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Abstract 
The objective of this study was to develop and propose a methodology to evaluate the quality of different sampling grids. In addition, it allows 
us to choose the sampling grid that better suits one or a set of variables. The structure and magnitude of the spatial dependence were characterized 
by semivariogram. It allowed us to apply validation techniques as a base to create an index for evaluating the grid quality, and to develop an 
indicator that points out the best sampling grid. To test the proposed methodology, an experiment was performed at the Brejão farm, in Brazil. 
We have developed and compared twenty sampling grids, which were applied to four soil variables sampled in georeferenced locations. An 
accuracy index (AI), a precision index (PI) and the optimum grid indicator (OGI) were developed and proposed, which allowed us to choose the 
best grid (grid 5) among the sampling grids.  

Keywords: Geostatistics; spatial variability; soil fertility; accuracy index; precision index; optimum grid indicator. 

Metodología para determinar la cuadrícula de muestreo del suelo 
para la agricultura de precisión en un campo de café 

Resumen 
El objetivo de este estudio fue desarrollar y proponer una metodología para evaluar la calidad de las diferentes cuadrículas de muestreo. Además, es 
posible elegir  la cuadricula de muestreo que mejor se adapte a una o un conjunto de variables. La estructura y la magnitud de la dependencia espacial 
fueron caracterizadas por semivariograma. Esto nos permitió utilizar las técnicas de validación que funcionaron como base para crear una clasificación 
para evaluar la calidad de la cuadricula y para desarrollar un indicador que apunta la mejor cuadricula de muestreo. Un experimento fue realizado en 
la hacienda Brejão en Brasil, para probar la metodología propuesta. Hemos desarrollado y comparado veinte muestras que fueran aplicadas en cuatro 
variables de suelo muestreados en los puntos georeferenciados. Un índice de exactitude (AI), un índice de precisión (PI) y el indicador  de cuadricula 
óptima (OGI), fueron desarrollados y propuestos lo que nos permitió elegir la mejor muestra cuadricula de muestreo (cuadricula 5) entre las 
cuadrículas de muestreo. 

Palabras clave: geoestadística; variabilidad espacial; fertilidad del suelo; índice de exactitude; índice de precisión; indicador de cuadricula óptima. 

1. Introduction

Coffee crop agribusiness is modernizing its productivity
process in order to increase, or maintain, the crop’s yield and 
gains. In recent years Brazilian coffee agribusiness internalized 

How to cite: Araújo, G., Oliveira, S., Moreira da Silva, F., Carvalho Avelar, R., Castro da Silva, F. and Ponciano Ferraz, P.F., Methodology to determine the soil sampling grid 
for precision agriculture in a coffee field, DYNA 84(200), pp. 316-325, 2017. 

new production techniques that promoted positive impacts on 
productivity, competitiveness and final product quality [4]. 

One technique that corroborates to this modernization 
process is the implementation of precision agriculture in coffee 
plantations. The use of precision agriculture in coffee crops was 
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defined as a set of techniques and technologies that can aid the 
producer in managing his/her crop, based on the spatial 
variability of soil and plant properties, in order to maximize 
profitability, increase fertilization, spraying and harvesting 
efficiency, which increases productivity and the quality of the 
final product [11]. We may also include in this definition the 
concern with environmental and social issues.  Furthermore, the 
precision agriculture technique applied on the coffee crop may 
be economically feasible for producers [10]. 

The knowledge of soil and crop property variability, in 
space and time, is considered a basic principle for the precise 
management of agricultural areas, independent of their scale 
[6,14]. The study of soil property spatial variability is 
important when selecting an experimental area, in locating 
experimental units, in determining the sampling operation, in 
the interpretation of the results, soil survey and classification 
schemes, and in the conscious use of fertilizers [29]. 

Understanding the soil spatial variability for any 
agricultural field requires a large amount of information, 
which may be obtained from different soil sampling 
strategies [30]. Such sampling, especially those related to 
grid patterns, generate discussions among scientists, 
technicians, traders and producers, who do not have well-
established standards for coffee crops. For example, [20] 
reported that spatial sampling should always be performed 
using regular grids and that the random distribution of 
sampling points on the field will avoid the optimum use of all 
the spatial information obtained by sampling. 

The use of soil sampling grids of unsatisfactory size may 
generate maps that do not reflect what is in the field, generating 
erroneous technical recommendations of the sampled soil 
property.  The soil sampling grids commonly used in several 
Brazilian crops, without any justification, range from 0.2 to 1 
sample/ha [19]. Specifically, for coffee crops, the soil-sampling 
grid is 1 sample/ha [12]. Thus, information on selecting the 
appropriate soil sampling grid size is critical for the precise 
management of the spatial variability of soil and plant properties 
on coffee plantations, primarily for the application of variable 
rates and the management of the fruit’s harvest operation. 

Thus, the objective of this study was to develop and 
propose a methodology that would enable the assessment and 
comparison of different sampling grid quality, and leads us 
into choosing a grid that better characterizes the spatial 
variability of soil properties. 

