
© The author; licensee Universidad Nacional de Colombia.
DYNA 84 (200), pp. 326-334, Marzo, 2017. Medellín. ISSN 0012-7353 Printed, ISSN 2346-2183 Online

DOI: http://dx.doi.org/10.15446/dyna.v84n200.54017

UAREI: A model for formal description and visual representation
/software gamification1

Darius Ašeriškis, Tomas Blažauskas & Robertas Damaševičius
Software Engineering Department, Kaunas University of Technology, Kaunas, Lithuania. darius.aseriskis@ktu.lt, tomas.blazauskas@ktu.lt,

robertas.damasevicius@ktu.lt

Received: November7th, 2015. Received in revised form: October 12th, 2016. Accepted: December 17th , 2016.

Abstract
The paper presents the UAREI (User-Action-Rule-Entities-Interface) model for formal specification of software gamification, and the
UAREI visual modelling language for graphical representation of game mechanics. A case of study in gamification of the Trogon project
management system is presented. The proposed model and visual language is compared against the Machinations gamification framework
using visual complexity metrics, game simulation and qualitative comparison.

Keywords: gamification; modelling; abstraction; formal model.

UAREI: Un modelo para la descripción formal y la representación
visual de la gamificación de software

Resumen
El artículo presenta el modelo UAREI (Usuario-Acción-Regla-Entidades-Interface) para la especificación formal de gamificacion software
y el UAREI visual lenguaje de modelado para la representación gráfica de la mecánica del juego. Un estudio de caso en gamificacion del
sistema de gestión de proyectos Trogon se presenta. El modelo y visual lenguaje propuesto se compara con las maquinaciones marco
gamificacion utilizando métricas de complejidad visuales, juego de simulación y comparación cualitativa.

Palabras clave: gamificacion; modelado; abstracción; modelo formal.

1. Introduction

Gamification have been defined as a process which
shapes the world (achieves goals/objectives) by influencing
the actions, behaviours, characteristics and state of entities
within the world through the use of games strategies and
enabling technologies [1]. The concept is relatively new, but
it has gained considerable interest in the software
development and user interface design community over the
last few years. The roots of gamification are in game design,
with some elements from psychology, so there are still little
academic research how to design and develop software
systems with and for gamification.

According to Gartner Inc. [2], the widespread interest that
gamification has been attracting recently lies in its potential

How to cite: Ašeriškis, D., Blažauskas, T. and Damaševičius, R., UAREI: A model for formal description and visual representation /software gamification, DYNA 84(200), pp.
326-334, 2017.

to strengthen engagement, change user behaviours and
support innovation. Game theory based models are being
widely adopted now in different contexts and used as a driver
for solving problems in a wide variety of domains, including
disaster management [3], education [4,5], e-learning [6],
workplace improvement [7], marketing [8], healthcare
management [1,9], IT service management [10], social policy
[11], sports and fitness [12], tourism business [13], customer
engagement, social missions, fostering creativity, employee
and management training, etc.

The underlying concept of gamification is motivation.
Gamification is driven primarily by the external motivation,
i.e., the users strive to compete against other playing users
and to get recognized by the game community [12]. As
motivation tends to decay over time, it however must be

Ašeriškis et al / DYNA 84 (200), pp. 326-334, Marzo, 2017.

327

supported by the increasing complexity and evolving
dynamics of game mechanics [14]. Meaningful gamification
(otherwise known as “serious game”) is the use of game
design elements to help users find meaning in a non-game
context. Rather than just using game mechanics to give points
or badges to users as external rewards, meaningful
gamification focuses on the playing process (aka game
mechanics) itself in order to engage the players to do
meaningful tasks in a real world.

The modelling of gamification is important for design of
systems based on the principles of serious game in order to
quantify and validate the impact of gamification and to get a
better understanding why and how gamification works.
Existing evaluations of gamification usually focus on using
user questionnaires and other methods of qualitative
evaluation. There is still lack of high-level formal or abstract
modelling methods and tools to aid the design and
development of gamification in serious systems.

This paper aims to introduce tools which would allow to
build a bridge between formal modelling of gamification and
quantitative simulation of games, analysis and evaluation of
game rules and processes.

The structure of the remaining parts of the paper is as
follows. The overview of gamification models and gamification
modelling languages is presented in Section 2. Similar formal
approaches to game design are considered in Section 3. Formal
description of the proposed UAREI (User-Action-Rule-Entities-
Interface) model is given in Section 4. The visual notation used
for modelling is described in Section 5. A case of study is
presented in Section 6. The evaluation is given in Section 7.
Finally, the conclusions are presented in Section 8.

2. Gamification models and modelling languages

In game research there is a strong separation between

design methodologies and usability evaluation tools, which
are rarely employed in the early stages of the design process.
Although the game developers use many often heuristically
designed tools to assist the design, there is still very little
existing methods employed to connect design practices with
gamification and game design [32]. Currently game and
gamification development is strongly related to the
qualifications and skills of game designers. This limitation
drives the need to better and faster game building. Recently
several new tools were developed or adapted to help game
designers to model, build and analyses games.

Unified Modelling Language (UML) is a de-facto
standard modelling language used in multiple domains.
Tenzer [15] argues that UML modelling tools could be also
used to build games and proposes a framework for building
games using UML. The advantage of UML is that it is well
known in the software engineering community. SysML is a
general-purpose modeling language for systems engineering
applications. That supports specification, analysis, design
and verification of a broad range of systems. SysML has been
used for building a training game [16].

The most notable examples of domain-specific game
description languages are GaML [17,18] and ATTAC-L [19].
GaML is a formalized language for specifying and
automatically generating gamification solutions. This allows

to free the IT expert from the generation of gamification
solutions. ATTAC-L is a domain specific language which
allows the user to specify the game scenario in XML and to
build a game using a code generator.

