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Abstract

We consider the Location-Routing Problem with Heterogeneous Fleet (LRPH) in which the goal is to determine the depots to be opened,
the customers to be assigned to each open depot, and the corresponding routes fulfilling the demand of the customers and by considering
a heterogeneous fleet. We propose a comparison of granular approaches of Simulated Annealing (GSA), of Variable Neighborhood Search
(GVNS) and of a probabilistic Tabu Search (pGTS) for the LRPH. Thus, the proposed approaches consider a subset of the search space in
which non-favorable movements are discarded regarding a granularity factor. The proposed algorithms are experimentally compared for
the solution of the LRPH, by taking into account the CPU time and the quality of the solutions obtained on the instances adapted from the
literature. The computational results show that algorithm GSA is able to obtain high quality solutions within short CPU times, improving
the results obtained by the other proposed approaches.

Keywords: Location-routing problem; heterogeneous fleet; simulated annealing; variable neighborhood search; probabilistic tabu search;
metaheuristic algorithms.

Una comparacion de algoritmos basados en trayectoria granular para
el problema de localizacion y ruteo con flota heterogénea (LRPH)

Resumen

Nosotros consideramos el problema de localizacién y ruteo de vehiculos con flota heterogénea (LRPH) en el cual la meta es determinar los
depdsitos a ser abiertos, los clientes asignados a cada deposito, y las rutas que satisfagan la demanda de los clientes considerando una flota
heterogénea. Nosotros proponemos una comparacion de algoritmos granulares de Recocido Simulado (GSA), Busqueda de Vecindario
Variable (GVNS) y Tabu Search probabilistico (pGTS) para el LRPH. De esta manera, los algoritmos propuestos consideran un
subconjunto del espacio en el cual los movimientos menos favorables son descartados segin un factor de granularidad. Los algoritmos
propuestos son comparados experimentalmente para la solucién del LRPH, considerando el tiempo de CPU vy la calidad de la solucién
obtenida en instancias adaptadas de la literatura. Los resultados computacionales muestran que el algoritmos GSA es capaz de obtener
buenas soluciones en tiempos computacionales reducidos, mejorando los resultados obtenidos por los otros algoritmos propuestos.

Palabras clave: Problema de localizacién y ruteo; flota heterogénea; recocido simulado; busqueda de vecindario variable; busqueda tabu
probabilistica; algoritmos metaheuristicos.

1. Introduction Combinatorial Optimization Problems (COP). One of the
most well studied decisions within the COP is the Traveling
Long and short-term logistic operations consider Salesman Problem (TSP), in which an agent should visit
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several cities and go back to its initial position in an optimal
way minimizing the travelled distance and by considering
that each city must visited only once. The problem could be
represented by an undirected graph; where the vertex
correspond to the cities and the arcs to the distances to be
traveled satisfying the corresponding demand of cities [1].
The TSP is classified as NP-Hard problem, being
computationally intractable with the number of nodes is
increased [2,3].

The well-known Vehicle Routing Problem (VRP), is
based on the principles of the TSP. Different variants of the
Vehicle Routing Problem have been studied deeply in the
fields of the Operations Research and Combinatorial
Optimization, during the last fifty years. The variants include
divided demand, time windows, different fleet, etc. The VRP
could be depicted as a problem of designing routes from one
depot to a set of customers by satisfying constrains of
demand and of capacity of the vehicles. A variant of the VRP
by considering several depots, from which is possible to
satisfy the demand of the customers, each one of them having
different fixed cost and different capacity, is a prominent
research area [4,5]. This extension of the VRP is called
Location-Routing Problems (LRP). The Location-Routing
Problem considers two types of problems, which have been
studied independently (the Multi Depot Vehicle Routing
Problem — MDVRP and the Facility Location Problem —
FLP). However, recent research results showed that the
integration of both decisions allows obtaining a major
efficiency of the design of the supply chain [6-8]. The FLP is
associated with decisions of opening depots and assigning
customers to the open depots. On the other hand, the MDVRP
corresponds to the development of a set of routes to be
performed by minimizing the total travelled distance. The
LRPH is considered NP-hard, since it is a generalization of
two well-known sub-problems: The Facility Location
Problem (FLP) and the Multi-Depot Vehicle Routing
Problem with Heterogeneous Fleet (MDHVRP) [4].

Exact algorithms for the LRP are proposed in [9]. In this
work, Bender’s decomposition for splitting a LRP problem
into two sub-problems (location-assignment and routing) is
proposed. The drawback of linear programming approaches
appears when dealing with real-life problems due to the
cardinality of the scenario. Therefore, heuristic approaches
are commonly used.

The heuristics algorithms for the LRP can be classified [6,7]
into groups (sequential, iterative, nested) regarding to the way
to deal with the FLP and the MDVRP. In the sequential
approach, an algorithm for the MDVRP is performed after the
FLP has been solved and, hence, there is no feedback between
the two approaches. The iterative algorithm tries to take this
drawback into account by iterating on the process. The nested
algorithms compute the MDVRP for each solution obtained in
the FLP. In general terms, sequential approaches tend to be
faster than iterative and nested ones regarding the number of
iterations to be performed.

One example of a sequential algorithm is the two-phase
algorithm introduced in [10]. In the first phase, the FLP is
solved by considering the length of the tours (routes) as a
variable cost. In the second phase, a multilevel heuristic is
used to solve the corresponding MDVRP. The proposed

method in [11] is similar to the approach proposed by [10].
The main difference is that using a combined approach
between a tabu search approach and a simulated annealing
scheme solves the two phases. Another sequential algorithm
based on four levels is considered in [12]. In this work, a
combined problem by considering inventory decisions with a
heterogeneous fleet is solved exactly by a mathematical
model. Finally, a problem of transfer products from hubs to
customers by considering a heterogeneous fleet is introduced
in [13].