 
2.  Material and methods 

 
2.1.  Experimental area 

 
The experiment was conducted at the Brejão Farm, Três 

Pontas, south of Minas Gerais State, Brazil, in a commercial 
field cultivated with 22 ha of coffee (Coffea arabica L., 
Topazio cultivar) (Fig. 1). The crop was planted in December 
2005 with a spacing of 3.8m between rows and 0.8 m between 
plants, totaling 3289 plants ha-1. The geographic coordinates of 
the center of the area are 21°25'58" S and 45°24'51" W and the 
altitude is 915m above sea level (Fig. 2). The limits of the field 
were obtained by differential GPS FC-100 (Topcon Positioning 
Systems Inc. / Livermore, California, EUA). 

The local climate is characterized as mild, tropical of 

altitude, with moderate ambient temperatures and hot and rainy 
summer, classified by Köppen as Cwa [23]. The soil was 
classified as Haplustox [8]. Fertilizers in the 2007/2008 and 
2008/2009 growing seasons were applied via variable rate as 
described by [10] and in other seasons fertilizers were 
conventionally applied. 

 
2.2.  Initial sampling grid 

 
A regular sampling grid of 57 x 57m with a total of 64 

georeferenced sampling points (averaging 2.9 points per hectare) 
was established in the study area. We created four more regular 

 

 
Figure 1. Location of the experimental area 
Source: The authors 

 
 

 
Figure 2. Planialtimetric map of the 22ha of the Brejão Farm. 
Source: The authors 
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Figure 3. Initial Sampling Grid (Grid One), nest detail and sampling scheme 
Source: The authors 

 
 

sampling grids inside this larger grid, with points spaced at 
3.8 x 3.8 m, hereafter this pattern is referred to as a nested 
grid. These grids were placed in four points of the main grid, 
each nested grid corresponding to 10 georeferenced sampling 
points, with one point of the main grid and nine points of the 
new grid. Thus, the initial sampling grid, called grid one, had 
100 georeferenced sampling points (Fig. 3) and other grids 
were developed from grid one. 

Each sampling point corresponded to 4 coffee plants, in 
which 2 plants were in a row with 2 others in each lateral row 
(Fig. 3). The GPS receiver recorded the positions of each 
sampling point.  

The use of nested grid in the sampling scheme is to detect 
variations over short distances, reducing the nugget effect, 
and thus, contributing to improve the results of the grid used. 
This kind of sampling, which uses nested grid into a grid with 
larger spacing of points, was also used by [2, 3, 13, 16, 24]. 

 
2.3.  Development of a sampling grid study methodology 

 
In order to develop a method that enables choosing the 

soil sampling grid, we must consider the existence of spatial 
dependency of the studied properties for each testing grid. If 
this dependency occurs, it must be modeled, evaluating 
whether it was well performed or not. 

The spatial dependence of the studied variables and 
evaluated sampling grids was determined by computing and 
modeling the semivariogram. The classical semivariogram 
estimator [17] is demonstrated in the following eq. (1): 
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in which ( )hγ̂  is the semivariance, N(h) is the number of 

experimental pairs of observations z(si) and z(si+h), at 
locations si and si+h, separated by the lag distance h [7]. The 
semivariogram is represented by graphic ( )hγ̂  versus h. From 

the mathematical model fitted to the calculated values of ( )hγ̂
we estimated the coefficients of the theoretical model for the 
semivariogram called nugget effect (C0), sill (C0 + C1) and 
range (a), as described by [7]. The mathematical model 
adjustment method used was the ordinary least squares 
(OLS). 

The spherical model was chosen for all attributes studied. 
This model is widely used in spatial variability studies of 
coffee plantations such as: soil properties, coffee yield, plant 
defoliation due to manual harvest, fruit detachment force and 
pest infestation [1,9,18,25-28]. Furthermore, the spherical 
model adjusted to most of the studied soil properties and 
coffee yield [11]. 

In order to distinguish the adjustment quality, we used the 
spatial dependence index (SDI) [5]. This index indicates 
strong spatial dependence when the nugget effect is ≤25% of 
the sill, moderate when it is between 25 and 75% of the sill, 
and weak when the nugget effect is ≥75% of the sill. 

Validation is one of the ways to evaluate the quality of the 
estimation and adjustment of a semivariagram and other 
studied features, such as sampling grid. The validation 
evaluates estimation errors in order to compare the predicted 
values with the sampled one [15]. The sample value at z(si), 
is discarded temporarily from the data, being predicted by 
ordinary kriging along with the remaining sample values in 
its proximity. Thus, it is possible to obtain values which may 
be useful in observing the errors presented by each grid, such 
as Absolute Error (AE) eq. (2), which values should be 
closest to zero, and the Standard Deviation of Absolute Error 
(SDAE) eq. (3), which must be as little as possible. 
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were N is the number of data points, z(si) is the measured 

value at point si, and ( )iZ sˆ  is the value calculated by ordinary 
kriging at si when z(si) removed. 

Methods that quantify the comparison of different 
sampling grids to study their spatial dependence are not 
available. Thus, this work proposed, developed, and tested 
two indexes which represent the quality of the sampling grid. 
These indexes are based on values of Absolute Error (AE) 
and Standard Deviation of Absolute Error (SDEA). By 
obtaining these indexes, it was possible to develop, propose 
and test an indicator that points to the sampling grid that best 
represents the data set. 

