2005. VIS 05. IEEE, pp. 135-
142. IEEE, 2005. 

[18] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, 
M., Lee, E.A., Tao, J. and Zhao, Y., Scientific workflow management 
and the kepler system. Concurrency and Computation: Practice and 
Experience, 18(10), pp. 1039-1065, 2006. 

[19] Iooss, B. and Lemaître, P., A Review on global sensitivity analysis 
methods. Uncertainty management in simulation-optimization of 
complex systems. Algorithms and Applications, 59, pp. 101-122, 
Springer, 2015.DOI: 10.1007/978-1-4899-7547-8_5 

[20] Bäck, T. and Schwefel, H.-P., An overview of evolutionary 
algorithms for parameter optimization. Evolutionary Computation, 
1(1), pp. 1-23, 1993. DOI: 10.1162/evco.1993.1.1.1 

[21] Qaffou, I., Sadgal, M. and Elfazziki, A., A reinforcement learning 
method to adjust parameter of texture segmentation. In Informatics 

and Systems (INFOS), 2010 The 7th International Conference on, pp. 
1-5. IEEE, 2010. 

[22] Hutter, F., Xu, L., Hoos, H.H. and Leyton-Brown, K., Algorithm 
runtime prediction: Methods & Evaluation. Artificial Intelligence, 
206, pp. 79-111, 2014. 

[23] Soares, S.S.R.F., Gonçalves, L.B. and de Lyra, A.R., Um algoritmo 
genético para o problema da sequência mais próxima [A genetic 
algorithm for the problem of the closest sequence]. XLV Simpósio 
Brasileiro de Pesquisa Operacional, Brazil, 2013. 

 
 

A. Lage-Bonifácio, is a PhD. student in the Postgraduate Program in 
Computational Modeling in the Federal University of Juiz de Fora - UFJF, 
Brazil. He received his BS from Centro de Ensino Superior de Juiz de Fora 
in 2002 and MSc from UFJF in 2008. His research interests include 
computational modeling of concrete structures, computational intelligence, 
machine learning, scientific workflows and distributed programming. 
ORCID: 0000-0001-5230-4311 
 
R. de Oliveira-Amaral, is a MSc. in the Postgraduate Program in 
Computational Modeling in the Federal University of Juiz de Fora - UFJF, 
Brazil. She received his BS from UFJF in 2011. 
ORCID: 0000-0003-2717-744X 
 
C. de Barros-Barbosa, is an associate professor and research engineer at 
the Federal University of Juiz de Fora - UFJF, Brazil. He received her BSc. 
from University of Estado do Rio de Janeiro - UERJ in 1989, MSc from 
Federal University of São Carlos - UFSCAR in 1995 and PhD. from 
University of Twente, Holanda in 2001. His research interests include 
distributed systems, model-driven system development, scientific 
workflows and e-science.  
ORCID: 0000-0002-4701-603X 
 
M.C. Resende-Farage, is an associate professor and research engineer at 
the Federal University of Juiz de Fora - UFJF, Brazil. She received her BSc 
from UFJF in 1991, MSc from Federal University of Rio de Janeiro – UFRJ 
in 1995 and PhD. from UFRJ in 2000. Her research interests include 
experimental analysis and computational modeling of concrete structures. 
ORCID: 0000-0002-5344-0937 
 
F. de Souza-Barbosa, is an associate professor and research engineer at the 
Federal University of Juiz de Fora - UFJF, Brazil. He received his BSc. from 
UFJF in 1994, MSc from Federal University of Rio de Janeiro – UFRJ in 
1996 and PhD. from UFRJ in 2000. He is member of the Editorial Board of 
the IABSE Journal – Structural Engineering International (SEI). His 
research interests include structural dynamics, concrete structures and 
computational modeling of structures. 
ORCID: 0000-0002-7991-8425 


	1.  Introduction
	2.  Important concepts and definitions
	2.1.  Overview of the experimental data
	2.2.  Parameters Adjustment for Mazars Model
	2.3.  Scientific Workflow

	3-  SWADE Architecture
	4.  Adjustment Strategies
	5.  Scientific Workflow Execution
	6.  Conclusions
	Acknowledgements
	References