Typically, the LRP problems have considered an
unlimited fleet of homogeneous vehicles. Although some
considerations of heterogeneous fleet for the LRPH are
proposed by [9-13], the literature regarding to location
routing problems by considering heterogeneous fleet is
scarce. Thus, this work is focused on the comparison of
granular-based heuristic algorithm for solving the Location
Routing Problem with Heterogeneous Fleet (LRPH). Indeed,
the only work related to the LRPH has been introduced by
Linfati et al [4]. In this paper, a modified granular tabu search
for the LRPH has been proposed. The proposed algorithm is
executed on instances adapted from the literature and the
results are compared with a relaxed version of the proposed
mathematical model for the LRPH. A remarkable fact of this
algorithm is the use of the granularity concept introduced by
[14], which is, in fact, a key for reducing the computational
cost of the tabu search while conserving the quality of the
solution. This paper aims to apply this idea to other heuristic
algorithms in order to reduce the search space.

A work related to a similar problem of LRPH is presented
in [15]. This paper considers a mathematical formulation and
a Variable Neighborhood scheme for the Multi-Depot
Vehicle Routing Problem with Heterogeneous Fleet
(MDHVRP). Unlike the LRPH, the MDHVRP not considers
decisions related to the depots to be opened.

In this work, we perform a computational comparison of
three trajectory heuristics by using the granular concept
introduced in [14] for the LRPH. The former algorithms
consider the same initial solution obtained by a hybrid
procedure and the same neighborhood structures. The first
algorithm, called Granular Simulated Annealing approach
(GSA), considers a Simulated Annealing (SA) method, with
a granular” search space, to improve the initial solution S,
[5]. The second algorithm, called Granular Variable
Neighborhood Search (GVNS), considers a Variable
Neighborhood Search (VNS) procedure to enhance the
quality of solution S,. Finally, the third algorithm, called
Granular Tabu Search (pGTS), consider a Probabilistic
Granular Tabu Search scheme for the LRPH.

The main contribution of the paper is the comparison of
effective algorithms for the solution of the LRPH. The
proposed algorithms are novel metaheuristic approach,
which combine different local based procedures with a
granular search space for getting good results within short
computing times. The paper is structured as follows. Section
2 introduces the general framework used by the considered
algorithms. A detailed description of the three approaches is
given in Section 3. The comparative study on adapted
benchmark instances from the literature is provided in
Section 4. Finally, Section 5 contains concluding remarks.
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2. General framework
2.1. Mathematical formulation

The LRPH could be represented by the following undirected
graphproblem: LetG = (V, E) be acomplete undirected graph,
where V = {1,...,M + N} is the set of vertices representing
customers and potential depots, and E = {(v;, v;): i # j} is the
set of edges. Vertices J = {1..., M} correspond to set of
customers each with known positive demand d;, and vertices
I ={M + 1,...,M + N} correspond to the potential depots,
each with capacity w; and opening costs o;. With each edge
(i,)) € E isassociated a non-negative traveling cost ¢;;. Ateach
potential depot i € I, a set of K heterogeneous vehicles is
located, each with a vehicle capacityq, . Furthermore, any vehicle
that performs a route generates a fixed cosv,t. The goal of LRPH
is to determine the depots to be opened, the customers to be
assigned to each open depot, and the routes to be performed to
fulfill the demand of the customers by considering a
heterogeneous fleet. Indeed, the LRPH integrates a strategic
decision (depots to be used) and an operational decision (the
routes to be developed by considering a heterogeneous fleet).

The objective function of LRPH considers the
minimization of the sum of the fixed cost of the depots, of the
costs of the used vehicles, and of the costs related with the
distance traveled by the vehicles [4]. Any LRPH solution is
feasible, if the following constraints are satisfied: (i) Each
route starts and finishes at the same depot, (ii) each customer
must visited exactly once by one vehicle, (iii) the sum of the
demand of the customers served by a vehicle k € K must not
exceed its corresponding vehicle capacity g, (iv) the sum of
the demand of the customers assigned to an open depot i €
I must not exceed its corresponding depot capacity w;, and
(v) the flow of products between depots is not allowed.

2.2. Concept of granular search space

The granular search conception (Toth and Vigo [14]), is
predicated on the employment of a sparse graph (incomplete
graph) containing the edges incident to the depots, the edges
belonging to the best feasible solutions found so far, and the
edges whose cost is smaller than a granularity threshold 9 = gz,

where Z = ﬁ is the average cost of the edges belonging to the

best solution found so far, and g is a dynamic sparsification
factor which is updated during the search ([4-5] and [14]). In
particular, the search starts by initializing 8 to a small value .
After N; X n iterations the value of 8 is increased to the value
Bn, and N, X n additional iterations are performed by
considering as current solution the best feasible solution found so
far [7]. Conclusively, the sparsification factor g is reset to its
previous value S, and the search continues. Sy, Bn, Ng, and
N,. are given parameters. The main idea of the granularity is to
obtain high quality solutions in based-trajectory heuristics within
short computing times [6,7].

2.3. Neighborhood structures

The former heuristics use well-known intra-route (moves
performed in a performed route) and well-known inter-route

(moves performed between two routes assigned to the same
depot or to different depots) moves corresponding to five
neighborhood structures Ny, (k = 1,...,5): Insertion, Swap,
Two-opt, Double-Insertion, and Double-Swap [4-7]. A move
is performed only if all the new inserted edges in the solution
belonging to the sparse graph (granular search space).

