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Abstract 
We consider the Location-Routing Problem with Heterogeneous Fleet (LRPH) in which the goal is to determine the depots to be opened, 
the customers to be assigned to each open depot, and the corresponding routes fulfilling the demand of the customers and by considering 
a heterogeneous fleet. We propose a comparison of granular approaches of Simulated Annealing (GSA), of Variable Neighborhood Search 
(GVNS) and of a probabilistic Tabu Search (pGTS) for the LRPH. Thus, the proposed approaches consider a subset of the search space in 
which non-favorable movements are discarded regarding a granularity factor. The proposed algorithms are experimentally compared for 
the solution of the LRPH, by taking into account the CPU time and the quality of the solutions obtained on the instances adapted from the 
literature. The computational results show that algorithm GSA is able to obtain high quality solutions within short CPU times, improving 
the results obtained by the other proposed approaches. 

Keywords: Location-routing problem; heterogeneous fleet; simulated annealing; variable neighborhood search; probabilistic tabu search; 
metaheuristic algorithms. 

Una comparación de algoritmos basados en trayectoria granular para 
el problema de localización y ruteo con flota heterogénea (LRPH) 

Resumen 
Nosotros consideramos el problema de localización y ruteo de vehículos con flota heterogénea (LRPH) en el cual la meta es determinar los 
depósitos a ser abiertos, los clientes asignados a cada deposito, y las rutas que satisfagan la demanda de los clientes considerando una flota 
heterogénea. Nosotros proponemos una comparación de algoritmos granulares de Recocido Simulado (GSA), Búsqueda de Vecindario 
Variable (GVNS) y Tabú Search probabilístico (pGTS) para el LRPH. De esta manera, los algoritmos propuestos consideran un 
subconjunto del espacio en el cual los movimientos menos favorables son descartados según un factor de granularidad. Los algoritmos 
propuestos son comparados experimentalmente para la solución del LRPH, considerando el tiempo de CPU y la calidad de la solución 
obtenida en instancias adaptadas de la literatura. Los resultados computacionales muestran que el algoritmos GSA es capaz de obtener 
buenas soluciones en tiempos computacionales reducidos, mejorando los resultados obtenidos por los otros algoritmos propuestos. 

Palabras clave: Problema de localización y ruteo; flota heterogénea; recocido simulado; búsqueda de vecindario variable; búsqueda tabú 
probabilística; algoritmos metaheurísticos. 

1. Introduction

Long and short-term logistic operations consider
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Combinatorial Optimization Problems (COP). One of the 
most well studied decisions within the COP is the Traveling 
Salesman Problem (TSP), in which an agent should visit 
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several cities and go back to its initial position in an optimal 
way minimizing the travelled distance and by considering 
that each city must visited only once. The problem could be 
represented by an undirected graph; where the vertex 
correspond to the cities and the arcs to the distances to be 
traveled satisfying the corresponding demand of cities [1]. 
The TSP is classified as NP-Hard problem, being 
computationally intractable with the number of nodes is 
increased [2,3]. 

The well-known Vehicle Routing Problem (VRP), is 
based on the principles of the TSP. Different variants of the 
Vehicle Routing Problem have been studied deeply in the 
fields of the Operations Research and Combinatorial 
Optimization, during the last fifty years. The variants include 
divided demand, time windows, different fleet, etc. The VRP 
could be depicted as a problem of designing routes from one 
depot to a set of customers by satisfying constrains of 
demand and of capacity of the vehicles. A variant of the VRP 
by considering several depots, from which is possible to 
satisfy the demand of the customers, each one of them having 
different fixed cost and different capacity, is a prominent 
research area [4,5]. This extension of the VRP is called 
Location-Routing Problems (LRP). The Location-Routing 
Problem considers two types of problems, which have been 
studied independently (the Multi Depot Vehicle Routing 
Problem – MDVRP and the Facility Location Problem – 
FLP). However, recent research results showed that the 
integration of both decisions allows obtaining a major 
efficiency of the design of the supply chain [6-8]. The FLP is 
associated with decisions of opening depots and assigning 
customers to the open depots. On the other hand, the MDVRP 
corresponds to the development of a set of routes to be 
performed by minimizing the total travelled distance. The 
LRPH is considered NP-hard, since it is a generalization of 
two well-known sub-problems: The Facility Location 
Problem (FLP) and the Multi-Depot Vehicle Routing 
Problem with Heterogeneous Fleet (MDHVRP) [4]. 

Exact algorithms for the LRP are proposed in [9]. In this 
work, Bender’s decomposition for splitting a LRP problem 
into two sub-problems (location-assignment and routing) is 
proposed. The drawback of linear programming approaches 
appears when dealing with real-life problems due to the 
cardinality of the scenario. Therefore, heuristic approaches 
are commonly used. 

The heuristics algorithms for the LRP can be classified [6,7] 
into groups (sequential, iterative, nested) regarding to the way 
to deal with the FLP and the MDVRP. In the sequential 
approach, an algorithm for the MDVRP is performed after the 
FLP has been solved and, hence, there is no feedback between 
the two approaches. The iterative algorithm tries to take this 
drawback into account by iterating on the process. The nested 
algorithms compute the MDVRP for each solution obtained in 
the FLP. In general terms, sequential approaches tend to be 
faster than iterative and nested ones regarding the number of 
iterations to be performed.  

One example of a sequential algorithm is the two-phase 
algorithm introduced in [10]. In the first phase, the FLP is 
solved by considering the length of the tours (routes) as a 
variable cost. In the second phase, a multilevel heuristic is 
used to solve the corresponding MDVRP. The proposed 

method in [11] is similar to the approach proposed by [10]. 
The main difference is that using a combined approach 
between a tabu search approach and a simulated annealing 
scheme solves the two phases. Another sequential algorithm 
based on four levels is considered in [12]. In this work, a 
combined problem by considering inventory decisions with a 
heterogeneous fleet is solved exactly by a mathematical 
model. Finally, a problem of transfer products from hubs to 
customers by considering a heterogeneous fleet is introduced 
in [13]. 

Typically, the LRP problems have considered an 
unlimited fleet of homogeneous vehicles. Although some 
considerations of heterogeneous fleet for the LRPH are 
proposed by [9-13], the literature regarding to location 
routing problems by considering heterogeneous fleet is 
scarce. Thus, this work is focused on the comparison of 
granular-based heuristic algorithm for solving the Location 
Routing Problem with Heterogeneous Fleet (LRPH). Indeed, 
the only work related to the LRPH has been introduced by 
Linfati et al [4]. In this paper, a modified granular tabu search 
for the LRPH has been proposed. The proposed algorithm is 
executed on instances adapted from the literature and the 
results are compared with a relaxed version of the proposed 
mathematical model for the LRPH. A remarkable fact of this 
algorithm is the use of the granularity concept introduced by 
[14], which is, in fact, a key for reducing the computational 
cost of the tabu search while conserving the quality of the 
solution. This paper aims to apply this idea to other heuristic 
algorithms in order to reduce the search space. 

A work related to a similar problem of LRPH is presented 
in [15]. This paper considers a mathematical formulation and 
a Variable Neighborhood scheme for the Multi-Depot 
Vehicle Routing Problem with Heterogeneous Fleet 
(MDHVRP). Unlike the LRPH, the MDHVRP not considers 
decisions related to the depots to be opened.  

In this work, we perform a computational comparison of 
three trajectory heuristics by using the granular concept 
introduced in [14] for the LRPH. The former algorithms 
consider the same initial solution obtained by a hybrid 
procedure and the same neighborhood structures. The first 
algorithm, called Granular Simulated Annealing approach 
(GSA), considers a Simulated Annealing (SA) method, with 
a ”granular” search space, to improve the initial solution 𝑆𝑆0 
[5]. The second algorithm, called Granular Variable 
Neighborhood Search (GVNS), considers a Variable 
Neighborhood Search (VNS) procedure to enhance the 
quality of solution 𝑆𝑆0. Finally, the third algorithm, called 
Granular Tabu Search (pGTS), consider a Probabilistic 
Granular Tabu Search scheme for the LRPH. 