The geostatistical analyses were done with the [21] 
statistical software and the geoR [22] library.  

 
2.4.  Test of the developed methodology 

 
The data source used to test the proposed indexes and 

indicator were the soil properties. The soil was sampled on 
June 2011, obtaining subsamples under the coffee canopy in 
0-20 cm of depth, using a soil sampler (Fig. 4a) in each plant  
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(a) (b) (c) 

Figure 4. Soil sampler (a), homogenization of the sampled soil (b) and Soil 
sample (c). 
Source: The authors 

 
 

inside the sample point. These subsamples were mixed in 
order to form a composite sample that represented the studied 
sample point (Fig. 4b and 4c). These samples were sent to the 
Soil Analysis laboratory of the Soil Science Department of 
the Universidade Federal de Lavras. The soil chemical 
properties measured were Phosphorus (P), remaining 
phosphorus (Prem), Potassium (K) and Cationic Exchange 
Capacity at pH 7.0 (T). 

 
3.  Results and discussion  

 
3.1.  Quality indexes and grid indicator 

 
In order to evaluate the quality of the sampling grids, we 

proposed and developed two indexes: the accuracy index 
(AI) and the precision index (PI). 

The Absolute Error (AE) value obtained by validation 
reflects the accuracy presented by the sampling grid. 
Conceptually, accuracy gives an idea of the conformity 
degree of a measured or calculated value in relation to a 
reference standard. The result of AE compares the values 
obtained for validation to the real values obtained by field 
sampling. To determine a component of accuracy which 
allows a comparison between the studied grids, we proposed 
and developed an Accuracy Index (AI) eq. (4) 

 
𝐴𝐴𝐴𝐴 = 1 − |𝐴𝐴𝐴𝐴|

|𝑚𝑚𝐴𝐴𝐴𝐴|
     (4) 

 
in which AE is the Absolute Error (Eq. 2) value, in 

module, of the grid that will be compared. mAE is the largest 
value of Absolute Error, in module, among all of the analyzed 
grids. Values of the index AI range from 0 to 1 and the closer 
to 1, the more exact the sampling grid will be, and vice-versa.  

The standard deviation value of the absolute error (SDAE), 
as defined in Eq. 3, reflects in the precision of the grid. By 
definition, precision is used to express the dispersion results. 
To compare the precision component of the grid among the 
different sampled grids, we propose and developed a 
precision index (PI) eq. (5). 

 
𝑃𝑃𝐴𝐴 = 1 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴

𝑚𝑚𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴
      (5) 

 
in which SDAE is the standard deviation’s absolute error 

value of the grid that will be compared. mSDAE is the largest 
value of Absolute Error Standard Deviation presented by the 
group of analyzed grid. The value of PI ranges from 0 to 1 
and the closer to 1, the more precise the sample grid will be, 
and vise-versa. 

To choose the best sampling grid, i.e., optimum, among 
the studied grid patterns, we proposed and developed the 
Optimum Grid Indicator (OGI), which takes into account the 
balance between the rate of accuracy and precision eq. (6). 

 
𝑂𝑂𝑂𝑂𝐴𝐴 = (0,5 𝑥𝑥𝐴𝐴𝐴𝐴) + (0,5 𝑥𝑥𝑃𝑃𝐴𝐴)    (6) 

 
The Optimum Grid Indicator (OGI) ranges from zero to 

one and the closer to one (or 100%) the better the grid will 
be, that is, more exact and more precise. 

 
3.2.  Sampling grids 

 
Twenty soil sampling grids of the four soil properties 

were used to test the application of AI, PI and OGI. From grid 
one (Fig.3 and Fig. 5(1)), we developed the other 19 grids 
(Table 1 and Fig. 5). The grids were divided into four groups 
which were based on the base grid.  

In Group 1, the base grid presented 64 georeferenced 
sampling points, an average of 2.9 points/ha (Grid5) (Fig. 
5(5)). In Group 2, the base grid presented 46 points, an 
average of 2.09 points/ha (Grid 10) (Fig. 5(10)). The base 
grid of Group 3 presented 23 points, an average 1.04 
points/ha (Grid 15) (Fig. 5(15)). The base grid of Group 4 
presented 12 georeferenced sampling points, an average 0.54 
points/ha (Grid 20) (Fig. 5(20)). 

The initial grid of each group consisted of the base grid 
and four nested grids. The second grid of each group 
consisted of the initial grid of each group minus the nested 
grid located in the southeastern portion of the area. The third 
grid is characterized by the second grid of the group minus 
the nested grid located on the northwest portion of the area. 
In order to form the fourth grid of each group, we used the 
third grid minus the nested grid located at the northeast 
portion of the area. The fifth grid of each group is 
characterized only by the base grid (Fig. 5 (5, 10, 15 and 20)). 
The nestled grid was completed removed from grids 12, 13, 
14, 15, 17, 18 and 19 (Fig. 5 and Table 1), which means that 
we removed all of the sampling points, including the main 
grid point. For the other grids that presented nested grid, we 
have kept the main grid sampling point and removed the 
other 9 sampling points of the nested grid.  

 
3.3.  Test of the indexes and indicator to soil properties 

 
The measured soil properties at each soil-sampling grid 

were evaluated for spatial dependence and these results are 
shown for P in Table 2, for Prem in Table 3, for K in Table 4 
and for T in Table 5. 

