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Abstract 
This article aims to present the results of the application of different proposed spectral indices and image fusion techniques for the detection of 
open-pit mining zones, located to the north-east of Antioquia, Colombia; having as reference mining and no mining zones samples obtained from 
visual characterization of pictorial-morphological properties of the open-pit mining zones in the study area.  This research used high resolution 
(UltraCam-D y RapidEye) and medium resolution (Landsat 8 LDCM) imagery, where the latter was defined as the main input for the application 
of the spectral indices and image fusion techniques. The development of the proposed methodological design and the statistical analysis of the 
images, presented the Brovey transformed image fusion technique —on its band 2— as the one with the highest discriminant potential for open-
pit mining zone; the classification of the results were determined between the thresholds of pixel values from 0.3225 —defined as the discriminant 
breakpoint— to the maximum value of the mining group samples, corresponding to 0.5237. 
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Detección de zonas mineras a cielo abierto aplicando índices 
espectrales y técnicas de fusión de imágenes 

 
Resumen 
Se presentan los resultados de la aplicación de diferentes índices espectrales y técnicas de fusión de imágenes de sensores remotos propuestos 
para la detección de zonas mineras a cielo abierto, localizadas en el sector nor-oriental del departamento de Antioquia, Colombia, tomando como 
referencia muestras de minería y no minería, identificadas a partir de la caracterización visual de propiedades pictoricomorfológicas  de zonas 
mineras a cielo abierto en el área de estudio, utilizando imágenes de alta resolución  (UltraCam-D y Rapid Eye) y mediana resolución (Landsat 
8 LDCM), estas últimas fueron definidas como el insumo principal para la aplicación de los índices espectrales y técnicas de fusión de imágenes. 
El desarrollo del diseño metodológico propuesto y el análisis estadístico de las imágenes, evidenciaron que la técnica de fusión de imágenes, 
transformada de Brovey —en su banda 2— presenta mayor potencial discriminante para la identificación de zonas mineras a cielo abierto; la 
clasificación de los resultados se determinó entre el rango de valores de pixel de 0.3225 —constituido como el punto de corte discriminante— 
hasta el valor máximo de las muestras del grupo de minería, correspondiente a 0.5237. 
 
Palabras clave: Minería a cielo abierto; índices espectrales; fusión de imágenes; relación discriminante Fisher. 

 
 
 

1.  Introduction 
 
Currently in Colombia it is estimated that there are about 

14,357 Units of Mining Production (UPM), of which 63% 
has no mining titles [1] and therefore are considered of an 
illegal character [2]. In the entire country at least 10 
                                                      
How to cite: A. Castellanos-Quiroz, H. O.,  Ramírez-Daza, H. M. and Ivanova, Y. Detección de zonas mineras a cielo abierto aplicando índices espectrales y técnicas de fusión de 
imágenes DYNA 84 (201) pp. 42-49, 2017. 

departments reported that over 80% of their UPM do not have 
any kind of mining title [1] which progressively makes more 
difficult their control, monitoring and their regulation 
regarding environment, as well as for labor, tax and legal 
aspects, causing disturbances in a national, regional and local 
context in social, economic, environmental, criminal, tax and 
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public order issues, contrary to what aims the policy and 
legislative framework of Colombia. Because of this situation, 
it is necessary that the environmental and control authorities 
come to possess the technical and technological mechanisms 
of an official status that enables them to identify, monitor and 
report figures of areas of mining activity in the country, thus 
making it possible to efficiently and effectively fulfill their 
functions of control, monitoring and regulation. 

In this sense, remote sensing products can be considered 
as a key tool in the detection and monitoring of different 
phenomena and dynamics on land cover, due to their 
characteristics and benefits in the provision of multispectral 
information. For this purpose there are different 
methodologies and specific applications that identify several 
features, such as different aspects related to the mining 
sector, where is included the use of remote sensing and 
geographic information systems on a wide array of issues like 
the identification of diverse minerals [3] the mapping of 
potential minerals like gold [4], the evaluation of mining 
impacts on land cover [5], illegal mining monitoring [6], 
studying the influence of mining on water quality [7,8], eco-
toxicology of water in mining operations [9], environmental 
monitoring in areas of mining [10] and evaluating the 
subsidence caused by mining activities from image fusion 
techniques [11,12], among others.  

However, few studies have shed light on processes 
specifically addressing the detection of open-pit mining zones, 
yet there are some investigations that contemplate approaches 
on this issue, some of them are associated with the identification 
of minerals presence for exploration stages [13], but not to 
operating areas or open-pit mining activity; in the 
aforementioned research they applied remote sensing in 
detecting alluvial gold in the Colombian Pacific Coast, based in 
the use of Landsat-TM and Spot-XS images as a fundamental 
instrument of exploration, and supported with 
geomorphological and field observations as ancillary 
information, they made use of individual bands analysis, 
spectral indices, and relationships between bands and filtering 
techniques, all this helped them identify extensions of 
palaeochannel, palaeovalley and flow deposits of mud 
genetically related to alluvial gold, i.e. new explorations banks. 