The main contribution of the paper is the comparison of 
effective algorithms for the solution of the LRPH. The 
proposed algorithms are novel metaheuristic approach, 
which combine different local based procedures with a 
granular search space for getting good results within short 
computing times. The paper is structured as follows.  Section 
2 introduces the general framework used by the considered 
algorithms. A detailed description of the three approaches is 
given in Section 3. The comparative study on adapted 
benchmark instances from the literature is provided in 
Section 4. Finally, Section 5 contains concluding remarks. 
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2.  General framework 
 

2.1.  Mathematical formulation 
 
The LRPH could be represented by the following undirected 

graph problem: Let 𝐺𝐺 =  (𝑉𝑉,𝐸𝐸) be a complete undirected graph, 
where 𝑉𝑉 =  {1, . . . ,𝑀𝑀 +  𝑁𝑁} is the set of vertices representing 
customers and potential depots, and 𝐸𝐸 = {�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�: 𝑖𝑖 ≠ 𝑗𝑗} is the 
set of edges. Vertices 𝐽𝐽 = {1. . . ,𝑀𝑀} correspond to set of 
customers each with known positive demand 𝑑𝑑𝑗𝑗, and vertices 
𝐼𝐼 = {𝑀𝑀 +  1, . . . ,𝑀𝑀 +  𝑁𝑁} correspond to the potential depots, 
each with capacity 𝑤𝑤𝑖𝑖  and opening costs 𝑜𝑜𝑖𝑖 . With each edge 
(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 is associated a non-negative traveling cost 𝒄𝒄𝒊𝒊𝒊𝒊. At each 
potential depot 𝑖𝑖 ∈  𝐼𝐼, a set of 𝐾𝐾 heterogeneous vehicles is 
located, each with a vehicle capacity𝑞𝑞𝑘𝑘. Furthermore, any vehicle 
that performs a route generates a fixed cos𝑣𝑣𝑘𝑘t. The goal of LRPH 
is to determine the depots to be opened, the customers to be 
assigned to each open depot, and the routes to be performed to 
fulfill the demand of the customers by considering a 
heterogeneous fleet. Indeed, the LRPH integrates a strategic 
decision (depots to be used) and an operational decision (the 
routes to be developed by considering a heterogeneous fleet).  

The objective function of LRPH considers the 
minimization of the sum of the fixed cost of the depots, of the 
costs of the used vehicles, and of the costs related with the 
distance traveled by the vehicles [4]. Any LRPH solution is 
feasible, if the following constraints are satisfied: (i) Each 
route starts and finishes at the same depot, (ii) each customer 
must visited exactly once by one vehicle, (iii) the sum of the 
demand of the customers served by a vehicle 𝑘𝑘 ∈ 𝐾𝐾 must not 
exceed its corresponding vehicle capacity 𝑞𝑞𝑘𝑘, (iv) the sum of 
the demand of the customers assigned to an open depot 𝑖𝑖 ∈
 𝐼𝐼 must not exceed its corresponding depot capacity 𝑤𝑤𝑖𝑖 , and 
(v) the flow of products between depots is not allowed.   

 
2.2.  Concept of granular search space 

 
The granular search conception (Toth and Vigo [14]), is 

predicated on the employment of a sparse graph (incomplete 
graph) containing the edges incident to the depots, the edges 
belonging to the best feasible solutions found so far, and the 
edges whose cost is smaller than a granularity threshold 𝜗𝜗 = 𝛽𝛽𝑧𝑧̅, 
where 𝑧𝑧̅ = 𝑧𝑧

𝑛𝑛+𝑟𝑟
 is the average cost of the edges belonging to the 

best solution found so far, and 𝛽𝛽 is a dynamic sparsification 
factor which is updated during the search ([4-5] and [14]). In 
particular, the search starts by initializing 𝛽𝛽 to a small value 𝛽𝛽0. 
After 𝑁𝑁𝑠𝑠  ×  𝑛𝑛 iterations the value of 𝛽𝛽 is increased to the value 
𝛽𝛽𝑛𝑛, and 𝑁𝑁𝑟𝑟  ×  𝑛𝑛 additional iterations are performed by 
considering as current solution the best feasible solution found so 
far [7]. Conclusively, the sparsification factor 𝛽𝛽 is reset to its 
previous value 𝛽𝛽0 and the search continues. 𝛽𝛽0, 𝛽𝛽𝑛𝑛, 𝑁𝑁𝑠𝑠, and 
𝑁𝑁𝑟𝑟 are given parameters. The main idea of the granularity is to 
obtain high quality solutions in based-trajectory heuristics within 
short computing times [6,7]. 

 
2.3.  Neighborhood structures 

 
The former heuristics use well-known intra-route (moves 

performed in a performed route) and well-known inter-route 

(moves performed between two routes assigned to the same 
depot or to different depots) moves corresponding to five 
neighborhood structures 𝑁𝑁𝑘𝑘 (𝑘𝑘 =  1, . . . , 5): Insertion, Swap, 
Two-opt, Double-Insertion, and Double-Swap [4-7]. A move 
is performed only if all the new inserted edges in the solution 
belonging to the sparse graph (granular search space).  

Some of the proposed approaches allow infeasible solutions 
respect to the depot and vehicle capacity constraints. For any 
feasible solution 𝑆𝑆, we calculate its objective function value 
𝐹𝐹1(𝑆𝑆) as the sum of the fixed cost of the depots, of the used 
vehicles and of the cost of the edges traveled by the performed 
routes. On the other hand, if the solution 𝑆𝑆 is infeasible, we 
calculate its objective function value 𝐹𝐹2(𝑆𝑆) = 𝐹𝐹1(𝑆𝑆) + 𝑃𝑃𝑞𝑞(𝑆𝑆) +
𝑃𝑃𝑑𝑑(𝑆𝑆), where 𝑃𝑃𝑞𝑞(𝑆𝑆) is a penalty term obtained by multiplying 
the global over vehicle capacity of the solution 𝑆𝑆 times a 
dynamically updated penalty factor 𝛼𝛼𝑣𝑣 = 𝜌𝜌𝑣𝑣  ×  𝐹𝐹1(𝑆𝑆0), and 
𝑃𝑃𝑑𝑑(𝑆𝑆) is a penalty term obtained by multiplying the global over 
depot capacity 𝑆𝑆 times a dynamically updated penalty factor 
𝛼𝛼𝑑𝑑 = 𝜌𝜌𝑑𝑑  ×  𝐹𝐹1(𝑆𝑆0). In particular, 𝜌𝜌𝑣𝑣 and 𝜌𝜌𝑑𝑑 are adjusted 
parameters during the search, and 𝐹𝐹1(𝑆𝑆0) is the objective 
function value of the initial solution 𝑆𝑆0. If infeasible solutions 
with respect to the depot capacity have been not found over 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  
iterations, then the value of 𝜌𝜌𝑑𝑑 is set to 𝑚𝑚𝑚𝑚𝑚𝑚{𝜌𝜌𝑚𝑚𝑖𝑖𝑛𝑛 ,𝜌𝜌𝑑𝑑  × 𝜕𝜕𝑟𝑟𝑟𝑟𝑑𝑑}, 
where 𝜕𝜕𝑟𝑟𝑟𝑟𝑑𝑑< 1. On the other hand, if feasible solutions have been 
not found during 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  iterations, then the value of 𝜌𝜌𝑑𝑑 is set to 
𝑚𝑚𝑖𝑖𝑛𝑛{𝜌𝜌𝑚𝑚𝑓𝑓𝑚𝑚 ,𝜌𝜌𝑑𝑑 × 𝜕𝜕𝑖𝑖𝑛𝑛𝑓𝑓}, where 𝜕𝜕𝑖𝑖𝑛𝑛𝑓𝑓  > 1. A similar procedure is 
applied to update the value of 𝜌𝜌𝑣𝑣. Note if the current solution 𝑆𝑆 is 
feasible, 𝐹𝐹1(𝑆𝑆) = 𝐹𝐹2(𝑆𝑆) (for further details see [6-7]). 