Another approach to gamification modelling is based on
using formal (or mathematical) models [20]. Kim and Lee
[21] model the effectiveness of gamification effectiveness
using a mathematical model based on a sigmoidal equation.
They argue what gamification effectiveness can be
represented using curiosity, challenge, fantasy and control
factors. Bista et al. [22] have proposed the first formal
gamification model. Chan et al. [23] offer a similar approach
for social game modelling, which also allows for verification
of the built model. Oliveira et al. [24] model games using
Petri nets. The disadvantage of this approach is the lack of
domain specificity which is preventing its adoption by game
designers.

The third category of gamification modelling approaches is
visual languages for fast prototyping in gamification domain.
Most known examples are Sketch-It-Up [25], Ludocore [26],
and Machinations [27]. Sketch-It-Up is a tool for creating
sketches of possible games. Ludocore is a logical “game
engine”, which employs formal logic used by automated
reasoning tools in AI domain to enable automated design and
prototyping of game systems and providing fast feedback to the
designer. Machinations is a conceptual framework and diagram
tool that focusses on structural qualities of game mechanics.
Machinations graphical diagrams are an abstraction of Petri nets
for modelling and simulating games and game-like systems on
a varying level of abstraction. Recently, Micro-Machinations
[28] were proposed for reusing Machinations models in software
development.

3. Formal models of game design and gamification

Games are a kind of systems and the design of games is

the creation of models for games [33]. In computer science,
games can be considered as a kind of information systems
consisting modelled using of objects (or entities, concepts),
attributes (properties), their relationships and the
environment (or context) [37]. A similar approach has been
adopted by ontology engineering [34] for building
ontologies, i.e., formal representations of concepts within a
domain and the relationships between those concepts.

Formally, games can be modelled as abstract control systems
[35] consisting of a set of states and a definition of the evolution
of the state of game under different actions of a player. The game
can be represented by a set of states, for which transition
functions define when to move from one state to another.
Following this approach, gamification can be described as the
product of two games, where a gamified system is considered as
one game with its one rules and mechanics, and the gamification
layer is considered as another game.

Another game modelling framework presented in [36]
incorporates structural, temporal and boundary frameworks
(subsystems). The structural subsystem consists of Game
Elements, Game Time, Players, Interface and the Facilitator,
the arbitrating entity between the players and the game
system, which takes care of setting up the game, synchronises
the game state and maintains the game time. The temporal

Ašeriškis et al / DYNA 84 (200), pp. 326-334, Marzo, 2017.

328

subsystem represents the flow and causality of the game by
defining the actions that are provided and the actions that can
be taken at the particular states in the game. The boundary
subsystem defines the constraints in the game that limit the
activities performed in a game by establishing social
contracts between the players which have to be satisfied
while playing through a set of limitations.

In [38], another kind of formal model (Petri Nets and
Hypergraphs) are investigated and methods and tools for the
integration of formal modelling into the game design and
production process are proposed.

These efforts in formal game modelling are however
directed at game design rather than gamification of the existing
systems as considered in this paper. In the following Section,
the elements of the proposed UAREI model are presented.

4. Description of gamified systems as UAREI model

The gamified systems can be described as a tuple 𝐺𝐺 =

{ 𝑈𝑈,𝐴𝐴,𝑅𝑅,𝐸𝐸, 𝐼𝐼 }, here: U – users, which are interacting with the
system; A – actions, which trigger system behaviour; R –
rules, which encapsulate logic in the system; E – data entities;
and I – interfaces which define data format.

The users are defined as a tuple 𝑈𝑈 = { 𝐿𝐿𝑈𝑈, 𝑆𝑆𝑈𝑈 }, here: 𝐿𝐿𝑈𝑈 –
a set of all outgoing links to other elements in the model; and
𝑆𝑆𝑈𝑈 – a selection function which defines how a user is selected
from a collection in a simulation mode.

Actions are a collection 𝐴𝐴 = { 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑖𝑖 , … ,𝐴𝐴𝑛𝑛}, here 𝐴𝐴𝑖𝑖
is a single action, 𝑛𝑛 the total number of actions. A single
action is defined as 𝐴𝐴𝑖𝑖 = { 𝐿𝐿𝐴𝐴, 𝑆𝑆𝐴𝐴 }, here:𝐿𝐿𝐴𝐴 – a set of all
outgoing links to other elements in the model, and𝑆𝑆𝐴𝐴 – a
selection function, which defines the way an action related
data entity is selected from a collection.

Rules are a collection 𝑅𝑅 = { 𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑖𝑖 , … ,𝑅𝑅𝑛𝑛}, here 𝑅𝑅𝑖𝑖 is
a single rule, 𝑛𝑛 the total number of rules. A single rule is
defined as 𝑅𝑅𝑖𝑖 = {𝐿𝐿𝑅𝑅 , 𝑟𝑟𝑖𝑖(𝐶𝐶,𝑀𝑀)}, here: 𝐿𝐿𝑅𝑅 – a set of all outgoing
links to other elements in the model, and𝑟𝑟𝑖𝑖(𝐶𝐶,𝑀𝑀) is a rule
function defined as:

𝑟𝑟𝑖𝑖(𝐶𝐶,𝑀𝑀) = �𝑁𝑁𝑈𝑈𝐿𝐿𝐿𝐿 − 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐

𝑦𝑦 − 𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐 𝑏𝑏𝑦𝑦 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣

here: C – context of current execution path; M – a system

model; y is a computed result value, and NULL is returned if
rule doesn’t apply.