Some of the proposed approaches allow infeasible solutions
respect to the depot and vehicle capacity constraints. For any
feasible solution S, we calculate its objective function value
F;(S) as the sum of the fixed cost of the depots, of the used
vehicles and of the cost of the edges traveled by the performed
routes. On the other hand, if the solution S is infeasible, we
calculate its objective function value F,(S) = F;(S) + P, (S) +
Py (S), where P, (S) is a penalty term obtained by multiplying
the global over vehicle capacity of the solution S times a
dynamically updated penalty factor «, = p, X F;(S,), and
P, (S) is a penalty term obtained by multiplying the global over
depot capacity S times a dynamically updated penalty factor
ag = pg X F(Sy). In particular, p, and p,; are adjusted
parameters during the search, and F,;(S,) is the objective
function value of the initial solution S,. If infeasible solutions
with respect to the depot capacity have been not found over Ny,
iterations, then the value of p, is set to max{pmin, Pa X Orea}s
where d,..4< 1. On the other hand, if feasible solutions have been
not found during Ny, iterations, then the value of p, is set to
Min{Pmax, Pa X Oinc}, Where d;,. > 1. A similar procedure is
applied to update the value of p,,. Note if the current solution S is
feasible, F; (S) = F,(S) (for further details see [6-7]).

2.3. Initial Solution

Utilizing a hybrid heuristic based on a cluster approach, a
good feasible initial solution S, is generated within short
computing times. The following steps are executed until all
the customers are assigned to one route and one depot:

Firstly, a giant TSP tour containing all the customers
(without the consideration of the depots) is constructed by
using the well-known Lin-Kernighan heuristic (LKH) ([16]
and [17]). Secondly, starting from any initial customer j*,
divide the built giant TSP tour into several clusters composed
of consecutive customers so that, for each cluster the vehicle
capacity constraint is satisfied. In particular, we have
assigned the large vehicles firstly.

Thirdly, for each depot i and each cluster g, a TSP tour is
obtained using procedure LKH to evaluate the traveling cost
of the route performed starting from i and visiting all the
customers belonging to g (keeping the sequence obtained by
the giant TSP). Finally, the depots are assigned to the clusters
by solving an ILP model for the Single Source Capacitated
Facility Location problem. This step determines the depots to
be opened and the clusters to be assigned to the open depots
(for further details see [18] and [19]).

3. Description of the considered algorithms

3.1. The Granular Simulated Annealing heuristic
algorithm (GSA)
The former algorithm considers a standard

implementation of the Simulated Annealing metaheuristic
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(SA) by using a granular search space (reduced graph). We
have assumed the same notation used on similar problems
such as LRP [4]. Let S* be the best feasible solution found so
far, S the current solution (feasible or infeasible), S’ a random
solution obtained from the neighborhood solutions of the
current solution S, a the cooling factor, and T the current
temperature. Initially, we set $*:=S,, and S:=S,. In
addition, we set the initial temperature T, and the number of
iterations it: = 0. The proposed algorithm performs the
following steps until the number of iterations is reached:

e Decrease the current temperature every N,,,; iterations
(where N_,,; is a given parameter) by using the following
function T; =« T;_,, where 0 < @ < 1; and also increase
the number of iterations i: =i + 1.

e Construct a random solution S’ obtained by considering

all the neighborhood structures Nk (k = 1,...,5) from

the current solution S described in section 2.3.

Compute g = F,(S") — F,(S)

Generate a random number r in the range [0, 1];

If o <0setS:= S';

If 6 >0dolfr < exp(—a/T), setS:= S’; otherwise,

keep S.

Finally, the best feasible solution found so far S* is kept.

The pseudocode algorithm of GSA is presented as follows:

Input: Initial solution S, initial temperature T,, and max number of
iterations maxlter
Output: Final solution $*
S— S5,
T T,
iter — 0
While iter < maxIter do
S’ < N, /I Generate random solution from the neighborhood
If F,(S") < F,(S) Then
U
—
If F,(S") < F,(S*) Then S*< &'
Else
r < random(0,1) //Generate a random number
Ifr < eN(—(F,(S") - F»(S))/T) Then
S<S
T «— a X T /ldecrease the current temperature T
iter « iter + 1
Return S*

In particular, the GSA approach requires less computing
effort performing more iterations respect to the other
proposed approaches.

3.2. The Granular Variable Neighborhood Search
approach (GVNS)

The GVNS algorithm brings together the potentiality of the
systematic changes of neighborhood structures proposed by the
well-known Variable Neighborhood Search (VNS) [20], and the
efficient Granular Search Space introduced by [14] and improved
by [5-7]. According to [20], the VNS applies a search strategy
based on the systematic change of the neighborhoods structures
to elude local optima. Three main concepts are applied ona VNS:
(1) All the local minimum obtained by different neighborhood
structures are not necessarily equals; (2) The best local minimum
(respect to the objective function) obtained from all possible
neighborhood structures (described in section 2.3) is called global
minimum; (3) The different local minima obtained from the

neighborhood structures should be relatively close each other.

Once the initial solution is performed (S,), the VNS
approach iterates through different neighborhood structures
to amend the best feasible solution (S*) found so far, until a
the number of iterations is reached. The algorithm starts by
setting S* =S = S,, where S is the current solution.

The Variable Neighborhood Search considers two steps: (1)
selecting a random solution from the first neighborhood and (2)
applying a Granular Search Space by the same exchange operator
until there is no more improvement. Then, the algorithm selects
another neighborhood and the search continues.