 
2.3.  Initial Solution 

 
Utilizing a hybrid heuristic based on a cluster approach, a 

good feasible initial solution 𝑆𝑆0 is generated within short 
computing times. The following steps are executed until all 
the customers are assigned to one route and one depot:  

Firstly, a giant TSP tour containing all the customers 
(without the consideration of the depots) is constructed by 
using the well-known Lin-Kernighan heuristic (LKH) ([16] 
and [17]). Secondly, starting from any initial customer 𝑗𝑗⋆, 
divide the built giant TSP tour into several clusters composed 
of consecutive customers so that, for each cluster the vehicle 
capacity constraint is satisfied. In particular, we have 
assigned the large vehicles firstly.  

Thirdly, for each depot 𝑖𝑖 and each cluster 𝑔𝑔, a TSP tour is 
obtained using procedure LKH to evaluate the traveling cost 
of the route performed starting from 𝑖𝑖 and visiting all the 
customers belonging to 𝑔𝑔 (keeping the sequence obtained by 
the giant TSP). Finally, the depots are assigned to the clusters 
by solving an ILP model for the Single Source Capacitated 
Facility Location problem. This step determines the depots to 
be opened and the clusters to be assigned to the open depots 
(for further details see [18] and [19]).  

 
3.  Description of the considered algorithms 

 
3.1. The Granular Simulated Annealing heuristic 

algorithm (GSA) 
 
The former algorithm considers a standard 

implementation of the Simulated Annealing metaheuristic 
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(SA) by using a granular search space (reduced graph). We 
have assumed the same notation used on similar problems 
such as LRP [4]. Let 𝑆𝑆⋆ be the best feasible solution found so 
far, 𝑆𝑆 the current solution (feasible or infeasible), 𝑆𝑆′ a random 
solution obtained from the neighborhood solutions of the 
current solution 𝑆𝑆, 𝛼𝛼 the cooling factor, and 𝑇𝑇 the current 
temperature. Initially, we set 𝑆𝑆⋆: = 𝑆𝑆0, and 𝑆𝑆: = 𝑆𝑆0. In 
addition, we set the initial temperature 𝑇𝑇0 and the number of 
iterations 𝑖𝑖𝑖𝑖: = 0. The proposed algorithm performs the 
following steps until the number of iterations is reached: 
• Decrease the current temperature every 𝑁𝑁𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐  iterations 

(where 𝑁𝑁𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 is a given parameter) by using the following 
function 𝑇𝑇𝑖𝑖 =∝ 𝑇𝑇𝑖𝑖−1, where 0 < 𝛼𝛼 < 1; and also increase 
the number of iterations 𝑖𝑖: = 𝑖𝑖 +  1. 

• Construct a random solution 𝑆𝑆′ obtained by considering 
all the neighborhood structures 𝑁𝑁𝑘𝑘 (𝑘𝑘 =  1, . . . , 5) from 
the current solution 𝑆𝑆 described in section 2.3.  

• Compute 𝜎𝜎 = 𝐹𝐹2(𝑆𝑆′) − 𝐹𝐹2(𝑆𝑆) 
• Generate a random number 𝑟𝑟 in the range [0, 1];  
• If  𝜎𝜎 ≤ 0 set 𝑆𝑆: =  𝑆𝑆′; 
• If  𝜎𝜎 > 0 do If 𝑟𝑟 <  𝑒𝑒𝑚𝑚𝑒𝑒(−𝜎𝜎/𝑇𝑇), set 𝑆𝑆: =  𝑆𝑆′; otherwise, 

keep 𝑆𝑆. 
Finally, the best feasible solution found so far 𝑆𝑆⋆ is kept. 

The pseudocode algorithm of GSA is presented as follows: 
 
Input: Initial solution 𝑆𝑆0, initial temperature 𝑇𝑇0, and max number of 

iterations maxIter 
Output: Final solution 𝑆𝑆⋆ 
𝑆𝑆 ← 𝑆𝑆⋆← 𝑆𝑆0 
𝑇𝑇 ← 𝑇𝑇0 
iter ← 0 
While iter < maxIter do 
 𝑆𝑆′ ← 𝑁𝑁𝑘𝑘 // Generate random solution from the neighborhood 
 If 𝐹𝐹2(𝑆𝑆′)  <  𝐹𝐹2(𝑆𝑆) Then 
  𝑆𝑆 ← 𝑆𝑆′ 
  If 𝐹𝐹2(𝑆𝑆′)  <  𝐹𝐹2(𝑆𝑆⋆) Then 𝑆𝑆⋆← 𝑆𝑆′ 
 Else 
  𝑟𝑟 ← 𝑟𝑟𝑚𝑚𝑛𝑛𝑑𝑑𝑜𝑜𝑚𝑚(0,1) //Generate a random number 
  If 𝑟𝑟 <  𝑒𝑒^(−(𝐹𝐹2(𝑆𝑆′) – 𝐹𝐹2(𝑆𝑆))/𝑇𝑇) Then 
   𝑆𝑆 ← 𝑆𝑆′ 
 𝑇𝑇 ← 𝛼𝛼 × 𝑇𝑇 //decrease the current temperature 𝑇𝑇 
 iter ← iter + 1 
Return S* 
 
In particular, the GSA approach requires less computing 

effort performing more iterations respect to the other 
proposed approaches.  

 
3.2.  The Granular Variable Neighborhood Search 

approach (GVNS) 
 
The GVNS algorithm brings together the potentiality of the 

systematic changes of neighborhood structures proposed by the 
well-known Variable Neighborhood Search (VNS) [20], and the 
efficient Granular Search Space introduced by [14] and improved 
by [5-7]. According to [20], the VNS applies a search strategy 
based on the systematic change of the neighborhoods structures 
to elude local optima. Three main concepts are applied on a VNS: 
(1) All the local minimum obtained by different neighborhood 
structures are not necessarily equals; (2) The best local minimum 
(respect to the objective function) obtained from all possible 
neighborhood structures (described in section 2.3) is called global 
minimum; (3) The different local minima obtained from the 

neighborhood structures should be relatively close each other.  
Once the initial solution is performed (𝑆𝑆0), the VNS 

approach iterates through different neighborhood structures 
to amend the best feasible solution (𝑆𝑆⋆) found so far, until a 
the number of iterations is reached. The algorithm starts by 
setting 𝑆𝑆⋆ = 𝑆𝑆 = 𝑆𝑆0, where 𝑆𝑆 is the current solution. 

The Variable Neighborhood Search considers two steps: (1) 
selecting a random solution from the first neighborhood and (2) 
applying a Granular Search Space by the same exchange operator 
until there is no more improvement. Then, the algorithm selects 
another neighborhood and the search continues.  

The pseudocode algorithm of GVNS is presented as 
follows: 

 
Input: Initial solution 𝑆𝑆0, number of neighborhoods 𝑁𝑁 
Output: Final solution 𝑆𝑆⋆ 
𝑆𝑆 ← 𝑆𝑆⋆← 𝑆𝑆0 
iter ← 0 
While iter < 𝑁𝑁 do 
 𝑆𝑆′ ←  𝑁𝑁_𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟(𝑆𝑆) // Generate a random solution 
 𝑆𝑆′ ←  𝐿𝐿𝑜𝑜𝐿𝐿𝑚𝑚𝐿𝐿𝑆𝑆𝑒𝑒𝑚𝑚𝑟𝑟𝐿𝐿ℎ(𝑆𝑆′) // Refine solution S'  
 If 𝑧𝑧(𝑆𝑆′) <  𝑧𝑧(𝑆𝑆⋆)Then 
  𝑆𝑆 ←  𝑆𝑆⋆  ←  𝑆𝑆′ 
  iter ← 0 
 Else 
  iter ← iter + 1 
Return S* 
 
Finally, the best feasible solution found so far 𝑆𝑆⋆ is kept.  
 