Rules are used to control context flow in the system. If a
rule execution evaluates to an empty result the current
execution path is continued. We can define the “else” path by
using inversion “!𝑅𝑅𝑖𝑖”. No data will be stored in storage and
no other rules will execute if the previous rule failed or
returned empty value, but system flow will continue giving
feedback to the user node. Rules can update the context in
anyway needed for the application.

Entity collection is a collection of all data entities in the
system 𝐸𝐸 = {𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑖𝑖 , … ,𝐸𝐸𝑛𝑛}, here 𝐸𝐸𝑖𝑖 is a single storage
entity and n is the total number of storage entities. A single
entity is defined as 𝐸𝐸𝑖𝑖 = {𝐷𝐷,𝑂𝑂, 𝐿𝐿𝐸𝐸}, here: 𝐷𝐷 – entity scheme
definition, 𝑂𝑂 – data objects, and 𝐿𝐿𝐸𝐸 – a set of all outgoing
links to other elements in the model.

Interface is a collection 𝐼𝐼 = {𝐼𝐼1, 𝐼𝐼2, … , 𝐼𝐼𝑖𝑖 , … , 𝐼𝐼𝑛𝑛}, here 𝐼𝐼𝑖𝑖 is a

Table 1.
Graphical notation of UAREI modelling language

Type Grapheme Description
User node Visualizes system user group. Normally

a single action is triggered from this
node.

Action
node

 Visualizes an action. Action triggers its
outgoing connections. Normally actions
are connected to rules and other actions

Rule node Visualizes a rule node. Rule encloses all
logic of a model. Rule triggers other
rules, entities and interfaces.

Entity node Visualizes a data entity. On triggering
the node stores the data received with
the current context.

Interface
node

 Visualizes user interfaces. Triggers user
nodes finishing the feedback loop.

Connection Visualizes relationships in the model.
The direction of arrow points from the
outgoing node to the incoming node.

User node Visualizes system user group. Normally
a single action is triggered from this
node.

Source: The authors

single interface and n is the total number of interfaces. A
single interface is defined as 𝐼𝐼𝑖𝑖 = {𝐿𝐿𝐼𝐼 ,𝑄𝑄}, here:𝐿𝐿𝐼𝐼 –a set of all
outgoing links to other elements in the model, Q – data query,
on which the data for the interface is selected.

5. Graphical notation of UAREI model

The UAREI model is visualized as a directed graph

consisting of nodes (vertices) and links (edges) between
nodes as follows: 𝐺𝐺 = {𝐿𝐿,𝑁𝑁}, here: N is a set all nodes 𝑁𝑁 =
{𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝑖𝑖 , … ,𝑁𝑁𝑚𝑚} = 𝑈𝑈 ∪ 𝐴𝐴 ∪ 𝑅𝑅 ∪ 𝐸𝐸 ∪ 𝐼𝐼; L is a set of links
between nodes 𝐿𝐿 = 𝐿𝐿𝑈𝑈 ∪ 𝐿𝐿𝐴𝐴 ∪ 𝐿𝐿𝑅𝑅 ∪ 𝐿𝐿𝐸𝐸 ∪ 𝐿𝐿𝐼𝐼, and
𝐿𝐿𝑈𝑈, 𝐿𝐿𝐴𝐴, 𝐿𝐿𝑅𝑅, 𝐿𝐿𝐸𝐸 , 𝐿𝐿𝐼𝐼 are collections of corresponding types of
nodes 𝐿𝐿𝑋𝑋 = {𝐿𝐿𝑋𝑋1 , 𝐿𝐿𝑋𝑋2 , … , 𝐿𝐿𝑋𝑋𝑖𝑖 , … , 𝐿𝐿𝑋𝑋𝑛𝑛𝑋𝑋}, 𝐿𝐿𝑖𝑖 is the list of links, 𝐿𝐿𝑖𝑖 =
(𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜;𝑁𝑁𝑖𝑖𝑛𝑛), here 𝑁𝑁𝑖𝑖𝑛𝑛,𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 ∈ 𝑁𝑁, 𝐿𝐿𝑁𝑁𝑖𝑖 – are links which start 𝑁𝑁𝑖𝑖
node.

In Table 1 we present the list of graphical symbols
(graphemes) used in the UAREI model diagrams.

6. A case of study in modelling gamification in Trogon PMS

For the illustration of gamification modelling, we have

selected the Trogon Project Management System (PMS)
already discussed in our previous work [29,30]. Here we
demonstrate how gamification rules can be described and
modelled using the proposed UAREI model as well as
depicted graphically using the proposed graphical notation.
The gamification solution for Trogon PMS is defined as
follows:

A software company employee receives random stream
of tasks is coming from the project manager. There are two
main types of tasks – normal tasks and tasks with badges.
There are nine distinct types badges rewarded based on the
tickets specificity. Everything translates to points, a certain
amount of points is awarded per task done. Based on the
number of badges of the same type a bonus is awarded. For

Ašeriškis et al / DYNA 84 (200), pp. 326-334, Marzo, 2017.

329

every task completed with a badge a user gets 20% bonus.
When five and more of the same type badges are collected
for those tasks the user is awarded with an additional 20%
bonus. There is a quality element to the tasks done, if the task
fails to pass Quality Assurance, a badge can be removed.