The pseudocode algorithm of GVNS is presented as
follows:

Input: Initial solution S,, number of neighborhoods N
Output: Final solution S*
S —S5*S,
iter — 0
While iter < N do
S’ « N_iter(S) Il Generate a random solution
S' « LocalSearch(S") I/ Refine solution S'
If z(S") < z(§*)Then

S« S 8
iter < 0
Else
iter « iter + 1
Return S*

Finally, the best feasible solution found so far S* is kept.
3.3. A probabilistic Granular Tabu Search heuristic
algorithm (pGTS)

The proposed algorithm is an extension of the proposed idea
by [21] for the DCVRP. After the construction of the initial
solution S,, the pGTS algorithm iterates through different
neighborhood structures (described in Section 2.3) by using a
discrete probabilistic function to improve the best feasible
solution (S*) found so far, until the number of iterations is
reached. The algorithm starts by setting $* = S=S =S,
where S is the current solution (feasible or infeasible), and S is
the current feasible solution. The following steps then are
repeated sequently. First, the former algorithm selects a
neighborhood from the neighborhoods structures N, (k =
1,...,5) described in Section %.3 by using the following
function of probability f (N,) = —, where u is the total number
of neighborhoods. Second, we apply a granular tabu search
(GTS) based on the idea proposed by [14] in the selected
neighborhood N, (S) until a local minimum S’ is found.
Depending on the solution, the following choices are possible:
e Increase the probability of selecting the current

neighborhood (N,) by a given factor P;,. as follow

max{f (N,) + P;,., 1}, only if any of three cases occurs:

(1) S" is infeasible and F,(S") < F,(S), (2) S’ is feasible

and F,(S") < Fy(S), and (3) S’ is feasible and F,(S") <

F;($). If (1) is performed, then S := S, if (2) is found, set

$:=5',§:=S" Finally, if (3) occurs, set S :== S'.

e Otherwise, decrease the probability of selecting the
current neighborhood (N,) by a factor P,,. as follow:
mln{OOl,f(Nk) - Pdec}'
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In order to preserve the probability function properties
after decreasing or increasing a certain neighborhood, the
values of the probability to select other neighborhoods
N, (k' =1,..,5), where k' # k, must be adjusted [21]. If
the probability to select the neighborhood N, is decreased in
a P, value, the remaining value 1 — [f(Ny) — Pgec] is
distributed for the remaining neighborhoods according to
their current (probability) [21]. Therefore, the new
probability [f(N,s)] to select the remaining neighborhoods
(Ny, ) is calculated as follows:

1- [f(Nk) - Pdec]
1- f(Nk)

f(Nkl) = f’(Nkl) * (1)

where f'(N,,) is the previous probability of the
corresponding remaining neighborhood (k' # k). If the
probability to select the neighborhood N, is increased in a
P, value, the remaining value 1 —[f(Ny) + Pyc]is
distributed for the remaining neighborhoods according to
their current (probability). Therefore, the new probability
[f(N,)] to select the remaining neighborhoods (N, ) is
calculated as:

1- [f(Nk) + Pinc]
1- f(Nk)

f(Nkl) = f,(Nkl) * (2)

Finally, the best feasible solution found so far S* is kept.
The algorithm explores the solution space by moving at each
iteration, from a solution Sto the best solution in the
neighborhood N, (S), even if it is infeasible. The selected
move is declared as tabu. The tabu tenure is defined as a
random integer value in the range [tmins tmax), Where t,in
and t,,,, are given parameters [21].

The pseudocode algorithm of pGTS is the following:

Procedure pGTS (Sy, ITmax)
$«S,
'S8
ops < {2opt, shift, swap, 2shift, 2swap}
props « {0.2,0.2,0.2,0.2,0.2}
blacklist « {}
op < choose(props, ops)
iterate « true
While iterate do
S" « GTS('S, 0p, ITpay)
increase? « false
If notfeasible(S") A F,(S") < F,('S) then
IS — Sl
If feasible(S') then
If £y (S") < Fy($) then
IS — SI
Y
increase? « true
If F,(S") « F,('S) then
/S — S!
increase? « true
If increase? then
increase(props[op], P,,)
adjust(props)
blacklist « {}
Else
decrease(props[op], Piown)

adjust(props)
blacklist « blacklist U {op}
op « choose(props, ops)
While op € blacklist do
op < choose(props, ops)
If size(blacklist) == size(ops) then
iterate « false
Return $

The pseudocode of the pGTS shows a brief summary of
the performance of the proposed algorithm according to the
discrete probability function and the replacement of the
solutions depending of the characteristics of the solution
found by the neighborhood S".

4. Computational experiments

Fixing a maximum CPU time as stopping criterion has
performed the comparison of the effects of the initial solution
on the performance of the algorithms GSA, GVNS and
pGTS. Finally, the best performance of the algorithms has
been considered by executing Ny, X n iterations (where
Ngop is a given parameter) for each instance. For each
considered instance, the proposed approaches have been
executed five times with different random generator seeds.
The results reported in Tables 2 to 5 correspond for each
instance to the best solution value obtained over the five runs
with its corresponding total running time and the average
results found within its corresponding computing time.

The three former algorithms have been coded in C++, and
the computational experiments have been performed on an
Intel Core Duo (only one core is used) CPU (2.00 GHz) under
Linux Ubuntu 12.1 with 2 GB of memory RAM. The
proposed algorithms have been tested on four benchmarking
sets of instances adapted from the literature. The set of
instances are available in
https://github.com/maxbernal/LRPH. In all the sets, points in
the plane represent the customers and the depot. Therefore,
the traveling cost for an edge is calculated as the Euclidian
distance between vertices.