3.3.  A probabilistic Granular Tabu Search heuristic 
algorithm (pGTS) 

 
The proposed algorithm is an extension of the proposed idea 

by [21] for the DCVRP. After the construction of the initial 
solution 𝑆𝑆𝑐𝑐, the pGTS algorithm iterates through different 
neighborhood structures (described in Section 2.3) by using a 
discrete probabilistic function to improve the best feasible 
solution (𝑆𝑆∗) found so far, until the number of iterations is 
reached. The algorithm starts by setting 𝑆𝑆∗ =  𝑆𝑆̅ = �̂�𝑆 = 𝑆𝑆0, 
where 𝑆𝑆̅ is the current solution (feasible or infeasible), and �̂�𝑆 is 
the current feasible solution. The following steps then are 
repeated sequently. First, the former algorithm selects a 
neighborhood from the neighborhoods structures 𝑁𝑁𝑘𝑘  (𝑘𝑘 =
1, … ,5) described in Section 2.3 by using the following 
function of probability 𝑓𝑓(𝑁𝑁𝑘𝑘) = 1

𝑢𝑢
, where 𝑢𝑢 is the total number 

of neighborhoods. Second, we apply a granular tabu search 
(GTS) based on the idea proposed by [14] in the selected 
neighborhood 𝑁𝑁𝑘𝑘(𝑆𝑆̅) until a local minimum 𝑆𝑆′ is found. 
Depending on the solution, the following choices are possible: 
• Increase the probability of selecting the current 

neighborhood (𝑁𝑁𝑘𝑘) by a given factor 𝑃𝑃𝑖𝑖𝑛𝑛𝑓𝑓  as follow 
𝑚𝑚𝑚𝑚𝑚𝑚 {𝑓𝑓(𝑁𝑁𝑘𝑘) + 𝑃𝑃𝑖𝑖𝑛𝑛𝑓𝑓 , 1}, only if any of three cases occurs: 
(1) 𝑆𝑆′ is infeasible and 𝐹𝐹2(𝑆𝑆′) ≤ 𝐹𝐹2(𝑆𝑆̅), (2) 𝑆𝑆′ is feasible 
and 𝐹𝐹1(S′) ≤ 𝐹𝐹1��̂�𝑆�, and (3) 𝑆𝑆′ is feasible and 𝐹𝐹1(𝑆𝑆′) ≤
𝐹𝐹1(𝑆𝑆̅). If (1) is performed, then 𝑆𝑆̅ ≔ 𝑆𝑆′, if (2) is found, set 
�̂�𝑆 ≔ 𝑆𝑆′, 𝑆𝑆̅ ≔ 𝑆𝑆′. Finally, if (3) occurs, set 𝑆𝑆̅ ≔ 𝑆𝑆′. 

• Otherwise, decrease the probability of selecting the 
current neighborhood (𝑁𝑁𝑘𝑘) by a factor 𝑃𝑃𝑑𝑑𝑟𝑟𝑓𝑓  as follow: 
𝑚𝑚𝑖𝑖𝑛𝑛 {0.01, 𝑓𝑓(𝑁𝑁𝑘𝑘) − 𝑃𝑃𝑑𝑑𝑟𝑟𝑓𝑓}. 
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In order to preserve the probability function properties 
after decreasing or increasing a certain neighborhood, the 
values of the probability to select other neighborhoods 
𝑁𝑁𝑘𝑘′ (𝑘𝑘′ = 1, … ,5), where 𝑘𝑘′ ≠ 𝑘𝑘, must be adjusted [21]. If 
the probability to select the neighborhood 𝑁𝑁𝑘𝑘 𝑖𝑖𝑖𝑖 decreased in 
a 𝑃𝑃𝑑𝑑𝑟𝑟𝑓𝑓  value, the remaining value 1 − [𝑓𝑓(𝑁𝑁𝑘𝑘) − 𝑃𝑃𝑑𝑑𝑟𝑟𝑓𝑓] is 
distributed for the remaining neighborhoods according to 
their current (probability) [21]. Therefore, the new 
probability [𝑓𝑓(𝑁𝑁𝑘𝑘′)] to select the remaining neighborhoods 
(𝑁𝑁𝑘𝑘′ ) is calculated as follows: 

 

𝑓𝑓(𝑁𝑁𝑘𝑘′) = 𝑓𝑓′(𝑁𝑁𝑘𝑘′) ∗ �
1 − [𝑓𝑓(𝑁𝑁𝑘𝑘) − 𝑃𝑃𝑑𝑑𝑟𝑟𝑓𝑓]

 1 −  𝑓𝑓(𝑁𝑁𝑘𝑘) �                 (1) 

 
where 𝑓𝑓′(𝑁𝑁𝑘𝑘′) is the previous probability of the 

corresponding remaining neighborhood (𝑘𝑘′ ≠ 𝑘𝑘). If the 
probability to select the neighborhood 𝑁𝑁𝑘𝑘  is increased in a 
𝑃𝑃𝑖𝑖𝑛𝑛𝑓𝑓  value, the remaining value 1 − [𝑓𝑓(𝑁𝑁𝑘𝑘) + 𝑃𝑃𝑖𝑖𝑛𝑛𝑓𝑓] is 
distributed for the remaining neighborhoods according to 
their current (probability). Therefore, the new probability 
[𝑓𝑓(𝑁𝑁𝑘𝑘′)] to select the remaining neighborhoods (𝑁𝑁𝑘𝑘′ ) is 
calculated as: 

 

𝑓𝑓(𝑁𝑁𝑘𝑘′) = 𝑓𝑓′(𝑁𝑁𝑘𝑘′) ∗ �
1 − [𝑓𝑓(𝑁𝑁𝑘𝑘) + 𝑃𝑃𝑖𝑖𝑛𝑛𝑓𝑓]

 1 −  𝑓𝑓(𝑁𝑁𝑘𝑘) �                 (2) 

 
Finally, the best feasible solution found so far 𝑆𝑆∗ is kept. 

The algorithm explores the solution space by moving at each 
iteration, from a solution 𝑆𝑆̅ to the best solution in the 
neighborhood 𝑁𝑁𝑘𝑘(𝑆𝑆̅), even if it is infeasible. The selected 
move is declared as tabu. The tabu tenure is defined as a 
random integer value in the range [𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑖𝑖𝑚𝑚𝑓𝑓𝑚𝑚], where 𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 
and 𝑖𝑖𝑚𝑚𝑓𝑓𝑚𝑚 are given parameters [21].  