The semivariogram parameters correspond to a spherical 
model and all yielded results except for grid 20 for the T 
(Table 5).The nugget (C0) is an important parameter of the 
semivariogram and indicates unexplained variability, 
considering the sampling distance. For P, C0 ranged from 0, 
in grids 4, 9, 10, 12, 13, 14, 15, 17, 18 and 19, to 224.51,  in 
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Table 1.  
Tested sampling grids divided into groups in which are presented the base 
sampling grid points, the amount of nested grid, the sampling points of the 
nested grid and total points of each sampling grid. 

Grou
p Grid 

Base grids 
sampling 

points 

Amount of 
nested grid 

Sampling 
points of the 
nested grid 

Total 
Points 

1 

1 64 4 36 100 
2 64 3 27 91 
3 64 2 18 82 
4 64 1 9 73 
5 64 0 0 64 

2 

6 46 4 36 82 
7 46 3 27 73 
8 46 2 18 64 
9 46 1 9 55 
10 46 0 0 46 

3 

11 23 4 39 62 
12 23 3 30 53 
13 23 2 20 43 
14 23 1 10 33 
15 23 0 0 23 

4 

16 12 4 40 52 
17 12 3 30 42 
18 12 2 20 32 
19 12 1 10 22 
20 12 0 0 12 

      
Source: The authors 

 

 
Figure 4. Tested sampling grids 
Source: The authors 
 

 
 

Table 2.  
Estimated semivariogram parameters adjusted by Ordinary Least Squares and by the spherical model for Phosphorus (P) 
Grid NPSG Max. Dist. C0 C1 C0 + C1 a SDI AE SD(AE) AI PI OGI 
1 100 220 81.32 59.68 141.00 87.02 57.67 Mod 0.0096 14.17 0.9819 0.5688 77.54 
2 91 220 5.16 103.25 108.41 105.25 4.76 Str -0.1156 13.11 0.7822 0.6010 69.16 
3 82 220 17.14 113.95 131.08 109.09 13.07 Str -0.1691 13.71 0.6814 0.5828 63.21 
4 73 220 0.00 144.36 144.36 104.22 0.00 Str -0.1524 13.95 0.7129 0.5754 64.42 
5 64 220 45.77 132.80 178.57 56.74 25.63 Mod 0.0000 15.15 0.9999 0.5389 76.94 
6 82 220 81.90 60.65 142.56 98.54 57.45 Mod 0.0834 15.07 0.8428 0.5414 69.21 
7 73 220 8.13 103.96 112.09 148.52 7.25 Str 0.1806 13.47 0.6598 0.5902 62.50 
8 64 220 15.27 131.22 146.49 159.95 10.42 Str 0.1723 14.26 0.6754 0.5659 62.06 
9 55 220 0.00 160.29 160.29 153.76 0.00 Str 0.3225 14.66 0.3924 0.5538 47.31 
10 46 220 0.00 204.43 204.43 112.41 0.00 Str 0.3158 15.52 0.4050 0.5276 46.63 
11 62 210 78.65 96.35 175.00 64.40 44.94 Mod 0.1979 17.78 0.6272 0.4590 54.31 
12 52 220 0.00 125.77 125.77 155.32 0.00 Str 0.2353 14.92 0.5567 0.5460 55.14 
13 42 220 0.00 195.85 195.85 177.64 0.00 Str 0.3971 15.78 0.2519 0.5199 38.59 
14 32 220 0.00 247.82 247.82 185.07 0.00 Str 0.4561 16.10 0.1407 0.5101 32.54 
15 23 245 0.00 352.84 352.84 149.41 0.00 Str 0.5308 20.47 0.0000 0.3770 18.85 
16 52 220 45.05 158.08 203.13 63.71 22.18 Str 0.3085 18.47 0.4188 0.4379 42.83 
17 42 220 0.00 104.00 104.00 143.08 0.00 Str 0.5210 18.14 0.0185 0.4478 23.31 
18 32 220 0.00 176.22 176.22 162.85 0.00 Str 0.4102 20.39 0.2272 0.3794 30.33 
19 22 220 0.00 229.88 229.88 181.54 0.00 Str 0.2836 22.38 0.4657 0.3190 39.24 
20 12 220 224.51 365.55 590.06 116.61 38.05 Mod 0.0004 32.86 0.9992 0.0000 49.96 

NPSG – Number of points of sampling grid; Max. Dist. – Maximum Distance used to the semivariogram adjustment; C0 – Nugget Effect; C1 - Spatially 
dependent component; C0+C1 – Sill; a –range or distance parameter; SDI – Spatial Dependence Index; AE – Absolute Error; SDAE– Standard Deviation of 
the absolute error; AI – Accuracy Index; PI – Precision Index; OGI – Optimum Grid Indicator; Str – Strong; Mod – Moderate. 
Source: The authors 

 
 
 

grid 20 (Table 2). For Prem, the nugget effect varied from 0, 
in grid 4, 9, 10, 17, 19 and 20, to 2.45, in grid 5 (Table 3). 
The K had C0 ranging from 134.65 (grid 5) to 891.21 (grid 
20) (Table 4). For the T, C0 ranged from 0 (grid 5, 10, 14, 18, 
19) to 0.56 (grid 16) (Table 5). 