The first three sets of instances are adapted from
benchmarking instances for the CLRP proposed by [23], [24]
and [25] for the CLRP respectively. In particular, for these
sets of instances, the characteristics of the vehicles (fixed cost
and capacities) have been modified in order to consider
heterogeneous fleet for a location-routing problem. The first
data subset was adapted from [23], and contains 36 instances
with uncapacitated depots. The number of customers for each
instance is n = 100, 150 or 200. The number of potential
depots is either 10 or 20. The second data subset was adapted
from [24], and considers 30 instances with capacity
constraints on routes and depots. The number of customers
for each instance is n = 20, 50, 100 or 200. The number of
potential depots is either 5 or 10. Finally, the third data subset
was adapted from [25], and considers 13 instances also with
capacity constraints on depots and routes. The number of
customers ranges from 21 to 150, and the number of potential
depots from 5 to 10.

The fourth set is adapted from [26]. Originally, the
instances from [26] are proposed for the HFVRP. In the
HFVRP, all the depots are considered as opened in order to
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Table 1.
Parameters used by the different algorithms
Parameter Value Algorithm using the parameter
Ty 100 GSA
a 0.97 GSA
DPrmin 1 pGTS, GSA
DPmax 100 pGTS, GSA
Oine 11 pGTS, GSA
0rea 1/ 0 pGTS, GSA
Pine 0.1 pGTS, GSA
Pgec 0.1 pGTS, GSA
tmin 7 pGTS
tmax 49 pGTS
Bo 1.50 GSA, GVNS, pGTS
Bn 3.00 GSA, GVNS, pGTS
N 1 GSA, GVNS, pGTS
N, 1 GSA, GVNS, pGTS
IT 0 10 GSA, GVNS, pGTS
Negee 10 pGTS, GSA

Source: Owner

determine the routes to be performed. On the other hand, for
the LRPH all the depots are considered as “potential”.
Therefore, it is mandatory to select the depots to be opened
and the customers to be assigned to each open depot.

4.1. Setting of parameters

A suitable set of parameters, whose values are based on
extensive computational tests on the benchmark instances,
was selected for each algorithm. The parameters and values
are presented in Table 1.

These values have been utilized for the comparison of the
solutions obtained by the described algorithms.

The calibration of the value of each parameter was
performed by a multi-objective optimization approach
(considering the minimization of the objective function and
the computing time). Values coming from previous works
with similar algorithms ([4,5-7,21]) are used. The next step
is to select a parameter and search for the given value the best
result. This search is executed applying 1D function
minimization. The process is carried out for each considered
value. Since this process is iterative, it can be refined using
more repetitions.

4.2. Comparison of the three described algorithms

For each instance, the proposed algorithms are executed
5 times due to their random calculations. Tables 2 - 5 provide
the detailed results of the three proposed algorithms on the
four data sets respectively. The algorithms are compared
based on their best and average objective function for each
instance; and the CPU for obtaining the best result and the
CPU time to process the five runs of each instance. As
expected, the GSA algorithm is faster, in the most of the
cases, than the other algorithms since a solution is selected
randomly and then evaluated; while GVNS performs local
search on the selected solution, and pGTS explores the
granular search space. A remarkable fact of the three
algorithms is that although using random numbers, the
objective function value tends to converge (see Tables 2 - 5).

The results clearly show that algorithm GSA outperforms
the other two algorithms for what concerns both the CPU
time and the quality of the answers found. Indeed, for all the
data sets, the average costs, and the values of the best results
for GSA are better than the corresponding values of
algorithms GVNS and pGTS. Therefore algorithm GSA is
the best performing of the three described algorithms, and, it
could be compared with the most effective heuristics will
publish in the literature.

5. Final remarks and future research

In this paper, a comparison of trajectory granular based
algorithms for the Location Routing Problem with
Heterogeneous Fleet (LRPH) is performed. All the proposed
approaches use a granular search space based on the idea of
using a sparse graph instead of the complete graph. Three
algorithms have been proposed: Granular Simulated
Annealing (GSA), Granular Variable Neighborhood Search
(GVNS) and a probabilistic Granular Tabu Search (pGTS).