The pseudocode algorithm of pGTS is the following: 
 
Procedure pGTS (𝑆𝑆0, 𝐼𝐼𝑇𝑇𝑚𝑚𝑓𝑓𝑚𝑚) 
   𝑆𝑆 ← 𝑆𝑆0 
   ′𝑆𝑆 ← 𝑆𝑆 
   𝑜𝑜𝑒𝑒𝑖𝑖 ← {2𝑜𝑜𝑒𝑒𝑖𝑖, 𝑖𝑖ℎ𝑖𝑖𝑓𝑓𝑖𝑖, 𝑖𝑖𝑤𝑤𝑚𝑚𝑒𝑒, 2𝑖𝑖ℎ𝑖𝑖𝑓𝑓𝑖𝑖, 2𝑖𝑖𝑤𝑤𝑚𝑚𝑒𝑒} 
   𝑒𝑒𝑟𝑟𝑜𝑜𝑒𝑒𝑖𝑖 ← {0.2,0.2,0.2,0.2,0.2} 
   𝑏𝑏𝐿𝐿𝑚𝑚𝐿𝐿𝑘𝑘𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 ← {} 
   𝑜𝑜𝑒𝑒 ← 𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒(𝑒𝑒𝑟𝑟𝑜𝑜𝑒𝑒𝑖𝑖, 𝑜𝑜𝑒𝑒𝑖𝑖) 
   𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑚𝑚𝑖𝑖𝑒𝑒 ← 𝑖𝑖𝑟𝑟𝑢𝑢𝑒𝑒 
   While 𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑚𝑚𝑖𝑖𝑒𝑒 do 
     𝑆𝑆′ ← 𝐺𝐺𝑇𝑇𝑆𝑆(′𝑆𝑆, 𝑜𝑜𝑒𝑒, 𝐼𝐼𝑇𝑇𝑚𝑚𝑓𝑓𝑚𝑚) 
     𝑖𝑖𝑛𝑛𝐿𝐿𝑟𝑟𝑒𝑒𝑚𝑚𝑖𝑖𝑒𝑒?← 𝑓𝑓𝑚𝑚𝐿𝐿𝑖𝑖𝑒𝑒 
     If 𝑛𝑛𝑜𝑜𝑖𝑖𝑓𝑓𝑒𝑒𝑚𝑚𝑖𝑖𝑖𝑖𝑏𝑏𝐿𝐿𝑒𝑒(𝑆𝑆′) ∧ 𝐹𝐹2(𝑆𝑆′) < 𝐹𝐹2(′𝑆𝑆) then 
         ′𝑆𝑆 ← 𝑆𝑆′ 
     If 𝑓𝑓𝑒𝑒𝑚𝑚𝑖𝑖𝑖𝑖𝑏𝑏𝐿𝐿𝑒𝑒(𝑆𝑆′) then 
         If 𝐹𝐹1(𝑆𝑆′) < 𝐹𝐹1�𝑆𝑆� then 
             ′𝑆𝑆 ← 𝑆𝑆′ 
             𝑆𝑆 ←′ 𝑆𝑆 
             𝑖𝑖𝑛𝑛𝐿𝐿𝑟𝑟𝑒𝑒𝑚𝑚𝑖𝑖𝑒𝑒?← 𝑖𝑖𝑟𝑟𝑢𝑢𝑒𝑒 
         If 𝐹𝐹1(𝑆𝑆′) ← 𝐹𝐹1(′𝑆𝑆) then 
             ′𝑆𝑆 ← 𝑆𝑆′ 
             𝑖𝑖𝑛𝑛𝐿𝐿𝑟𝑟𝑒𝑒𝑚𝑚𝑖𝑖𝑒𝑒?← 𝑖𝑖𝑟𝑟𝑢𝑢𝑒𝑒 
     If 𝑖𝑖𝑛𝑛𝐿𝐿𝑟𝑟𝑒𝑒𝑚𝑚𝑖𝑖𝑒𝑒? then 
         𝑖𝑖𝑛𝑛𝐿𝐿𝑟𝑟𝑒𝑒𝑚𝑚𝑖𝑖𝑒𝑒�𝑒𝑒𝑟𝑟𝑜𝑜𝑒𝑒𝑖𝑖[𝑜𝑜𝑒𝑒],𝑃𝑃𝑢𝑢𝑢𝑢� 
         𝑚𝑚𝑑𝑑𝑗𝑗𝑢𝑢𝑖𝑖𝑖𝑖(𝑒𝑒𝑟𝑟𝑜𝑜𝑒𝑒𝑖𝑖) 
         𝑏𝑏𝐿𝐿𝑚𝑚𝐿𝐿𝑘𝑘𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 ← {} 
      Else 
         𝑑𝑑𝑒𝑒𝐿𝐿𝑟𝑟𝑒𝑒𝑚𝑚𝑖𝑖𝑒𝑒(𝑒𝑒𝑟𝑟𝑜𝑜𝑒𝑒𝑖𝑖[𝑜𝑜𝑒𝑒],𝑃𝑃𝑑𝑑𝑐𝑐𝑑𝑑𝑛𝑛) 

         𝑚𝑚𝑑𝑑𝑗𝑗𝑢𝑢𝑖𝑖𝑖𝑖(𝑒𝑒𝑟𝑟𝑜𝑜𝑒𝑒𝑖𝑖) 
         𝑏𝑏𝐿𝐿𝑚𝑚𝐿𝐿𝑘𝑘𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 ← 𝑏𝑏𝐿𝐿𝑚𝑚𝐿𝐿𝑘𝑘𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 ∪ {𝑜𝑜𝑒𝑒} 
         𝑜𝑜𝑒𝑒 ← 𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒(𝑒𝑒𝑟𝑟𝑜𝑜𝑒𝑒𝑖𝑖, 𝑜𝑜𝑒𝑒𝑖𝑖) 
         While 𝑜𝑜𝑒𝑒 ∈ 𝑏𝑏𝐿𝐿𝑚𝑚𝐿𝐿𝑘𝑘𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 do 
             𝑜𝑜𝑒𝑒 ← 𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒(𝑒𝑒𝑟𝑟𝑜𝑜𝑒𝑒𝑖𝑖, 𝑜𝑜𝑒𝑒𝑖𝑖) 
      If  size(blacklist) == size(ops)   then 
         𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑚𝑚𝑖𝑖𝑒𝑒 ← 𝑓𝑓𝑚𝑚𝐿𝐿𝑖𝑖𝑒𝑒 
   Return 𝑆𝑆 
 
The pseudocode of the pGTS shows a brief summary of 

the performance of the proposed algorithm according to the 
discrete probability function and the replacement of the 
solutions depending of the characteristics of the solution 
found by the neighborhood 𝑆𝑆′. 

 
4.  Computational experiments 

 
Fixing a maximum CPU time as stopping criterion has 

performed the comparison of the effects of the initial solution 
on the performance of the algorithms GSA, GVNS and 
pGTS. Finally, the best performance of the algorithms has 
been considered by executing 𝑁𝑁𝑠𝑠𝑓𝑓𝑐𝑐𝑢𝑢  ×  𝑛𝑛 iterations (where 
𝑁𝑁𝑠𝑠𝑓𝑓𝑐𝑐𝑢𝑢 is a given parameter) for each instance. For each 
considered instance, the proposed approaches have been 
executed five times with different random generator seeds. 
The results reported in Tables 2 to 5 correspond for each 
instance to the best solution value obtained over the five runs 
with its corresponding total running time and the average 
results found within its corresponding computing time. 

The three former algorithms have been coded in C++, and 
the computational experiments have been performed on an 
Intel Core Duo (only one core is used) CPU (2.00 GHz) under 
Linux Ubuntu 12.1 with 2 GB of memory RAM. The 
proposed algorithms have been tested on four benchmarking 
sets of instances adapted from the literature. The set of 
instances are available in 
https://github.com/maxbernal/LRPH. In all the sets, points in 
the plane represent the customers and the depot. Therefore, 
the traveling cost for an edge is calculated as the Euclidian 
distance between vertices.  

The first three sets of instances are adapted from 
benchmarking instances for the CLRP proposed by [23], [24] 
and [25] for the CLRP respectively. In particular, for these 
sets of instances, the characteristics of the vehicles (fixed cost 
and capacities) have been modified in order to consider 
heterogeneous fleet for a location-routing problem. The first 
data subset was adapted from [23], and contains 36 instances 
with uncapacitated depots. The number of customers for each 
instance is n = 100, 150 or 200. The number of potential 
depots is either 10 or 20. The second data subset was adapted 
from [24], and considers 30 instances with capacity 
constraints on routes and depots. The number of customers 
for each instance is n = 20, 50, 100 or 200. The number of 
potential depots is either 5 or 10. Finally, the third data subset 
was adapted from [25], and considers 13 instances also with 
capacity constraints on depots and routes. The number of 
customers ranges from 21 to 150, and the number of potential 
depots from 5 to 10.  