It is not possible to quantify the individual contribution of 
these errors, so that the C0 may be expressed as a percentage 
of the sill (C0+C1), allowing the comparison of the spatial 
dependence index (SDI) of the properties under study [31]. 
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Table 3.  
Estimated semivariogram parameters adjusted by Ordinary Least Squares and by the spherical model for Remaining Phosphorus (Prem) 

Grid NPSG Max. Dist. C0 C1 C0 + C1 a SDI AE SD(AE) AI PI OGI 
1 100 283 0,48 5,96 6,45 106,41 7,52 Str -0,0167 2,03 0,9609 0,2886 62,47 
2 91 283 0,51 6,46 6,97 114,38 7,34 Str -0,0230 2,05 0,9461 0,2817 61,39 
3 82 283 1,70 6,40 8,10 195,54 20,99 Str -0,0150 2,05 0,9649 0,2830 62,40 
4 73 283 0,00 8,01 8,01 126,47 0,00 Str 0,0100 2,03 0,9766 0,2872 63,19 
5 64 283 2,45 7,11 9,55 224,26 25,60 Mod -0,0284 2,17 0,9336 0,2379 58,57 
6 82 243 0,85 5,55 6,41 106,82 13,33 Str -0,0235 1,99 0,9450 0,3030 62,40 
7 73 243 1,25 5,59 6,84 119,90 18,23 Str -0,0327 2,02 0,9234 0,2907 60,71 
8 64 243 1,27 6,62 7,90 176,32 16,12 Str 0,0145 2,06 0,9661 0,2769 62,15 
9 55 243 0,00 7,96 7,96 158,35 0,00 Str 0,0050 2,10 0,9882 0,2644 62,63 
10 46 243 0,00 10,05 10,05 204,67 0,00 Str -0,4271 2,06 0,0000 0,2795 13,97 
11 62 223 0,19 4,62 4,81 119,09 3,97 Str 0,0218 2,13 0,9491 0,2527 60,09 
12 52 223 0,22 5,02 5,24 136,92 4,15 Str -0,0047 2,27 0,9890 0,2040 59,65 
13 42 230 0,66 5,60 6,26 182,94 10,59 Str 0,0015 2,37 0,9966 0,1694 58,30 
14 32 223 0,52 6,22 6,74 188,58 7,64 Str 0,0046 2,55 0,9891 0,1073 54,82 
15 23 232 1,77 5,55 7,32 148,64 24,14 Str -0,0389 2,85 0,9089 0,0000 45,44 
16 52 223 0,07 4,70 4,77 105,47 1,54 Str 0,0937 1,92 0,7806 0,3278 55,42 
17 42 223 0,00 5,41 5,41 111,53 0,00 Str 0,0881 2,05 0,7938 0,2819 53,79 
18 32 223 0,45 5,31 5,76 137,95 7,80 Str 0,0733 2,02 0,8285 0,2908 55,96 
19 22 229 0,00 6,91 6,91 161,95 0,00 Str 0,1632 2,02 0,6179 0,2929 45,54 
20 12 223 0,00 5,56 5,56 163,89 0,00 Str -0,0227 2,50 0,9469 0,1240 53,54 

NPSG – Number of points of sampling grid; Max. Dist. – Maximum Distance used to the semivariogram adjustment; C0 – Nugget Effect; C1 - Spatially 
dependent component; C0+C1 – Sill; a – range or distance parameter; SDI – Spatial Dependence Index; AE – Absolute Error; SDAE – Standard Deviation of 
the absolute error; AI – Accuracy Index; PI – Precision Index; OGI – Optimum Grid Indicator; Str – Strong; Mod – Moderate
Source: The authors 

 
Table 4.  
Estimated semivariogram parameters adjusted by Ordinary Least Squares and by the spherical model for Potassium (K) 