The Trogon PMS gamification is defined using the
UAREI model as follows:

𝐺𝐺𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁 = {

�𝑈𝑈𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒�,
{𝐴𝐴𝑓𝑓𝑖𝑖𝑛𝑛𝑖𝑖𝑓𝑓ℎ𝑜𝑜𝑡𝑡𝑓𝑓𝑡𝑡},
�𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓,𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒�,
�𝐸𝐸𝑜𝑜𝑓𝑓𝑒𝑒𝑟𝑟 ,𝐸𝐸𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒𝑓𝑓,𝐸𝐸𝑜𝑜𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓 ,𝐸𝐸𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓�,
{𝐼𝐼𝑒𝑒𝑒𝑒𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑜𝑜𝑡𝑡𝑟𝑟𝑟𝑟}
}

here:
𝑈𝑈𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒 = { �𝐿𝐿𝑓𝑓𝑖𝑖𝑛𝑛𝑖𝑖𝑓𝑓ℎ𝑜𝑜𝑡𝑡𝑓𝑓𝑡𝑡�, 𝑆𝑆𝑟𝑟𝑡𝑡𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚}
𝐴𝐴𝑓𝑓𝑖𝑖𝑛𝑛𝑖𝑖𝑓𝑓ℎ𝑜𝑜𝑡𝑡𝑓𝑓𝑡𝑡 = {�𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓, 𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒�, 𝑆𝑆𝑟𝑟𝑡𝑡𝑛𝑛𝑟𝑟𝑜𝑜𝑚𝑚}
𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓 = {�𝐿𝐿𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓�, 𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓(𝐶𝐶,𝑀𝑀) = 5}

𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒 = {�𝐿𝐿𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓�, 𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒(𝐶𝐶,𝑀𝑀)

=

⎩
⎪⎪
⎪
⎨

⎪
⎪⎪
⎧

� �𝐸𝐸𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓𝑖𝑖 ∙ 1.2� + 𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓(𝐶𝐶,𝑀𝑀) ∙ 1.4

𝐸𝐸𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝𝑠𝑠𝐵𝐵𝑖𝑖

𝑖𝑖

, 𝑖𝑖𝑖𝑖𝐸𝐸𝑜𝑜𝑡𝑡𝑓𝑓𝑡𝑡𝑖𝑖
𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒
�⎯⎯⎯� 𝐵𝐵𝑖𝑖𝑣𝑣𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑣𝑣𝑛𝑛𝑐𝑐(𝐸𝐸𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓𝐵𝐵𝑖𝑖) = 5

𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓(𝐶𝐶,𝑀𝑀) ∙ 1.4, 𝑖𝑖𝑖𝑖𝐸𝐸𝑜𝑜𝑡𝑡𝑓𝑓𝑡𝑡𝑖𝑖
𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒
�⎯⎯⎯� 𝐵𝐵𝑖𝑖𝑣𝑣𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑣𝑣𝑛𝑛𝑐𝑐(𝐸𝐸𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓𝐵𝐵𝑖𝑖) > 5

𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓(𝐶𝐶,𝑀𝑀) ∙ 1.2, 𝑖𝑖𝑖𝑖𝐸𝐸𝑜𝑜𝑡𝑡𝑓𝑓𝑡𝑡𝑖𝑖
𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒
�⎯⎯⎯� 𝐵𝐵𝑖𝑖𝑣𝑣𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑣𝑣𝑛𝑛𝑐𝑐(𝐸𝐸𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓𝐵𝐵𝑖𝑖) < 5

0, 𝑖𝑖𝑖𝑖𝐸𝐸𝑜𝑜𝑡𝑡𝑓𝑓𝑡𝑡𝑖𝑖
𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒
�⎯⎯⎯� ∅

𝐸𝐸𝑜𝑜𝑓𝑓𝑒𝑒𝑟𝑟 = {𝑆𝑆𝑜𝑜𝑓𝑓𝑒𝑒𝑟𝑟 , �𝐷𝐷𝐽𝐽𝑜𝑜ℎ𝑛𝑛�, {𝐿𝐿𝑈𝑈𝑓𝑓𝑒𝑒𝑟𝑟𝑓𝑓}}

𝐸𝐸𝐵𝐵𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒𝑓𝑓 = {𝑆𝑆𝐵𝐵𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒𝑓𝑓 , {𝐷𝐷1, … ,𝐷𝐷9}, {𝐿𝐿𝑇𝑇𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓}}
𝐸𝐸𝑇𝑇𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓 = {𝑆𝑆𝑇𝑇𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓 , �𝐷𝐷𝐵𝐵1 , … ,𝐷𝐷𝐵𝐵9 ,𝐷𝐷1, …𝐷𝐷4�, �𝐿𝐿𝑓𝑓𝑖𝑖𝑛𝑛𝑖𝑖𝑓𝑓ℎ𝑜𝑜𝑡𝑡𝑓𝑓𝑡𝑡�}

𝐸𝐸𝑃𝑃𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓 = {𝑆𝑆𝑃𝑃𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓 , {∅}, {𝐿𝐿𝑒𝑒𝑒𝑒𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑜𝑜𝑡𝑡𝑟𝑟𝑟𝑟}}
𝐼𝐼𝑒𝑒𝑒𝑒𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑜𝑜𝑡𝑡𝑟𝑟𝑟𝑟 = {{𝐿𝐿𝑜𝑜𝑓𝑓𝑒𝑒𝑟𝑟𝑓𝑓},𝑄𝑄𝑒𝑒𝑒𝑒𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑜𝑜𝑡𝑡𝑟𝑟𝑟𝑟}

Rrecievebadge = {�Lpoints�, rrecievebadge(C, M) =

⎩
⎪⎪
⎨

⎪⎪
⎧∑ �Epointsi ∙ 1.2� + rrecievepoints(C, M) ∙ 1.4

EpointsBi
i , ifEtaski

badge
�⎯⎯� Biandcount(EpointsBi) = 5

rrecievepoints(C, M) ∙ 1.4, ifEtaski
badge
�⎯⎯� Biandcount(EpointsBi) > 5

rrecievepoints(C, M) ∙ 1.2, ifEtaski
badge
�⎯⎯� Biandcount(EpointsBi) < 5

0, ifEtaski
badge
�⎯⎯� ∅

}here 𝑆𝑆𝑜𝑜𝑓𝑓𝑒𝑒𝑟𝑟, 𝑆𝑆𝐵𝐵𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒𝑓𝑓, 𝑆𝑆𝑇𝑇𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓,

𝑆𝑆𝑃𝑃𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓define data schema.