Likewise, hyperspectral imaging has been used in detecting 
minerals [14] from the analysis of large amounts of spectral 
data, and as a result, the LinMin supervised classification 
algorithm was proposed to estimate the uncertainty of observed 
spectral information. Another interesting study has been 
developed for locating and identifying sites of gold mining in 
French Guiana [15], from the generation of spectral indices 
such as NDVI and NDWI, used as bands in a new image and 
with filters of contrast.  Thus, it was possible the identification 
and classification of new ore mining areas. 

Taking into account the need to availably have a 
methodology for the detection of open-pit mining areas, this 
study developed a procedure based on the application of 
spectral indices and image fusion techniques for the detection 

                                                      
1Pictorial-morphological characteristics are the elements in the image that 
allow or serve as concurrent evidence for the identification of objects and 
their differentiation from other coverages [17] pictorial features are also 
known as morphological descriptors [19] or visual interpretation criteria 

of open-pit mining process implemented in the north-eastern 
department of Antioquia, evaluating the accuracy of this 
methodology through statistical methods. 

 
2.  Study area 

 
The study area is located in the northeastern sector of the 

department of Antioquia, Colombia, comprising sections of 
the municipalities of Nechí, Caucasia, Zaragoza and El 
Bagre, (7º 51’ 1’’ N, 74º 53’ 34’’ W y 74º 37’ 15’’ N, 7º 23’ 
58’’ W) (Fig. 1), with an area of 150.000 ha.  This has been 
traditionally an open-pit region which has had a recent 
increase in mineral production [16]. 

 
3.  Materials and methods 

 
As the main input for the application of spectral indices 

and image fusion techniques, data from the Landast 8 LDCM 
sensor dated June 17 of 2014 was used.  Along with this data, 
high-resolution images as UltraCam-D and RapidEye were 
also used, which have been previously used to identify and 
characterize the pictorial-morphological properties1 [17] of 
open-pit mining zones in the area under study [18]. The usage 

 

 
Figure 1. Location of the region under study. 
Source: The Authors. 

[20]. Among such pictorial-morphological characteristics, the analysis of 
shape, size, color, tone, texture, pattern and geographical position [21] are 
used comprehensively in complex visual classifications. 
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of the aforementioned data allowed the visual definition, 
differentiation and delimitation of mining areas from non-
mining areas. 

For the methodology of this study, nine spectral indices 
and two image fusion techniques were proposed and 
implemented for the detection of open-pit mining zones 
(Table 1), defined from reviewing previous specialized 
literature, where some of these indices and fusion techniques 
were designed and/or commonly implemented for the 
detection and the analysis of eroded zones [22], detection of 
minerals, soil types and/or rocks [23,24]. 

For each spectral index and image fusion technique, data 
of Mining and Non-Mining (which are the defined thematic 
classes of the study) was obtained by selecting trough the 
samples taken directly from the Landsat 8 LDCM image (some 
of which are shown in Fig. 2) image.  For the samples of the 
thematic class “Mining”, these were made from the 
identification and characterization of its pictorial-
morphological properties obtained through visual 
interpretation [18], both from the high resolution images (Ultra 
CAMD) as from the medium resolution ones (LDCM Landsat 
8). As for the thematic class “No Mining”, the procedure 
consisted in the application of the Normalized Difference 
Vegetation Index (NDVI) in order to exclude coverage of 
photosynthetically active vegetation, where the inexistence of 
open-pit mining is manifest. From this result the samples were 

 
Table 1. 
Spectral indices and image fusion techniques 

Name Abbreviation Equation Source 

Clay minerals CM SWIR1 / 
SWIR2 [23] 

Ferrous minerals FM SWIR1 / 
NIR [23, 24] 

Iron oxide (ferric 
minerals) IO RED / BLUE [23, 24] 

Transformed normalized 
difference vegetation 
index 

TNDVI 

SQRT ((NIR 
– RED / NIR 

+ RED) + 
0,5) 

[25, 26] 

Normalized difference 
vegetation index NDVI NIR – RED / 

NIR + RED [27] 

Difference vegetation 
index DVI NIR – RED [28] 

Simple ratio SR IR/R NIR / RED [28] 

SQRT simple ratio SQRT SR 
IR/R 

SQRT (NIR / 
RED) [26] 

Principal components CP 

Function 
Erdas 
Imagine© 
2011 

[29] 

Fusion Brovey Brovey 

BAND_OUT 
= BAND / 
[(BLUE + 
GREEN + 

RED) x 
PAN]. 