Grid NPSG Max. Dist. C0 C1 C0 + C1 a SDI AE SD(AE) AI PI OGI 
1 100 285 499.39 606.97 1106.37 113.93 45.14 Mod -0.1296 30.48 0.8225 0.3487 58.56 
2 91 285 580.20 542.99 1123.19 76.41 51.66 Mod -0.3296 30.87 0.5487 0.3404 44.45 
3 82 285 816.17 306.79 1122.96 99.71 72.68 Mod -0.1886 31.80 0.7417 0.3206 53.12 
4 73 285 735.81 368.03 1103.84 244.12 66.66 Mod 0.0836 31.51 0.8856 0.3269 60.62 
5 64 305 135.65 931.15 1066.80 80.67 12.72 Str -0.0016 32.06 0.9979 0.3151 65.65 
6 82 243 649.13 564.79 1213.93 110.31 46.53 Mod -0.4380 31.33 0.4002 0.3307 36.55 
7 73 243 636.32 586.16 1222.47 109.13 52.05 Mod -0.4570 31.32 0.3742 0.3309 35.26 
8 64 243 897.43 401.16 1298.59 110.38 69.11 Mod -0.3059 32.60 0.5811 0.3036 44.24 
9 55 285 686.80 492.36 1179.16 226.62 58.24 Mod -0.0935 32.31 0.8720 0.3098 59.09 
10 46 300 261.21 1036.15 1297.37 222.32 20.13 Str -0.2706 31.88 0.6295 0.3190 47.42 
11 62 285 382.16 861.43 1243.60 116.65 30.73 Mod -0.4725 30.88 0.3530 0.3402 34.66 
12 52 223 665.01 693.04 1358.05 103.53 48.97 Mod -0.7036 32.13 0.0366 0.3135 17.50 
13 42 223 769.21 883.03 1652.24 145.40 46.56 Mod -0.7303 34.94 0.0000 0.2534 12.67 
14 32 230 686.49 638.19 1324.67 148.68 51.82 Mod 0.0198 35.90 0.9729 0.2329 60.29 
15 23 245 621.40 916.14 1537.54 158.03 40.42 Mod -0.3649 38.39 0.5003 0.1798 34.01 
16 52 223 532.64 832.91 1365.56 106.68 39.01 Mod 0.1015 30.56 0.8610 0.3470 60.40 
17 42 223 598.88 841.56 1440.44 113.04 41.58 Mod -0.3077 33.17 0.5787 0.2913 43.50 
18 32 230 551.87 866.43 1418.30 145.67 38.91 Mod -0.3881 36.14 0.4686 0.2280 34.83 
19 22 223 484.95 1269.20 1754.14 182.66 27.65 Mod 0.5540 36.61 0.2414 0.2178 22.96 
20 12 230 891.21 888.08 1779.29 43.67 50.09 Mod 0.0000 46.81 1.0000 0.0000 50.00 

NPSG – Number of points of sampling grid; Max. Dist. – Maximum Distance used to the semivariogram adjustment; C0 – Nugget Effect; C1 - Spatially 
dependent component; C0+C1 – Sill; a –range or distance parameter; SDI – Spatial Dependence Index; AE – Absolute Error; SDAE– Standard Deviation of 
the absolute error; AI – Accuracy Index; PI – Precision Index; OGI – Optimum Grid Indicator; Str – Strong; Mod – Moderate. 
Source: The authors 

 
 
 
Using the SDI classification presented by [5], P may be 

classified as having a strong degree of spatial dependence to 
grid 15 and moderate degree for other five grids. The SDI 
was strong in Premfor19 grids and only one presented 
moderate SDI. For K, only two grids presented strong SDI, 
while 18 grids presented moderate SDI. The attribute T 
presented strong SDI in 17 grids, one grid presenting 
moderate SDI, and one grid, presenting weak SDI. 

The range (a) of a semivariogram is important in 
determining the spatial dependency, which can also be 

indicative of the interval between soil mapping units [31]. 
Using the SDI classification presented by [5], P may be 
classified as having a strong degree of spatial dependence to 
grid 15 and moderate degree for other five grids. The SDI 
was strong in Premfor19 grids and only one presented 
moderate SDI. For K, only two grids presented strong SDI, 
while 18 grids presented moderate SDI. The attribute T 
presented strong SDI in 17 grids, one grid presenting 
moderate SDI, and one grid, presenting weak SDI. 
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Table 5.  
Estimated semivariogram parameters adjusted by Ordinary Least Squares and by the spherical model for CEC at pH 7.0 (T) 

Grid NPSG Max. Dist. C0 C1 C0 + C1 a SDI AE SD(AE) AI PI OGI 
1 100 290 0,12 2,03 2,15 100,94 5,58 Str 0,0053 1,25 0,9799 0,1784 57,91 
2 91 285 0,51 1,61 2,13 71,31 24,12 Str -0,0092 1,25 0,9651 0,1752 57,02 
3 82 285 0,46 1,85 2,31 65,90 19,81 Str -0,0104 1,29 0,9606 0,1503 55,55 
4 73 285 0,35 1,93 2,28 98,77 15,31 Str -0,2637 1,25 0,0000 0,1778 8,89 
5 64 285 0,00 2,09 2,09 85,18 0,00 Str -0,0033 1,33 0,9875 0,1265 55,70 
6 82 243 0,29 2,14 2,42 45,30 88,21 Weak 0,1174 1,26 0,5548 0,1724 36,36 
7 73 243 0,21 2,15 2,36 44,15 8,86 Str -0,0053 1,28 0,9798 0,1575 56,87 
8 64 243 0,04 2,56 2,61 40,52 1,70 Str -0,0135 1,31 0,9488 0,1384 54,36 
9 55 243 0,33 2,01 2,34 102,95 14,24 Str -0,0225 1,21 0,9146 0,2046 55,96 
10 46 200 0,00 2,36 2,36 90,33 0,00 Str 0,0008 1,31 0,9968 0,1362 56,65 
11 62 223 0,14 2,60 2,75 142,63 5,17 Str 0,0214 1,27 0,9187 0,1623 54,05 
12 52 223 0,15 2,32 2,48 138,22 6,25 Str -0,0015 1,31 0,9943 0,1380 56,62 
13 42 223 0,04 2,75 2,79 114,20 1,59 Str -0,0081 1,39 0,9691 0,0834 52,63 
14 32 223 0,00 2,41 2,41 88,79 0,00 Str -0,0620 1,33 0,7649 0,1263 44,56 
15 23 223 0,48 2,03 2,52 92,65 19,23 Str 0,0001 1,52 0,9997 0,0000 49,99 
16 52 200 0,56 1,67 2,23 169,69 25,06 Mod -0,0166 1,09 0,9371 0,2798 60,85 
17 42 223 0,15 2,22 2,37 159,29 6,31 Str -0,0459 1,11 0,8260 0,2676 54,68 
18 32 223 0,00 2,64 2,64 103,09 0,00 Str -0,0506 1,23 0,8082 0,1929 50,05 
19 22 223 0,00 2,41 2,41 85,80 0,00 Str -0,1154 1,15 0,5624 0,2395 40,09 
20 12             