The computational experiments show that algorithm GSA
generally obtains better results in terms of average and best
results than those obtained by algorithms GVNS and pGTS.
The results emphasize the importance of the granular search
approach for the proposed algorithms, by showing that it
significantly improves the performance and the computing
time of the proposed approaches. We have compared the
proposed approaches for the LRPH on four set of
benchmarking instances adapted from the literature. The
results show the effectiveness of GSA, imposing several best-
known results within short computing times.
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Table 2
Results for Tuzun-Burke Instances
INITIAL
Instance BKS SOLUTION GSA GVNS pGTS
Cost CPU Ava Cost  Ava Best Total Ava Cost  Ava Best Total Ava Cost  Ava Best Total
Tuzun 3 1 2317.93 2400.76 36 2334.08 43 2317.93 217 2399.93 31 2396.95 156 2392.98 70  2392.98 348
Tuzun 3 2 2989.72 3233.17 65 3000.94 69  2989.72 344 3188.08 48 3156.49 240 3213.96 128 3213.96 641
Tuzun 3 3 2311.83 2334.33 36 2312.29 45 231183 227 2334.21 30 2334.04 151 2334.33 50  2334.33 249
Tuzun 3 4 2365.86 2425.82 72 2374.32 76 2365.86 382 2417.02 55  2408.64 276 2425.82 91  2425.82 455
Tuzun 3 5 2069.15 2078.18 40 2070.21 45 2069.15 223 2078.02 31 2077.71 157 2073.54 67  2073.54 334
Tuzun 3 6 2330.57 2467.55 76 2335.94 85 233057 427 244161 56 2414.87 282 2455.48 136 2454.80 682
Tuzun 3 7 1652.17 1686.85 47 1658.07 57 165217 283 1685.29 38 1683.47 191 1672.67 93 1672.02 463
Tuzun 3 8 1922.34 2147.48 60 2001.41 96  1922.34 478 2123.69 63  2093.07 315 2135.57 124 213501 619
Tuzun 3 9 2252.62 2360.95 49 2258.03 54 225262 270 2360.26 39 2359.77 194 2360.95 69  2360.95 345
Tuzun 3 10 2257.68 2713.23 79 2364.05 87  2257.68 434 2654.87 60  2633.78 301 2705.17 107 2703.72 536
Tuzun 3 11 1852.03 1944.76 50 1873.20 56 1852.03 281 1944.43 38 194355 191 1940.11 77 1940.06 387
Tuzun 3 12 2371.29 2562.77 85 2433.94 88 237129 439 2558.97 62  2555.11 312 2560.53 100 2560.53 499
Tuzun 3 13 6176.56 6456.06 157 6256.08 179  6176.56 893 645598 120  6455.67 598 6442.71 968  6442.38 4840
Tuzun 3 14 6385.58 6536.73 299 6391.86 324  6385.58 1618 6525.14 219  6504.62 1094 6482.75 1231  6482.69 6155
Tuzun 3 15 6214.05 6372.13 154 623495 178  6214.05 891 637213 116 637213 578 6342.42 705 634009 3525
Tuzun 3 16 6554.11 6880.01 313 662420 341 655411 1705 686546 231 685505 1153 6856.53 962  6853.14 4810
Tuzun 3 17 5947.54 6157.28 183 599529 208 594754 1038 6156.84 133  6156.00 665 6150.17 679 614853 3396
Tuzun 3 18 6114.50 6209.83 521 612597 566 611450 2832 620027 372 618853 1861 6201.01 931 6200.70 4654
Tuzun 3 19 5440.51 5716.49 219 5502.74 265 544051 1323 571594 165  5715.13 827 5708.90 709  5708.33 3545
Tuzun 3 20 6207.16 6754.28 598 6409.92 649  6207.16 3246 674807 422 674273 2110 6748.55 869 674855 4347
Tuzun 3 21 5787.07 6081.60 186 5876.29 226  5787.07 1130 608142 141  6081.23 704 6071.82 833  6071.76 4164
Tuzun 3 22 6248.68 6521.57 419 6266.54 452  6248.68 2259 6489.98 297  6468.44 1485 6512.23 757 651223 3785
Tuzun 3 23 5736.73 5801.56 274 576478 319 573673 1503 5799.63 203 579753 1014 5792.12 756  5791.69 3782
Tuzun 3 24 6732.60 7394.55 466 6920.36 494  6732.60 2468 734125 333 731380 1663 7380.87 1253  7379.16 6266
Tuzun 3 25 3523.67 3801.64 76 3536.97 94 352367 471 3800.67 59  3798.37 293 3749.18 207 372538 1034
Tuzun 3 26 3565.55 4080.75 164 3709.04 168 356555 842 405242 122 4032.13 608 4080.75 231 4080.75 1153
Tuzun 3 27 3514.89 3681.68 81 3525.46 96  3514.89 479 3681.39 65  3680.22 323 3616.72 391 3616.66 1955
Tuzun 3 28 3784.44 4048.16 160 385408 166 ~ 3784.44 828 4031.95 120  4022.89 601 4026.38 277 402638 1384
Tuzun 3 29 3207.38 327155 99 324534 118 3207.38 588 3270.55 80  3269.77 399 3269.32 212 3269.32 1062
Tuzun 3 30 3208.90 3749.59 207 332280 225 320890 1125 371075 149  3674.92 744 3737.02 335 3737.02 1674
Tuzun 3 31 2790.62 2918.91 117 279199 141 2790.62 707 2917.61 89  2916.42 443 2912.39 250 291117 1250
Tuzun 3 32 3006.20 3296.47 215 308110 234 300620 1170 328445 157 327175 783 3284.83 536  3283.72 2679