In order to be made executable, a formal model has been

converted into a JSON notation. This is done by writing down
a JSON structure, which is composed of two parts (model nodes
and model name). Every model node follows main format of
name, type and links. Rules are generated by interpreting a
meta-language represented as a JSON structure. The language
has 1 to 1 translatable language constructions like conditions,
iterations, logical operations, mathematical operations and
other. Next to this the meta-language has code structural
constructs. The language can be extended with necessary
element to support required features.

The model of gamification of Trogon PMS using the
UAREI modelling language is given in Fig. 1. The model
contains:
• Entities: 𝐸𝐸𝑜𝑜𝑓𝑓𝑒𝑒𝑟𝑟 – all system employee, 𝐸𝐸𝐵𝐵𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒𝑓𝑓 – types of

badges, 𝐸𝐸𝑇𝑇𝑡𝑡𝑓𝑓𝑡𝑡𝑓𝑓 – the tasks which can be completed by
employees, 𝐸𝐸𝑃𝑃𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓 – points gained by the users.

• Users (𝑈𝑈𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒) node which is a starting point for
interaction with the system.

• System has only a single action (𝐴𝐴𝑓𝑓𝑖𝑖𝑛𝑛𝑖𝑖𝑓𝑓ℎ 𝑜𝑜𝑡𝑡𝑓𝑓𝑡𝑡) which is
triggered by system users when a task is completed.

Figure 1. Visual model of Trogon PMS gamification.
Source: created by the authors

• System has two main rules: the Points rule
(𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒 𝑒𝑒𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜𝑓𝑓) describes normal behavior how user

Ašeriškis et al / DYNA 84 (200), pp. 326-334, Marzo, 2017.

330

receives the points for a completed task, and the Badge
rule (𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒 𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒) describes how user gets points for
finished tasks which have badges associated with them.

• For comparison, the UML diagram which represents the
same logical flow is given (see Fig. 2) as well as the same
model described using the Machinations visual notation
(Fig. 3).

• User feedback loop is finished by leader board interface
(𝐼𝐼𝑒𝑒𝑒𝑒𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑜𝑜𝑡𝑡𝑟𝑟𝑟𝑟), which gives relevant feedback to the user.
As the UAREI model is described using the elements of

the graph theory, we use the graph metrics to evaluate its
visual complexity: number of nodes N, number of links E,
and McCabe Cyclomatic Complexity defined as

M=E-N+2·P,

here P is the number of independent paths in a graph.
The complexity of the UAREI and Machinations

gamification models of Trogon PMS is summarized in Table
2. The comparison results show that the UAREI model is
significantly less complex than its Machinations counterpart.

Figure 2. Gamification model of Trogon PMS specified using UML activity
diagram.
Source: created by the authors

Table 2.
Visual complexity of Trogon PMS models.

Complexity
metric

UAREI
model

Machinations
model

UML
activity
model

Number of nodes 9 90 11
Number of links 10 153 13
McCabe
Cyclomatic
complexity

3 65 4

Source: created by the authors

The computational simulation results of the proposed

gamification model are presented in Fig. 4. The UML
activity model is not illustrated, because UML has no
simulation engine.

We assume that the system has two players (‘Blue’ and
‘Red’) with exactly the same behaviour competing at the
same time. Fig. 4 shows the data recorded during such
simulation.

There are two distinct parts of the simulation:
• Tie zone – from the start models are behaving similarly

and both players have a similar number of points.
• Winner zone – one of the players starts winning and the

other player needs time to close the gap.
• Both players can become the winner because:
• At the core of these models is a binomial distribution of a

fare coin, so any player can win based on luck, while no
player specific attributes are taken into consideration.

• The winner is only determined, because we stop the
model at a certain time limit. In case the model goes to
infinity we would end up in a tie state.

• There is some difference in the simulation data, because
of different simulation execution and model specifics. In
case of Machinations, a tick is executed every time the
resource passes from node to node, and in the UAREI
model a data record in point entity triggers a data point in
the graph.

7. Evaluation

For comparative evaluation, we use the Machinations

visual language [27]. As comparison criteria we use the most
important problems / attributes in gamification modelling.

The game rules are supported in both UAREI and
Machinations. The main difference is that Machinations only
allow to build a logical structure to imitate the “rule” concept.
UAREI natively supports the rule concept. Rule in the model
holds the logic inside it and not disclosing its logic in model
visualization. This is a main difference between these two
modelling tools. The biggest problem in Machinations is that
model complexity grows exponentially if one tries to model
real world systems. In UAREI, most of the game logic is
encapsulated in rules which decreases model complexity.

Both modelling frameworks support user-based
modelling. However, in Machinations every user behaviour
model has a separate copy of the model. UAREI natively
supports multiple users working with the same model in
parallel. Machinations currently support logical attributes
which describe user behaviour. UARSEI currently does not
have such modelling capacities.

Ašeriškis et al / DYNA 84 (200), pp. 326-334, Marzo, 2017.

331

Figure 3. Gamification model of Trogon PMS specified using Machinations.
Source: created by the authors

Figure 4. Simulation of game results using Machinations and UAREI.
Source: created by the authors

Machinations is based on the economic functions and the
resource concept. UAREI natively focuses on real data
entities which carry more information. UAREI has the
“context” concept which is carried through the model
execution flow. In general, the context concept of UAREI is
similar to Machinations resource concept.