NPSG – Number of points of sampling grid; Max. Dist. – Maximum Distance used to the semivariogram adjustment; C0 – Nugget Effect; C1 - Spatially 
dependent component; C0+C1 – Sill; a – range or distance parameter; SDI – Spatial Dependence Index; AE – Absolute Error; SDAE – Standard Deviation of 
the absolute error; AI – Accuracy Index; PI – Precision Index; OGI – Optimum Grid Indicator; Str – Strong; Mod – Moderate. 
Source: The authors 

 
 
The range (a) of a semivariogram is important in 

determining the spatial dependency, which can also be 
indicative of the interval between soil mapping units [31]. 
The studied soil properties presented different ranges of 
spatial dependence. For example, the a for P varied from 
56.74 m in grid 5 to 185.07 m in grid 14. For the Prem a 
ranged from 105.47 m (grid 16) to 224.26 m (grid 5), for K, 
from 43.67 m (grid 20) to 244.12m (grid 4) and for T, from 
40.52 m (grid 6) to 169.69 m (grid 16). 

According to [28] the 2002/2003 and 2003/2004 
harvesting seasons of a coffee plantation was studied in a 6.7 
ha field with a sampling grid of 68 points. Their 
semivariogram analysis indicated C0 = 0.09 m and a = 86 m 
for P in the first season, and C0 =0.52 and a = 210 m, in the 
second season. The values for K for the first harvest were C0 
= 579 m and a =142 m, and for the second harvest, C0 = 973 
m and a =188 m. According to [11], during a three year 
(2007, 2008 and 2009) study on a coffee plantation and a soil 
sampling rate of 1 point/ha, a C0 = 0 m for P was found in all 
three years with a = 133 m in 2007, 90 m in 2008 and 157 m 
in 2009. The C0 and a values for K were C0 = 0 m in 2007 
and 2008, and C0 = 0.0018 m in 2009. The values for a were 
165 m in 2007, 438 m (2008), and 84 m (2009). 

In this work we may observe that the nugget effect and 
the range, as well as the chosen grid, depended on the studied 
soil properties. Thus, in order to evaluate the 20 studied grids, 
we used the validation criteria: absolute error (AE) and 
Standard Deviation of Absolute Error (SDAE). For 
comparative purposes, we developed and proposed the 
Accuracy Index (AI), Precision Index (PI) and, finally, an 
index which correlates both: the Optimum Grid Indicator 
(OGI), thus leading us to choose the best grid. 

We used the AI and PI and the indicator OGI by adjusting 
the semivariogram for each of the sampling grids for P, and 
by using the validation values. Therefore, we found that the 

most accurate grid (largest value of AI) was grid 5, followed 
by grids 20, 1 and 6, with the most inaccurate being grids 15, 
17, 14 and 18. The most precise grid (largest value of PI) was 
grid 2 followed by grids 7, 3 and 12, with the most imprecise 
being grid 20 followed by grids 19, 15 and 18. However, we 
desired to find a sampling grid that was both accurate and 
precise, which would be best suited to evaluate the spatial 
dependence of P. Therefore, we used the Optimum Grid 
Indicator (OGI), which pointed us to grid 1, with 100 
sampling points, as the most accurate and precise (OGI equal 
to 0.7754). This was followed by grid 5, with 64 sampling 
points, which OGI value was 0.7694, very close to the OGI 
value of grid 1. Other grids with higher OGI value were grids 
6, 2 and 4. 

For Prem, the most accurate sampling grid was grid 13, 
followed by grids 12, 14 and 9, while the more inaccurate 
grids (low value of AI) were respectively 19, 16, 17 and 18. 
The most precise sampling grid (larger value of PI) was grid 
16, with grids 6, 19 and 8 also presenting high PI values. 
Grids 15, 14, 20 and 13 were highlighted as imprecise. Given 
the OGI values in Table 3, we note that grid 4 (with 64 base 
grid points and 9 nested grid points) presented the largest 
value, which means that this grid was more accurate and 
more precise, ensuring a good mapping operation. This grid 
was followed by grids 9, 1, 6 and 3. 

Studying the soil property K, we observed that the most 
accurate sampling grid (larger AI value) was grid 20, 
followed by grids 5, 14 and 4. The most inaccurate grids were 
13, 19, 15 and 2. The most precise sampling grid (highest PI) 
was grid 1, followed by grids 16, 2 and 11, while the most 
imprecise grids were 20, 15, 19 and 18. The OGI (Table 4) 
pointed to grid 5 as the best to represent the K content in the 
soil (larger OGI value). This grid was followed by grids 4, 
16, 14 and 9. We also observed that grid 20 showed the best 
AI value, but at the same time, it showed the smallest PI 
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value, which reflected directly in OGI performance, making 
it so that this grid did not figure among the good grids. 
Similar behavior may be observed for the P. 