Tuzun 3 33 3208.38 3377.91 103 322938 124  3208.38 618 3376.86 80  3375.62 398 3375.51 197 337551 987
Tuzun 3 34 3505.24 4448.21 190 377037 199  3505.24 995 443486 136 4420.16 678 4422.68 342 442268 1710
Tuzun 3 35 2876.83 2996.11 105 2880.62 118  2876.83 590 2994.95 81  2993.46 406 2960.24 296 2951.67 1479
Tuzun 3 36 3739.83 3895.81 204 374184 218  3739.83 1092 3857.93 149 384249 744 3894.80 299  3894.80 1493
Average 4133.46 172 304651 192 3893.62 959 412091 127  4111.29 637 411919 426 4117.83 2130
Source: Owner
Table 3.
Results for Prodhon Instances
INITIAL
Instance BKS sOLUTIO'EPU A - Total A e Total A T Total
Cost time Avg Cost ti :1% Best Cost tio mi Avg Cost tir\r/g Best Cost tiomi Avg Cost ti r:]% Best Cost ti?ni
Prodhon_2_1 22028.47 22077.75 5 22042.60 4 2202847 21 22076.60 7 2207198 33 22066.16 8  22066.16 40
Prodhon_2_2 16318.64 16344.61 6 16322.88 5  16318.64 23 16344.61 7 1634461 36 16331.84 7 1633184 37
Prodhon_2_3 23511.03 23553.12 5 23511.03 5  23511.03 26 23552.42 6  23549.64 30 23544.35 7 2354435 36
Prodhon_2_4 15912.53 15912.53 5 15912.53 5 1501253 26 15912.53 6 1591253 30 15912.53 8 1501253 4
Prodhon_2_5 16946.94 16980.95 14 16949.43 13 16946.94 65 16980.89 15  16980.81 75 16979.26 23 16979.26 115
Prodhon_2_6 16946.94 16980.95 13 16949.87 14  16946.94 68 1698093 15  16980.81 75 16979.26 22 16979.26 109
Prodhon_2_7 31215.64 31521.80 14 3123069 15 3121564 75 3152162 16  31521.33 79 31447.33 25 3144547 127
Prodhon_2_8 3123855 31521.80 14 3125030 15 3123855 74 3152175 16 3152157 82 31447.85 26 3144622 129
Prodhon_2_9 18535.68 18898.72 15 18682.36 15  18535.68 75 18898.14 16  18895.84 80 18852.91 29 1884051 146
Prodhon_2_10 19614.68 19951.12 13 1974587 14 19614.68 68 19950.87 17 1995031 87 19931.37 23 1993137 116
Prodhon_2_11 12766.26 12847.36 16 12769.76 12 12766.26 60 1284736 17 1284736 87 12839.82 23 1283982 114
Prodhon_2_12 12761.67 12847.36 16 12766.18 12 1276167 60 12847.36 18 1284736 89 12839.82 22 1283982 111
Prodhon_2_13 143839.64 143873.66 35 14384228 33  143839.64 163 14386854 40  143857.30 201 143873.66 79 14387366 397
Prodhon_2_14 143841.83 143873.66 37 14384360 32 14384183 161 143869.93 40 14386020 199 143873.66 79 14387366 395
Prodhon_2_15 99095.66 99095.66 37 9909566 31  99095.66 153 99095.66 41  99095.66 206 99095.66 92 99095.66 458
Prodhon_2_16 99095.66 99095.66 35 9909566 30  99095.66 151 9909566 39  99095.66 196 99095.66 90  99095.66 451
Prodhon_2_17 96656.46 96659.28 36 96656.46 31  96656.46 155 9665896 39 9665850 197 96659.28 8l  96650.28 405
Prodhon_2_18 96656.46 96659.28 36 9665646 31  96656.46 156 96659.04 39 9665845 194 96659.28 86  96659.28 431
Prodhon_2_19 163846.85 163846.85 214 163846.85 272  163846.85 1358 163846.85 218  163846.85 1088 163846.85 329  163846.85 1647
Prodhon_2_20 163846.85 163846.85 217 163846.85 270  163846.85 1352 163846.85 218  163846.85 1092 163846.85 329  163846.85 1645
Prodhon_2_21 161256.16 161256.16 72 161256.16 81  161256.16 407 161256.16 71 16125616 356 161256.16 142 16125616 708
Prodhon_2_22 161256.16 161256.16 71 161256.16 ~ 82  161256.16 409 161256.16 71 16125616 356 161256.16 140 16125616 698
Prodhon_2_23 151783.10 15178310 121 151783.10 146 15178310 730 15178310 123 15178310 616 15178310 205 151783.10 1027
Prodhon_2_24 151783.10 15178310 117 15178310 148 15178310 739 15178310 118 15178310 589 15178310 198 15178310 992
Prodhon_2_25 243999.72 244038.02 182 24400473 221  243999.72 1105 244036.97 190  244036.46 952 24402539 1399 24402325 6994
Prodhon_2_26 243981.01 244038.02 182 24399508 220 24398101 1102 244036.07 188  244032.89 941 24402432 1351 24402325 6753
Prodhon_2_27 283998.66 28401877 223 284002.94 287  283998.66 1437 284018.46 227  284017.82 1134 28401877 701 28401877 3506
Prodhon_2_28 284002.20 284018.77 226 28400451 289 28400220 1444 28401838 227  284017.94 1134 28401877 746 28401877 3728
Prodhon_2_29 320250.59 32025059 175 32025059 218 32025059 1089 32025059 180 32025059 899 32025059 715 32025059 3573
Prodhon_2_30 320250.59 32025059 194 32025059 218  320250.59 1089 32025059 179 32025059 897 32025059 775 32025059 3877
Average 118969.41 78 118920.14 92 118907.92 461 118968.87 80  118967.61 401 118959.68 250  118959.04 1293