UAREI supports real world data entities and that allows
mapping into software domain. UAREI separates actual data
from the actual model. Normally in software engineering this
is a common way to ensure data-program separation, the
same concept is encapsulated into UAREI. Machinations
does not have a concept of data.

Machinations does not have any model transformation
capabilities and it never was designed for this goal. On the
other hand, UAREI is designed for transformation into
executable code. The rule logic is written in a meta-language
which is processed into executable Javascript code. Other
model parts are executed using a simulator.

Both UAREI and Machinations have minimal analysis
tools which allow to view model data. In Machinations one
is able to view “pool” changes over time. In UAREI one is
able to see interface data change over time.

UAREI has a native feedback loop in the system. The
modelling framework is designed to ensure feedback to
model users. In Machinations it is up to designer to setup such
loop to model user behaviour during simulation.

Ašeriškis et al / DYNA 84 (200), pp. 326-334, Marzo, 2017.

332

Table 3.
Graphical notation of UAREI modelling language

Property UAREI Machinations UML
Game rules Native support Logical support Native and Logical support
Visual model complexity Medium High Medium
User based simulation Able to simulate any number of users Every simulation is a copy of the

model
No simulation

Real data support Able to use real data entities The only data used are resources Able to define real entities
Data-Model separation Data is separated from the model, so it

is possible to use any dataset
Data is directly encapsulated in the
model

Data is not part of the model

Model transformation Future work Model has no functionality to generate
executable code

Possible to convert to code

Feedback loop Has a native support feed back loops It is possible to simulate a feedback
loops directly into model

No feedback loops

Model reusability Does not support yet Importing is the only functions which
allows incorporating other models.

Full support

Abstraction level Higher Designer-dependant Designer-dependant
Source: created by the authors

Table 4.
Cognitive dimensions of UAREI and Machinations.

Property UAREI Machinations UML
Abstrac-tion gradient Model itself has single level abstraction,

but level of details needed to specify is
chosen by user. Rules and interfaces
encapsulate logic.

User chooses the level of abstraction.
The more details are represented the
more complex model is build. One can
build reusable parts of the model.

User customizes the abstraction
level by choosing which modelling
tools to incorporate.

Closeness of mapping Straightforward model. Problems
appear while transcribing form formal to
JSON model.

One needs to learn how to build
complex logic. It works very well if you
exchange parts of the logic with
simplifications. Also one needs to
understand the four economic function
paradigm.

Straightforward modelling
language which allows different
levels of abstraction.

Consisten-cy The whole language is built on top of 6
elements. After learning these
constructs you can build any system.
Hardest part are query and rule logic
function writing, which need to be
learned separately.

The language itself is quite wide. It
consists of 15 different elements and a
lot of settings. The hardest part is
implementing out complex logic,
because model lacks of programmable
logic nodes.

UML activity diagram language
used in this case of study are
composed of over 20 different types
of elements. Which allows to build
many concepts into the model.

Diffuse-ness Six graphic elements make up the
language.

17 constructs allow to build almost
anything one needs for game modeling.

Over 20 elements and multiple
types of connections.

Error-proneness Errors originated from rule and query
specification.

We didn’t find error possibilities in
small models. Problems would arise
with big and complex models.

Low error-proneness. Model
supports aggregation difficulty can
be divided.

Hard mental operations Writing in JSON notations at some point
would build to hard structures to follow
easily.

If a model has many asynchronous
operations or high number of nodes it
can be hard to follow.

Easy language with real natural
meaning. Tracing the model
requires hard mental operations.

Hidden dependen-cies Dependencies are clearly visible
because you see all incoming and
outgoing connections.

Dependencies are clearly visible, but
can be harder to understand due to
specified logic on connections

Dependencies are clearly visible.

Premature commit-ment No premature commitment No premature commitment Need to be committed to UML to
optimize benefits.

Progressi-ve evaluation At any point the model can be executed
if is in valid form.

At any point the model can be evaluated. Model has no automated
evaluation.

Role expressive-ness The system dependencies are clearly
visible.

The system dependencies are clearly
visible, but can be hard to interpret.

System dependencies can be hard to
deduct.

Secondary notation Allows only label notation. Allows label, colour notations. Allows labels and comments.
Viscosity Any change is not harder to do as

initially.
Can be harder to restructure complex
rules.

Changes might be harder to
introduce, depends on complexity.

Visibility It is possible to view a model until fits
on the screen. Problems occur when the
model is too big to fit on the screen.
JSON notation of a complex rule can be
hard to follow.

Until the model is simple enough there
are no problems. Problems arise with
large models which don’t fit in the
screen and after some point zooming out
doesn’t help.

Complexity is decreased by
decomposition into smaller parts. In
large systems it can get quite hard to
follow whole system model.

Source: created by the authors

8. Conclusions

In this paper we have presented the description of the

UAREI modelling framework. We have demonstrated a case

of study in modelling the Trogon PMS gamified application
using UAREI. The same gamified application was modelled
using the Machinations framework and UML activity
diagrams. All modelling frameworks are good tools for

Ašeriškis et al / DYNA 84 (200), pp. 326-334, Marzo, 2017.

333

modelling gamification of software systems.
All analysed models were used to compare their visual

complexity. We run a sample simulation of two players using
the system under UAREI and Machinations. The comparison
disclosed the benefits and weakness of the modelling
frameworks in question as follows.