[30] 

Fusion Wavelet Wavelet 

Function 
Erdas 
Imagine© 
2011 

[31] 

NIR = near infrared spectrum, RED= red spectrum, SWIR = short wave 
infrared spectrum, BLUE= blue spectrum, GREEN= green spectrum, PAN 
= pancromatic. 
Source: The Authors. 
 

 
Figure 2. Samples of the thematic classes of Mining (red polygons) and Non-
Mining (yellow polygons). Image Landsat 8 LDCM 955 20140617, RGB (5, 
6, 4), USGS. 
Source: The Authors. 

 
 

selected for the thematic class of No Mining, which mainly 
includes coverage of eroded areas, rocky areas, population 
centers and clean pastures (Fig. 2). 

From these samples, 515 observations were obtained for 
Mining and 461 for Non-Mining to the application of spectral 
indices, whereas for the image fusion technique, 1.985 were 
for Mining and 1.883 for No Mining, both these set of 
samples correspond to the same sampled area (polygons), the 
more data for image fusion techniques is due to the fact that 
higher spatial resolution images are used. 

In order to obtain the spectral index or image fusion 
technique with the highest potential for discriminating 
mining from non-mining areas, the Fisher’s discriminant 
ratio (or Fisher’s index) was used.  This index allows 
obtaining a series of linear functions (discriminant 
functions) through the independent variables that assists in 
the interpretation of differences between various groups.  
This technique is widely used in spatial analysis to quantify 
the degree of separability of individual characteristics [32] 
based on statistical parameters of the mean (𝝁𝝁) and the 
variance (𝝈𝝈) [33].  In the case of multiple classes Fisher’s 
index is expressed by Eq. 1:  

 

𝐹𝐹𝐷𝐷𝐷𝐷 = � �
�𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑗𝑗�²
𝜎𝜎𝑖𝑖² + 𝜎𝜎𝑗𝑗²

𝑀𝑀

𝑗𝑗≠𝑖𝑖

𝑀𝑀

𝑖𝑖
 (1) 

 
Where 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 refer to the corresponding mean and 

variance values of the Mining areas samples characteristics, 𝜇𝜇𝑗𝑗 
and 𝜎𝜎𝑗𝑗, are the mean and variance values of the Non-Mining 
areas.  The characteristics with the highest Fisher’s ratio are 
more discriminating than those with lower index [33]. 

The Fisher’s separability criterion applies to samples 
that respond to various conditions. First, samples should 
have statistically different mean values; this condition is 
verified through the Student criterion [34]. Second, the two 
classes must follow a normal probability distribution; this 
condition is verified through the construction of empirical 
and normal probability curves for each class, and the 
subsequent demonstration of the goodness of fit between 
the two curves using the criteria of Kolmogorov-Smirnov 
test and 𝝌𝝌𝟐𝟐 [35]. All the analyses were performed to the 
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level of two-tailed significance test 2α = 5% for each class. 
By fulfilling all the conditions listed above, the index with 

the best separation potential of mining from non-mining 
areas can now be selected, according to the highest value of 
Fisher’s index. 

In order to be able to tell a mining from a non-mining 
region apart using the pixel value, the discriminant 
breakpoint was used.  This is estimated as the average of the 
two-groups pixel value average, as expressed in Eq. 2:  

 
𝑃𝑃𝑃𝑃𝐷𝐷 =

𝜇𝜇𝑖𝑖 + 𝜇𝜇𝑗𝑗
2  (2) 

 
where: 
 

𝑃𝑃𝑃𝑃𝐷𝐷 : Discriminant breakpoint 
𝜇𝜇𝑖𝑖 : The average value of the pixel from the mining 

area sample 
𝜇𝜇𝑗𝑗  : The average value of the pixel from the non-

mining area sample 
 
To evaluate the classification rule the apparent error rate 

equation is used, which is expressed as follows: 
 

𝐷𝐷𝐴𝐴𝐴𝐴 =
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑐𝑐𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐

𝑆𝑆𝑐𝑐𝑆𝑆𝑆𝑆𝑊𝑊𝑐𝑐 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 × 100% (3) 

 
where:  
 

R𝐴𝐴𝐴𝐴 : Apparent error rate 
 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑐𝑐𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐 : Number of the sample data that  
are outside the range stipulated  
by the discriminant breakpoint 
 

𝑆𝑆𝑐𝑐𝑆𝑆𝑆𝑆𝑊𝑊𝑐𝑐 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 : Total number of data (pixels) 
 
The apparent error rate was calculated for both samples 

of mining and non-mining areas. Afterwards, the weighted 
average value that characterized the weighted rate of the 
apparent error was obtained. 