The fourth set is adapted from [26]. Originally, the 
instances from [26] are proposed for the HFVRP. In the 
HFVRP, all the depots are considered as opened in order to  
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Table 1.  
Parameters used by the different algorithms 

Parameter Value Algorithm using the parameter 
𝑇𝑇0 100 GSA 
𝛼𝛼 0.97 GSA 

𝜌𝜌𝑚𝑚𝑖𝑖𝑛𝑛 1 pGTS, GSA 
𝜌𝜌𝑚𝑚𝑓𝑓𝑚𝑚 100 pGTS, GSA 
𝜕𝜕𝑖𝑖𝑛𝑛𝑓𝑓 1.1 pGTS, GSA 
𝜕𝜕𝑟𝑟𝑟𝑟𝑑𝑑 1 / 𝜕𝜕𝑖𝑖𝑛𝑛𝑓𝑓 pGTS, GSA 
𝑃𝑃𝑖𝑖𝑛𝑛𝑓𝑓 0.1 pGTS, GSA 
𝑃𝑃𝑑𝑑𝑟𝑟𝑓𝑓 0.1 pGTS, GSA 
𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 7 pGTS 
𝑖𝑖𝑚𝑚𝑓𝑓𝑚𝑚 49 pGTS 
𝛽𝛽0 1.50 GSA, GVNS, pGTS 
𝛽𝛽𝑛𝑛 3.00 GSA, GVNS, pGTS 
𝑁𝑁𝑠𝑠 1 GSA, GVNS, pGTS 
𝑁𝑁𝑟𝑟 1 GSA, GVNS, pGTS 

𝐼𝐼𝑇𝑇𝑚𝑚𝑓𝑓𝑚𝑚 10 GSA, GVNS, pGTS 
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 10 pGTS, GSA 

Source: Owner 
 
 

determine the routes to be performed. On the other hand, for 
the LRPH all the depots are considered as “potential”. 
Therefore, it is mandatory to select the depots to be opened 
and the customers to be assigned to each open depot. 

 
4.1.  Setting of parameters 

 
A suitable set of parameters, whose values are based on 

extensive computational tests on the benchmark instances, 
was selected for each algorithm. The parameters and values 
are presented in Table 1. 

These values have been utilized for the comparison of the 
solutions obtained by the described algorithms. 

The calibration of the value of each parameter was 
performed by a multi-objective optimization approach 
(considering the minimization of the objective function and 
the computing time). Values coming from previous works 
with similar algorithms ([4,5-7,21]) are used. The next step 
is to select a parameter and search for the given value the best 
result. This search is executed applying 1D function 
minimization. The process is carried out for each considered 
value. Since this process is iterative, it can be refined using 
more repetitions. 

 
4.2.  Comparison of the three described algorithms 

 
For each instance, the proposed algorithms are executed 

5 times due to their random calculations. Tables 2 - 5 provide 
the detailed results of the three proposed algorithms on the 
four data sets respectively. The algorithms are compared 
based on their best and average objective function for each 
instance; and the CPU for obtaining the best result and the 
CPU time to process the five runs of each instance. As 
expected, the GSA algorithm is faster, in the most of the 
cases, than the other algorithms since a solution is selected 
randomly and then evaluated; while GVNS performs local 
search on the selected solution, and pGTS explores the 
granular search space. A remarkable fact of the three 
algorithms is that although using random numbers, the 
objective function value tends to converge (see Tables 2 – 5).  

The results clearly show that algorithm GSA outperforms 
the other two algorithms for what concerns both the CPU 
time and the quality of the answers found. Indeed, for all the 
data sets, the average costs, and the values of the best results 
for GSA are better than the corresponding values of 
algorithms GVNS and pGTS. Therefore algorithm GSA is 
the best performing of the three described algorithms, and, it 
could be compared with the most effective heuristics will 
publish in the literature. 

 
5.  Final remarks and future research 

 
In this paper, a comparison of trajectory granular based 

algorithms for the Location Routing Problem with 
Heterogeneous Fleet (LRPH) is performed. All the proposed 
approaches use a granular search space based on the idea of 
using a sparse graph instead of the complete graph. Three 
algorithms have been proposed: Granular Simulated 
Annealing (GSA), Granular Variable Neighborhood Search 
(GVNS) and a probabilistic Granular Tabu Search (pGTS). 

The computational experiments show that algorithm GSA 
generally obtains better results in terms of average and best 
results than those obtained by algorithms GVNS and pGTS. 
The results emphasize the importance of the granular search 
approach for the proposed algorithms, by showing that it 
significantly improves the performance and the computing 
time of the proposed approaches. We have compared the 
proposed approaches for the LRPH on four set of 
benchmarking instances adapted from the literature. The 
results show the effectiveness of GSA, imposing several best-
known results within short computing times. 
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Table 2  
Results for Tuzun-Burke Instances 