The advantages of the UAREI model are a high level of
abstraction, native support for feedback, model
transformation to executable code, explicit separation of data
and code. The disadvantage of the UAREI model is that
currently it still does not support reusability.

Future work will focus on improving properties of the
UAREI model in supporting model transformation, analysis
and reusability.

References

[1] Wortley, D., Gamification and geospatial health management, Proc.

of 7th IGRSM International Remote Sensing & GIS Conference and
Exhibition IOP Publishing. IOP Conf. Series: Earth and
Environmental Science, 20, 2014. DOI: 10.1088/1755-
1315/20/1/012039

[2] Gartner Group, Gartner Says By 2015, More Than 50 Percent of
Organizations That Manage Innovation Processes Will Gamify Those
Processes. 2011.

[3] Vasquez, O.C., Sepulveda, J.M., Alfaro, M.D. and Osorio-
Valenzuela, L., Disaster response project scheduling problem: A
resolution method based on a game-theoretical model, International
Journal of Computers Communications & Control, 8(2), pp. 334-345,
2013. DOI: 10.15837/ijccc.2013.2.313

[4] Caponetto, I., Earp, J. and Ott, M., Gamification and education: A
literature review, Proc. of the 8th European conference on games
ECGBL 2014, pp. 50-57, 2014.

[5] Bothsa, A., Herselman, M. and Ford, M., Gamification beyond
badges, IST-Africa Conference Proceedings, IEEE, pp. 1-10. 2014.

[6] Gené, O.B., Martínez, M. and Blanco, F., Gamification in MOOC:
challenges, opportunities and proposals for advancing MOOC model,
Proc. of the 2nd Int. Conference on Technological Ecosystems for
Enhancing Multiculturality, 2014, pp. 215-220. DOI:
10.1145/2669711.2669902

[7] Sammut, R., Seychell, D. and Attard, N., Gamification of project
management within a corporate environment: An exploratory study.
Proc. of 6th International Conference on Games and Virtual Worlds
for Serious Applications (VS-GAMES), pp. 1-2. IEEE, 2014. DOI:
10.1109/vs-games.2014.7012158

[8] Freudmann, E.A. and Bakamitsos, Y., The role of gamification in
non-profit marketing: An information processing account, Procedia -
Social and Behavioral Sciences, 148, pp. 567-572, 2014. DOI:
10.1016/j.sbspro.2014.07.081

[9] Wilson, A.S. and McDonagh, J.E., A gamification model to
encourage positive healthcare behaviours in young people with long
term conditions, EAI Endorsed Trans. Serious Games 2: e3, 2014.
DOI: 10.4108/sg.1.2.e3

[10] da Conceicao, F.S., da Silva, A.P., de Oliveira-Filho, A.Q. and Silva-
Filho, R.C., Toward a gamification model to improve IT service
management quality on service desk, Proc. of 9th International
Conference on the Quality of Information and Communications
Technology (QUATIC), IEEE, pp. 255-260. 2014. DOI:
10.1109/quatic.2014.41

[11] Hall, M., Kimbrough, S.O., Haas, C., Weinhardt, C. and Caton, S.,
Towards the gamification of well-being measures, IEEE 8th
International Conference on E-Science (e-Science), 2012, pp. 1-8.

[12] Larsson, R.S., Motivations in sports and fitness gamification: A study
to understand what motivates the users of sports and fitness
gamification services, MSc Thesis, Umea Universitet, Umeå, Suecia,
2013.

[13] Wells, S., Kotkanen, H., Schlafli, M., Gabrielli, S., Masthoff, J., Jylhä,
A. and Forbes, P., Towards an applied gamification model for
tracking, Managing, & Encouraging Sustainable Travel Behaviours.

ICST Trans. Ambient Systems 4: e2, 2014. DOI:
10.4108/amsys.1.4.e2

[14] Bauckhage, C., Kersting, K., Sifa, R., Thurau, C., Drachen, A. and
Canossa, A., How players lose interest in playing a game: An
empirical study based on distributions of total playing times. IEEE
Conference on Computational Intelligence and Games (CIG), 2012,
pp. 139-146. DOI: 10.1109/CIG.2012.6374148

[15] Tenzer, J., Improving UML design tools by formal games, Proc. of
26th Int. Conference on Software Engineering (ICSE 2004), IEEE,
pp. 2004, 75-77. DOI: 10.1109/icse.2004.1317428

[16] Hetherinton, D., SysML requirements for training game design, Proc.
of IEEE 17th International Conference on Intelligent Transportation
Systems (ITSC), 2014, pp.162-167. DOI:
10.1109/ITSC.2014.6957684

[17] Herzig, P., Jugel, K., Momm, C., Ameling, M. and Schill, A., GaML-
A modeling language for gamification, Proc. of IEEE/ACM 6th Int.
Conference on Utility and Cloud Computing, 2013, pp. 494-499.
DOI: 10.1109/ucc.2013.96

[18] Matallaoui, A., Herzig, P. and Zarnekow, R., Model-Driven serious
game development integration of the gamification modeling language
GaML with unity, Proc. of 48th Hawaii International Conference on
System Sciences (HICSS), IEEE, 2015, pp. 643-651. DOI:
10.1109/hicss.2015.84

[19] Janssens, O., Samyny, K. and Hoecke, S., Educational virtual game
scenario generation for serious games, Proc. of IEEE 3rd Int.
Conference on Serious Games and Applications for Health (SeGAH),
IEEE, 2014, pp. 1-8. DOI: 10.1109/segah.2014.7067106

[20] Nummenmaa, T., Berki, E. and Mikkonen, T., Exploring games as
formal models, In 4th South-East European Workshop on Formal
Methods (SEEFM), IEEE, 2009, pp. 60-65. DOI:
10.1109/seefm.2009.15

[21] Kim, J.T. and Lee, W.-H., Dynamical model and simulations for
gamification of learning, International Journal of Multimedia and
Ubiquitous Engineering, 8(4), pp. 179-190, 2013.