Source: Owner
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INITIAL
SOLUTION GSA GVNS pGTS
Instance BKS CPU Total Av Total Total
Cost M Avg Cost R Best Cost n Avg Cost V9 Best Cost n Avg Cost . Best Cost .

ime time time time time time time

Prodhon_2_1 22028.47 22077.75 5 22042.60 4 22028.47 21 22076.60 7 22071.98 33 22066.16 8 22066.16 40
Prodhon_2_2 16318.64 16344.61 6 16322.88 5 16318.64 23 16344.61 7 16344.61 36 16331.84 7 16331.84 37
Prodhon_2_3 23511.03 23553.12 5 23511.03 5 23511.03 26 23552.42 6 23549.64 30 23544.35 7 23544.35 36
Prodhon_2_4 15912.53 15912.53 5 15912.53 5 15912.53 26 15912.53 6 15912.53 30 15912.53 8 15912.53 41
Prodhon_2_5 16946.94 16980.95 14 16949.43 13 16946.94 65 16980.89 15 16980.81 75 16979.26 23 16979.26 115
Prodhon_2_6 16946.94 1698095 13 1694987 14 16946.94 68 16980.93 15  16980.81 75 16979.26 22 16979.26 109
Prodhon_2_7 31215.64 31521.80 14 31230.69 15 31215.64 75 31521.62 16 31521.33 79 31447.33 25 31445.47 127
Prodhon_2_8 31238.55 31521.80 14 31250.30 15 31238.55 74 31521.75 16 31521.57 82 31447.85 26 31446.22 129
Prodhon_2_9 18535.68 18898.72 15 18682.36 15 18535.68 75 18898.14 16 18895.84 80 18852.91 29 18840.51 146
Prodhon_2_10 19614.68 19951.12 13 19745.87 14 19614.68 68 19950.87 17 19950.31 87 19931.37 23 19931.37 116
Prodhon_2_11 12766.26 1284736 16 12769.76 12 12766.26 60 1284736 17 12847.36 87 1283982 23 1283982 114
Prodhon_2_12 12761.67 12847.36 16 12766.18 12 12761.67 60 12847.36 18 12847.36 89 12839.82 22 12839.82 111
Prodhon_2_13 143839.64 14387366 35 14384228 33 14383064 163 14386854 40 14385730 201 14387366 79 14387366 397
Prodhon_2_14 143841.83 143873.66 37 143843.60 32 143841.83 161 143869.93 40 143860.20 199 143873.66 79 143873.66 395
Prodhon_2_15 99095.66 99095.66 37 99095.66 31 99095.66 153 99095.66 41 99095.66 206 99095.66 92 99095.66 458
Prodhon_2_16 99095.66 9909566 35 9909566 30 9909566 151 9909566 39 9909566 196 9909566 90 9909566 451
Prodhon_2_17 96656.46 96659.28 36 96656.46 31 96656.46 155 96658.96 39 96658.50 197 96659.28 81 96659.28 405
Prodhon_2_18 96656.46 96659.28 36 9665646 31 9665646 156 96659.04 39 9665845 194 96659.28 86  96659.28 431
Prodhon_2_19 163846.85 163846.85 214 163846.85 272 163846.85 1358 163846.85 218 163846.85 1088 163846.85 329 163846.85 1647
Prodhon_2_20 163846.85 163846.85 217 163846.85 270 163846.85 1352 163846.85 218 163846.85 1092 163846.85 329 163846.85 1645
Prodhon_2_21 161256.16 161256.16 72 161256.16 81 161256.16 407 161256.16 71 161256.16 356 161256.16 142 161256.16 708
Prodhon_2_22 161256.16 161256.16 71 161256.16 82 161256.16 409 161256.16 71 161256.16 356 161256.16 140 161256.16 698
Prodhon_2_23 151783.10 15178310 121 15178310 146 15178310 730 15178310 123 15178310 616 15178310 205 15178310 1027
Prodhon_2_24 151783.10 151783.10 117 151783.10 148 151783.10 739 151783.10 118 151783.10 589 151783.10 198 151783.10 992
Prodhon_2_25 243999.72 244038.02 182 244004.73 221 243999.72 1105 244036.97 190 244036.46 952 244025.39 1399 244023.25 6994
Prodhon_2_26 243981.01 244038.02 182 243995.08 220 243981.01 1102 244036.07 188 244032.89 941 244024.32 1351 244023.25 6753
Prodhon_2_27 283998.66 284018.77 223 284002.94 287 283998.66 1437 284018.46 227 284017.82 1134 284018.77 701 284018.77 3506
Prodhon_2_28 284002.20 28401877 226 28400451 289 28400220 1444 28401838 227  284017.94 1134 28401877 746 28401877 3728
Prodhon_2_29 320250.59 320250.59 175 320250.59 218 320250.59 1089 320250.59 180 320250.59 899 320250.59 715 320250.59 3573
Prodhon_2_30 32025059 32025059 194 32025059 218 32025059 1089 32025059 179 32025059 897 32025059 775 32025059 3877
Average 11896041 78 11892014 92 118907.92 461 11806887 80  118967.61 401 11895068 250 11895004 1203

Source: Owner

Table 5

Results for Christofides Instances

INITIAL
Instance BKS SOLUTION oA VRS PeTS
CPU Avg Total Avg Total Avg Total
Cost time Avg Cost time Best Cost time Avg Cost time Best Cost time Avg Cost time Best Cost time
Christofides_13 215321 2505.20 15 220356 12 215321 59 250425 17 250043 87 244913 27 244608 134
Christofides_14 7685.83 7686.94 15 768583 12 768583 60 7686.73 18  7686.07 9% 768694 22 768694 109
Christofides_15 2822.21 2829.77 14 2822.21 12 2822.21 60 2829.43 17 2828.91 85 2829.77 20 2829.77 100
Christofides_16 2922.67 2930.19 11 2922.67 11 2922.67 53 2930.02 14 2929.33 69 292353 19 2923.53 95
Christofides_17 1902.57 1920.70 17 1905.67 23 1902.57 113 1920.70 22 1920.70 111 1920.70 30 1920.70 152
Christofides_18 2825.50 2839.99 18 282669 22 282550 111 2839.87 22 283970 112 282794 42 282794 210
Christofides_19 10218.28 10767 52 32 1061881 40 1021828 200 1076451 40 1075715 201 1073869 146 1073356 730
Christofides_20 435123 437017 33 435123 40 435123 201 437017 40 437017 202 436155 133 436155 664
Average 4481.31 19 4417.09 21 4360.19 107 4480.71 24 4479.06 120 4467.28 55 4466.26 274
Source: Owner
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