Instance BKS
INITIAL

SOLUTION GSA GVNS pGTS

Cost CPU Avg Cost Avg Best Total Avg Cost Avg Best Total Avg Cost Avg Best Total
Tuzun 3 1 2317.93 2400.76 36 2334.08 43 2317.93 217 2399.93 31 2396.95 156 2392.98 70 2392.98 348
Tuzun 3 2 2989.72 3233.17 65 3000.94 69 2989.72 344 3188.08 48 3156.49 240 3213.96 128 3213.96 641
Tuzun 3 3 2311.83 2334.33 36 2312.29 45 2311.83 227 2334.21 30 2334.04 151 2334.33 50 2334.33 249
Tuzun 3 4 2365.86 2425.82 72 2374.32 76 2365.86 382 2417.02 55 2408.64 276 2425.82 91 2425.82 455
Tuzun 3 5 2069.15 2078.18 40 2070.21 45 2069.15 223 2078.02 31 2077.71 157 2073.54 67 2073.54 334
Tuzun 3 6 2330.57 2467.55 76 2335.94 85 2330.57 427 2441.61 56 2414.87 282 2455.48 136 2454.80 682
Tuzun 3 7 1652.17 1686.85 47 1658.07 57 1652.17 283 1685.29 38 1683.47 191 1672.67 93 1672.02 463
Tuzun 3 8 1922.34 2147.48 60 2001.41 96 1922.34 478 2123.69 63 2093.07 315 2135.57 124 2135.01 619
Tuzun 3 9 2252.62 2360.95 49 2258.03 54 2252.62 270 2360.26 39 2359.77 194 2360.95 69 2360.95 345
Tuzun 3 10 2257.68 2713.23 79 2364.05 87 2257.68 434 2654.87 60 2633.78 301 2705.17 107 2703.72 536
Tuzun 3 11 1852.03 1944.76 50 1873.20 56 1852.03 281 1944.43 38 1943.55 191 1940.11 77 1940.06 387
Tuzun 3 12 2371.29 2562.77 85 2433.94 88 2371.29 439 2558.97 62 2555.11 312 2560.53 100 2560.53 499
Tuzun 3 13 6176.56 6456.06 157 6256.08 179 6176.56 893 6455.98 120 6455.67 598 6442.71 968 6442.38 4840
Tuzun 3 14 6385.58 6536.73 299 6391.86 324 6385.58 1618 6525.14 219 6504.62 1094 6482.75 1231 6482.69 6155
Tuzun 3 15 6214.05 6372.13 154 6234.95 178 6214.05 891 6372.13 116 6372.13 578 6342.42 705 6340.09 3525
Tuzun 3 16 6554.11 6880.01 313 6624.20 341 6554.11 1705 6865.46 231 6855.05 1153 6856.53 962 6853.14 4810
Tuzun 3 17 5947.54 6157.28 183 5995.29 208 5947.54 1038 6156.84 133 6156.00 665 6150.17 679 6148.53 3396
Tuzun 3 18 6114.50 6209.83 521 6125.97 566 6114.50 2832 6200.27 372 6188.53 1861 6201.01 931 6200.70 4654
Tuzun 3 19 5440.51 5716.49 219 5502.74 265 5440.51 1323 5715.94 165 5715.13 827 5708.90 709 5708.33 3545
Tuzun 3 20 6207.16 6754.28 598 6409.92 649 6207.16 3246 6748.07 422 6742.73 2110 6748.55 869 6748.55 4347
Tuzun 3 21 5787.07 6081.60 186 5876.29 226 5787.07 1130 6081.42 141 6081.23 704 6071.82 833 6071.76 4164
Tuzun 3 22 6248.68 6521.57 419 6266.54 452 6248.68 2259 6489.98 297 6468.44 1485 6512.23 757 6512.23 3785
Tuzun 3 23 5736.73 5801.56 274 5764.78 319 5736.73 1593 5799.63 203 5797.53 1014 5792.12 756 5791.69 3782
Tuzun 3 24 6732.60 7394.55 466 6920.36 494 6732.60 2468 7341.25 333 7313.80 1663 7380.87 1253 7379.16 6266
Tuzun 3 25 3523.67 3801.64 76 3536.97 94 3523.67 471 3800.67 59 3798.37 293 3749.18 207 3725.38 1034
Tuzun 3 26 3565.55 4080.75 164 3709.04 168 3565.55 842 4052.42 122 4032.13 608 4080.75 231 4080.75 1153
Tuzun 3 27 3514.89 3681.68 81 3525.46 96 3514.89 479 3681.39 65 3680.22 323 3616.72 391 3616.66 1955
Tuzun 3 28 3784.44 4048.16 160 3854.08 166 3784.44 828 4031.95 120 4022.89 601 4026.38 277 4026.38 1384
Tuzun 3 29 3207.38 3271.55 99 3245.34 118 3207.38 588 3270.55 80 3269.77 399 3269.32 212 3269.32 1062
Tuzun 3 30 3208.90 3749.59 207 3322.80 225 3208.90 1125 3710.75 149 3674.92 744 3737.02 335 3737.02 1674
Tuzun 3 31 2790.62 2918.91 117 2791.99 141 2790.62 707 2917.61 89 2916.42 443 2912.39 250 2911.17 1250
Tuzun 3 32 3006.20 3296.47 215 3081.10 234 3006.20 1170 3284.45 157 3271.75 783 3284.83 536 3283.72 2679
Tuzun 3 33 3208.38 3377.91 103 3229.38 124 3208.38 618 3376.86 80 3375.62 398 3375.51 197 3375.51 987
Tuzun 3 34 3505.24 4448.21 190 3770.37 199 3505.24 995 4434.86 136 4420.16 678 4422.68 342 4422.68 1710
Tuzun 3 35 2876.83 2996.11 105 2880.62 118 2876.83 590 2994.95 81 2993.46 406 2960.24 296 2951.67 1479
Tuzun 3 36 3739.83 3895.81 204 3741.84 218 3739.83 1092 3857.93 149 3842.49 744 3894.80 299 3894.80 1493

Average 4133.46 172 3946.51 192 3893.62 959 4120.91 127 4111.29 637 4119.19 426 4117.83 2130  
Source: Owner 

 
 

Table 3. 
Results for Prodhon Instances 

Instance BKS

INITIAL
SOLUTION GSA GVNS pGTS

Cost CPU
time Avg Cost Avg

time Best Cost Total
time Avg Cost Avg

time Best Cost Total
time Avg Cost Avg

time Best Cost Total
time

Prodhon_2_1 22028.47 22077.75 5 22042.60 4 22028.47 21 22076.60 7 22071.98 33 22066.16 8 22066.16 40
Prodhon_2_2 16318.64 16344.61 6 16322.88 5 16318.64 23 16344.61 7 16344.61 36 16331.84 7 16331.84 37
Prodhon_2_3 23511.03 23553.12 5 23511.03 5 23511.03 26 23552.42 6 23549.64 30 23544.35 7 23544.35 36
Prodhon_2_4 15912.53 15912.53 5 15912.53 5 15912.53 26 15912.53 6 15912.53 30 15912.53 8 15912.53 41
Prodhon_2_5 16946.94 16980.95 14 16949.43 13 16946.94 65 16980.89 15 16980.81 75 16979.26 23 16979.26 115
Prodhon_2_6 16946.94 16980.95 13 16949.87 14 16946.94 68 16980.93 15 16980.81 75 16979.26 22 16979.26 109
Prodhon_2_7 31215.64 31521.80 14 31230.69 15 31215.64 75 31521.62 16 31521.33 79 31447.33 25 31445.47 127
Prodhon_2_8 31238.55 31521.80 14 31250.30 15 31238.55 74 31521.75 16 31521.57 82 31447.85 26 31446.22 129
Prodhon_2_9 18535.68 18898.72 15 18682.36 15 18535.68 75 18898.14 16 18895.84 80 18852.91 29 18840.51 146
Prodhon_2_10 19614.68 19951.12 13 19745.87 14 19614.68 68 19950.87 17 19950.31 87 19931.37 23 19931.37 116
Prodhon_2_11 12766.26 12847.36 16 12769.76 12 12766.26 60 12847.36 17 12847.36 87 12839.82 23 12839.82 114
Prodhon_2_12 12761.67 12847.36 16 12766.18 12 12761.67 60 12847.36 18 12847.36 89 12839.82 22 12839.82 111
Prodhon_2_13 143839.64 143873.66 35 143842.28 33 143839.64 163 143868.54 40 143857.30 201 143873.66 79 143873.66 397
Prodhon_2_14 143841.83 143873.66 37 143843.60 32 143841.83 161 143869.93 40 143860.20 199 143873.66 79 143873.66 395
Prodhon_2_15 99095.66 99095.66 37 99095.66 31 99095.66 153 99095.66 41 99095.66 206 99095.66 92 99095.66 458
Prodhon_2_16 99095.66 99095.66 35 99095.66 30 99095.66 151 99095.66 39 99095.66 196 99095.66 90 99095.66 451
Prodhon_2_17 96656.46 96659.28 36 96656.46 31 96656.46 155 96658.96 39 96658.50 197 96659.28 81 96659.28 405
Prodhon_2_18 96656.46 96659.28 36 96656.46 31 96656.46 156 96659.04 39 96658.45 194 96659.28 86 96659.28 431
Prodhon_2_19 163846.85 163846.85 214 163846.85 272 163846.85 1358 163846.85 218 163846.85 1088 163846.85 329 163846.85 1647
Prodhon_2_20 163846.85 163846.85 217 163846.85 270 163846.85 1352 163846.85 218 163846.85 1092 163846.85 329 163846.85 1645
Prodhon_2_21 161256.16 161256.16 72 161256.16 81 161256.16 407 161256.16 71 161256.16 356 161256.16 142 161256.16 708
Prodhon_2_22 161256.16 161256.16 71 161256.16 82 161256.16 409 161256.16 71 161256.16 356 161256.16 140 161256.16 698
Prodhon_2_23 151783.10 151783.10 121 151783.10 146 151783.10 730 151783.10 123 151783.10 616 151783.10 205 151783.10 1027
Prodhon_2_24 151783.10 151783.10 117 151783.10 148 151783.10 739 151783.10 118 151783.10 589 151783.10 198 151783.10 992
Prodhon_2_25 243999.72 244038.02 182 244004.73 221 243999.72 1105 244036.97 190 244036.46 952 244025.39 1399 244023.25 6994
Prodhon_2_26 243981.01 244038.02 182 243995.08 220 243981.01 1102 244036.07 188 244032.89 941 244024.32 1351 244023.25 6753
Prodhon_2_27 283998.66 284018.77 223 284002.94 287 283998.66 1437 284018.46 227 284017.82 1134 284018.77 701 284018.77 3506
Prodhon_2_28 284002.20 284018.77 226 284004.51 289 284002.20 1444 284018.38 227 284017.94 1134 284018.77 746 284018.77 3728
Prodhon_2_29 320250.59 320250.59 175 320250.59 218 320250.59 1089 320250.59 180 320250.59 899 320250.59 715 320250.59 3573
Prodhon_2_30 320250.59 320250.59 194 320250.59 218 320250.59 1089 320250.59 179 320250.59 897 320250.59 775 320250.59 3877