Testing the 20 grids for CEC at pH 7.0 (T) the sampling 
grid with the most accuracy (higher AI value) was grid 15, 
followed by grids 10, 12 and 5. The grid that presented the 
highest PI value was grid 16, highlighted as the most precise 
grid. This grid was followed by grids 17, 19 and 9. The grids 
that presented the lowest AI values were grids 4, 6 and 18, 
and the most imprecise were grids15, 13, 10 and 12. The OGI 
pointed to grid 16, with 52 sampling points (12 points of base 
grid and 40 points of nested grid), as the most accurate and 
precise. So it was chosen as the best grid to represent the T. 
This sampling grid was followed by grids 1, 2, 7 and 10. 

As stated, the indexes allowed the observation of the 
accuracy and precision of the sampling grids, and OGI 
identified the grid that best represents the spatial variability 
of the soil properties. We observed that each soil property 
presented a sampling grid that better represented its spatial 
dependence. However, when performing soil sampling, we 
expect to analyze not a chemical attribute of the soil 
separately, but a set of these, optimizing and reducing the 
cost of the sampling operation and of the laboratory analyses. 
Thus, in order to choose the best sampling grid it is necessary 
to look for that which best represented the four soil properties 
studied. We calculated the average OGI, which is nothing 
more than the average OGI presented by the four soil 
properties for each grid (Table 6). Allowing the ranking of 
the grids by its average OGI. 

Grids 1, 2, 3, 5, 8, 9 and 16 presented the highest values of 
OGI. Grid 5 may be highlighted as the best sampling grid. In 
practice, this grid becomes interesting because it presents 64 
points (an average of 2.9 points/ha) and also for containing no 
nested grid, which facilitates the sampling process and reduces 
operational costs. Thus, for the grid with many points in the 
base grid, the nested grid may not have made a difference. 
However, the nested grid affected the grids that had few points 
in the base grid. This may be observed by grid 8 (2 nested grid), 
grid 9 (one nested grid) and grid 16 (4 nested grid), which were 

 
Table 6.  
Sampling grid ranking according to average OGI. 

Rank Grid Number of Points Average OGI (%) 
1 5 64 64.22 
2 1 100 64.12 
3 3 82 58.57 
4 2 91 58.01 
5 9 55 56.25 
6 8 64 55.70 
7 16 52 54.87 
8 7 73 53.83 
9 6 82 51.13 
10 11 62 50.78 
11 4 73 49.28 
12 14 32 48.05 
13 12 52 47.23 
14 17 42 43.82 
15 18 32 42.79 
16 10 46 41.17 
17 13 42 40.55 
18 15 23 37.07 
19 19 22 36.96 
20 20 12 - 

Source: The authors 

higher than their group base grid (grid 10 and grid 20, 
respectively). It is important to note that these grids were 
among the top sampling grids. Although grid 1 (4 nested 
grid), grid 2 (3 nested grid) and grid 3 (2 nested grids) were 
not superior to its base grid, they were superior when 
compared to the other grids. 

As stated, grid 5, with approximately 3 sampling points/ha, 
were pointed to as most indicated to be used for sampling the 
soil of the studied field. The grid with 2 points/ha, 1 point/ha or 
0.5 point/ha were ranked as 16th, 18th e 20th, respectively, and 
were not recommended for use. It is noteworthy that grid 20, 
which has 12 sampling points (0.5 points/ha), did not adjust to 
the CEC at pH 7.0, thus we avoided its use. We recommend the 
use of nested grids to improve sampling results when it is 
necessary to use sampling grids with as few sampling points as 
possible. If there is a need to use base grid with a few sampling 
points, it is recommended to use nested grids to improve 
sampling results. 

Thus, we conclude that errors will occur when using a 0.5, 
1 and 2 points/ha sampling grid. If we were to choose a 0.5 
pt/ha sampling grid, mistakes would be even greater. 

Studies performed by [19] emphasize the need to use a 
larger number of sampling points per hectare. They tested 
different sampling grids for a corn crop and their results 
showed the importance of carefully choosing sampling grid. 

 
5.  Conclusions 

 
We characterized the magnitude of the spatial variability 

of the four soil chemical properties in all soil sampling grids 
except for CEC at pH 7 in grid 20. We also observed that the 
soil variables had spatial dependence structure, allowing us 
to obtain the validation parameters. 

We proposed, developed and tested the Accuracy Index 
(AI) and Precision Index (PI) allowing us to rank the quality 
of the sampling grids and we used the Optimum Grid 
Indicator (OGI) to select the best sampling grid for each of 
the four soil properties. 

The methodology proposed by this work allowed us to 
find a sampling grid that best represented the studied soil 
variables (grid 5, which presented approximately 3 points per 
hectare in a square grid). Also, we verified the difference 
between sampling grids, and soil variables. 

The results showed that the choice of a sampling grid is 
critical to good performance in the application of precision 
agriculture techniques to the coffee crop. 
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