[22] Bista, S.K., Nepal, S., Colineau, N. and Paris, C., Using gamification
in an online community, CollaborateCom 2012, 2012, pp. 611-618.

[23] Chan, K.T., King, I. and Yuen, M.-C., Mathematical modeling of
social games, International Conference on Computational Science
and Engineering, CSE'09, IEEE, 4, 2009, pp. 1205-1210. DOI:
10.1109/cse.2009.166

[24] de Oliveira, G.W., Julia, S. and Soares-Passos, L.M., Game modeling
using WorkFlow nets, in Proc. of IEEE International Conference on
Systems, Man and Cybernetics (SMC), IEEE, 2011, pp. 838-843.
DOI: 10.1109/icsmc.2011.6083757

[25] Agustin, M., Chuang, G., Delgado, A., Ortega, A. Seaver, J. and
Buchanan, J.W., Game sketching, Proc. of the 2nd int. conference on
digital interactive media in entertainment and arts, 2007, pp. 36-43.

[26] Smith, A.M., Nelson, M.J. and Mateas, M., Ludocore: A logical game
engine for modeling videogames, in: IEEE Symposium on,
Computational Intelligence and Games (CIG), 2010, pp. 91-98. DOI:
10.1109/itw.2010.5593368

[27] Dormans, J., Machinations: elemental feedback patterns for game
design, in: Saur, J. and Loper, M. (eds.), GAME-ON-NA 2009: 5th
Int. North American Conference on Intelligent Games and
Simulation, pp. 2009, 33-40.

[28] van Rozen, R. and Dormans, J., Adapting game mechanics with
micro-machinations, Proc. of the 9th Int. Conference on the
Foundations of Digital Games, 2014.

[29] Ašeriškis, D. and Damaševičius, R., Gamification patterns for
gamification applications, Procedia Computer Science: 39, pp. 83-90,
2014. DOI: 10.1016/j.procs.2014.11.013

[30] Ašeriškis, D. and Damaševičius, R., Gamification of a Project
management system, Proc. of Int. Conference on Advances in
Computer-Human Interactions ACHI2014, 2014, pp. 200-207.

[31] Green, T.R.G. and Petre. M., Usability analysis of visual
programming environments: A 'cognitive dimensions' framework,
Journal of Visual Languages & Computing, 7(2), pp. 131-174, 1996.
DOI: 10.1006/jvlc.1996.0009

[32] Rao, V., Heuristic evaluation of persuasive game systems in a
behavior change support systems perspective: Elements for
discussion. Second International Workshop on Behavior Change
Support Systems – BCSS, 2014, pp. 21-25.

Ašeriškis et al / DYNA 84 (200), pp. 326-334, Marzo, 2017.

334

[33] Grünvogel, S.M., Formal models and game design, Game Studies
5(1), pp. 1-9, 2005.

[34] Devedzić, V., Understanding ontological engineering,
Communications of the ACM, 45(4), pp. 136-144, 2002. DOI:
10.1145/505248.506002

[35] Tabuada, P., Pappas, G.J. and Lima, P., Compositional abstractions
of hybrid systems. Discrete Event Dynamic Systems, 14(2), pp. 203-
238, 2004. DOI: 10.1023/B:DISC.0000018571.14789.24

[36] Narayanasamy, V., Wong, K.W., Rai, S. and Chiou, A., Complex
game design modeling, Cultural Computing, Springer, 333, pp. 65-
74, 2010. DOI: 10.1007/978-3-642-15214-6_7

[37] Salen, K. and Zimmerman, E., Rules of play - game design
fundamentals, The MIT Press, Cambridge, MA, USA, 2004.

[38] Vega-Zazueta, L., Modélisation et analyse spatiale et temporelle des
jeux vidéo basées sur les réseaux de Pétri, PhD Thesis, Paris, France,
2004.

D. Ašeriškis, is MSc. degree in Software Systems Engineering in 2013 from
Kaunas University of Technology. His research interests include:
gamification related simulation, modeling and development.
ORCID: 0000-0002-6309-8784

T. Blažauskas, holds the PhD degree from Kaunas University of
Technology. He is author of many scientific articles, participated in
numerous scientific projects related mostly with software engineering, e-
learning. His main research fields are smart user interfaces, service oriented
architecture, e-learning amd e-security.
ORCID: 0000-0003-2858-328X

R. Damaševicius, received PhD. degree in Informatics Engineering in 2005
from Kaunas University of Technology, Lithuania. He currently works as a
Professor at Faculty of Informatics, Software Engineering Department,
KTU. He is an author / co-author of over 120 refereed scientific articles (80
in Thomson Reuters Web of Science). His research interests include
software engineering, artificial intelligence methods, brain-computer
interface.
ORCID: 0000-0001-9990-1084

Área Curricular de Ingeniería
de Sistemas e Informática

Oferta de Posgrados

Especialización en Sistemas
Especialización en Mercados de Energía

Maestría en Ingeniería - Ingeniería de Sistemas
Doctorado en Ingeniería- Sistema e Informática

Mayor información:

E-mail: acsei_med@unal.edu.co
Teléfono: (57-4) 425 5365

	1. Introduction
	2. Gamification models and modelling languages
	3. Formal models of game design and gamification
	4. Description of gamified systems as UAREI model
	5. Graphical notation of UAREI model
	6. A case of study in modelling gamification in Trogon PMS
	7. Evaluation
	8. Conclusions
	References