Average 118969.41 78 118920.14 92 118907.92 461 118968.87 80 118967.61 401 118959.68 259 118959.04 1293
 

Source: Owner 
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Table 4 Results for Barreto Instances 

Instance BKS

INITIAL
SOLUTION GSA GVNS pGTS

Cost CPU
time Avg Cost Avg

time Best Cost Total
time Avg Cost Avg

time Best Cost Total
time Avg Cost Avg

time Best Cost Total
time

Prodhon_2_1 22028.47 22077.75 5 22042.60 4 22028.47 21 22076.60 7 22071.98 33 22066.16 8 22066.16 40
Prodhon_2_2 16318.64 16344.61 6 16322.88 5 16318.64 23 16344.61 7 16344.61 36 16331.84 7 16331.84 37
Prodhon_2_3 23511.03 23553.12 5 23511.03 5 23511.03 26 23552.42 6 23549.64 30 23544.35 7 23544.35 36
Prodhon_2_4 15912.53 15912.53 5 15912.53 5 15912.53 26 15912.53 6 15912.53 30 15912.53 8 15912.53 41
Prodhon_2_5 16946.94 16980.95 14 16949.43 13 16946.94 65 16980.89 15 16980.81 75 16979.26 23 16979.26 115
Prodhon_2_6 16946.94 16980.95 13 16949.87 14 16946.94 68 16980.93 15 16980.81 75 16979.26 22 16979.26 109
Prodhon_2_7 31215.64 31521.80 14 31230.69 15 31215.64 75 31521.62 16 31521.33 79 31447.33 25 31445.47 127
Prodhon_2_8 31238.55 31521.80 14 31250.30 15 31238.55 74 31521.75 16 31521.57 82 31447.85 26 31446.22 129
Prodhon_2_9 18535.68 18898.72 15 18682.36 15 18535.68 75 18898.14 16 18895.84 80 18852.91 29 18840.51 146
Prodhon_2_10 19614.68 19951.12 13 19745.87 14 19614.68 68 19950.87 17 19950.31 87 19931.37 23 19931.37 116
Prodhon_2_11 12766.26 12847.36 16 12769.76 12 12766.26 60 12847.36 17 12847.36 87 12839.82 23 12839.82 114
Prodhon_2_12 12761.67 12847.36 16 12766.18 12 12761.67 60 12847.36 18 12847.36 89 12839.82 22 12839.82 111
Prodhon_2_13 143839.64 143873.66 35 143842.28 33 143839.64 163 143868.54 40 143857.30 201 143873.66 79 143873.66 397
Prodhon_2_14 143841.83 143873.66 37 143843.60 32 143841.83 161 143869.93 40 143860.20 199 143873.66 79 143873.66 395
Prodhon_2_15 99095.66 99095.66 37 99095.66 31 99095.66 153 99095.66 41 99095.66 206 99095.66 92 99095.66 458
Prodhon_2_16 99095.66 99095.66 35 99095.66 30 99095.66 151 99095.66 39 99095.66 196 99095.66 90 99095.66 451
Prodhon_2_17 96656.46 96659.28 36 96656.46 31 96656.46 155 96658.96 39 96658.50 197 96659.28 81 96659.28 405
Prodhon_2_18 96656.46 96659.28 36 96656.46 31 96656.46 156 96659.04 39 96658.45 194 96659.28 86 96659.28 431
Prodhon_2_19 163846.85 163846.85 214 163846.85 272 163846.85 1358 163846.85 218 163846.85 1088 163846.85 329 163846.85 1647
Prodhon_2_20 163846.85 163846.85 217 163846.85 270 163846.85 1352 163846.85 218 163846.85 1092 163846.85 329 163846.85 1645
Prodhon_2_21 161256.16 161256.16 72 161256.16 81 161256.16 407 161256.16 71 161256.16 356 161256.16 142 161256.16 708
Prodhon_2_22 161256.16 161256.16 71 161256.16 82 161256.16 409 161256.16 71 161256.16 356 161256.16 140 161256.16 698
Prodhon_2_23 151783.10 151783.10 121 151783.10 146 151783.10 730 151783.10 123 151783.10 616 151783.10 205 151783.10 1027
Prodhon_2_24 151783.10 151783.10 117 151783.10 148 151783.10 739 151783.10 118 151783.10 589 151783.10 198 151783.10 992
Prodhon_2_25 243999.72 244038.02 182 244004.73 221 243999.72 1105 244036.97 190 244036.46 952 244025.39 1399 244023.25 6994
Prodhon_2_26 243981.01 244038.02 182 243995.08 220 243981.01 1102 244036.07 188 244032.89 941 244024.32 1351 244023.25 6753
Prodhon_2_27 283998.66 284018.77 223 284002.94 287 283998.66 1437 284018.46 227 284017.82 1134 284018.77 701 284018.77 3506
Prodhon_2_28 284002.20 284018.77 226 284004.51 289 284002.20 1444 284018.38 227 284017.94 1134 284018.77 746 284018.77 3728
Prodhon_2_29 320250.59 320250.59 175 320250.59 218 320250.59 1089 320250.59 180 320250.59 899 320250.59 715 320250.59 3573
Prodhon_2_30 320250.59 320250.59 194 320250.59 218 320250.59 1089 320250.59 179 320250.59 897 320250.59 775 320250.59 3877

Average 118969.41 78 118920.14 92 118907.92 461 118968.87 80 118967.61 401 118959.68 259 118959.04 1293
 

Source: Owner 
 
 

Table 5  
Results for Christofides Instances 

Instance BKS

INITIAL
SOLUTION GSA GVNS pGTS

Cost CPU
time Avg Cost Avg

time Best Cost Total
time Avg Cost Avg

time Best Cost Total
time Avg Cost Avg

time Best Cost Total
time

Christofides_13 2153.21 2505.20 15 2203.56 12 2153.21 59 2504.25 17 2500.43 87 2449.13 27 2446.08 134
Christofides_14 7685.83 7686.94 15 7685.83 12 7685.83 60 7686.73 18 7686.07 90 7686.94 22 7686.94 109
Christofides_15 2822.21 2829.77 14 2822.21 12 2822.21 60 2829.43 17 2828.91 85 2829.77 20 2829.77 100
Christofides_16 2922.67 2930.19 11 2922.67 11 2922.67 53 2930.02 14 2929.33 69 2923.53 19 2923.53 95
Christofides_17 1902.57 1920.70 17 1905.67 23 1902.57 113 1920.70 22 1920.70 111 1920.70 30 1920.70 152
Christofides_18 2825.50 2839.99 18 2826.69 22 2825.50 111 2839.87 22 2839.70 112 2827.94 42 2827.94 210
Christofides_19 10218.28 10767.52 32 10618.81 40 10218.28 200 10764.51 40 10757.15 201 10738.69 146 10733.56 730
Christofides_20 4351.23 4370.17 33 4351.23 40 4351.23 201 4370.17 40 4370.17 202 4361.55 133 4361.55 664

Average 4481.31 19 4417.09 21 4360.19 107 4480.71 24 4479.06 120 4467.28 55 4466.26 274  
Source: Owner 
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