 
4.  Results and discussion 

 
Initially, the level of separation of mining and non-mining 

classes for every spectral indices and image fusion 
techniques applied was visually evaluated from the 
comparative analysis of histograms. 

This analysis is based on the degree of separability 
between the histograms of the samples in each of the spectral 
indices and images fusion techniques discussed, where the 
greater the distance or separation between histograms, the 
greater it’s potential to discriminate mining from non-mining 
areas; likewise, the lower the shared area between 
histograms, the greater the discriminant potential of the 
spectral index and image fusion technique.  The shared area 
between histograms determines the inaccuracy of the 
discriminant power of the index or of the technique 
employed. 

Figs. 3 and 4 shows the comparison of histograms for 
the nine spectral indices and for the two image fusion 
techniques employed. These figures illustrate that both the 
iron oxide spectral index (Fig. 3c), as the band 2 of the 
Brovey transform technique (Fig. 4b), have better degrees 
of separability and less shared area between histograms 
(the greater distance between the histograms peaks, the 
better the discriminant power).  This shows a better 
potential to classify mining from non-mining areas 
compared to other indices and fusion techniques. Likewise, 
the indices and fusion techniques analyses allowed an 
evaluation of areas with less potential for mining areas, 
including the spectral indices of clay minerals (Fig. 3a) and 
ferrous minerals (Fig. 3b). 

Subsequently, Fisher’s index was used to statistically 
evaluate the discriminant power of the nine spectral indices, 
and the six bands resulting of the two image fusion 
techniques. The implementation of this index is subject, as 
previously mentioned, to compliance with the conditions that 
the two samples present a normal distribution and that their 
average values are statistically different. 

Fisher’s index is calculated once these conditions are met, 
and after analyzing the results it was found that the best 
image fusion technique was the Brovey transform in his band 
2, since this technique had the highest Fisher’s index value. 
Therefore, this is established as the technique with the 
highest discriminant power to classify mining from non-
mining areas. Fisher’s index results for each of the techniques 
are presented in Table 2. 

As it has been mentioned, the concept of discriminant 
breakpoint was used for the definition of the pixel’s value 
that separates the mining from non-mining class, which 
represents the average value between the two classes.  
Since the data of these two classes follow a normal 
distribution, the modal value corresponds to the value of 
the arithmetic mean (Eq. 2).  The resulting value of the 
discriminant point is 0.3225; therefore, every pixel with a 
value under 0.3225 was associated with the class of non-
mining and values between 0.3225 and, the maximum 
value of for the mining class of 0.5237 (Table 2), 
correspond to the classification of mining. 

To evaluate the validity of this classification scheme, the 
apparent error rate for the two classes was calculated and 
used to estimate the weighted apparent error rate, taking into 
account the amount of data in each class, according to Eq.3. 

For the mining class, there were a total of 1.985 records 
where 223 of them were outside the range according to the 
value of the discriminant point, thus— resulting in apparent 
error rate of 11.2%. As for the non-mining class, it consisted 
of 1.883 records, 118 of which did not belong to the range set 
by the value of the discriminant point. The value of the 
apparent error rate is 6.4% and the weighted value of the 
apparent error rate corresponds to 8.9%. 

Fig. 5 shows an example of the results obtained from the 
classification of open-pit mining zones using the Brovey 
transform in its band 2: 
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Figure 3. Histograms comparison of the spectral indices for mining and non-mining classes.  
Spectral indices: a = clay minerals, b = ferrous minerals, c = iron oxide (ferric minerals), d = TNDVI, e = NDVI, f = simple ratio, g = DVI, h = principal 
components, i = sqrt simple ratio.  
Source: The Authors.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Histograms comparison of the images fusion techniques for mining and non-mining classes. 
Image fusion techniques: Brovey fusion a = band1, b = band2, c = band3. Wavelet fusion d = band1, e = band2, f = band3.  
Source: The Authors. 
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Table 2.  
Discriminant power values according to Fisher’s ratio. 

Spectral indices and 
image fusion 
techniques 

Mining Non Mining  
FDR** Min. Max. Media  

SD* Min. Max. Media SD* 

Clay  
Minerals 0,01333 0,02267 0,01647 0,00166 0,01167 0,02273 0,0166 0,00304 0,00000 

Ferrous  
Minerals 0,00466 0,01007 0,00747 0,00078 0,00327 0,01192 0,00805 0,00118 0,00016 

Iron 
Oxide 0,57771 0,84079 0,71605 0,05637 0,47798 0,81561 0,58242 0,05575 0,15927 

TNDVI 0,27116 0,74425 0,58109 0,04328 0,41978 0,82502 0,62909 0,07541 0,01940 
NDVI 0,36789 0,69564 0,54938 0,03400 0,43795 0,78213 0,59161 0,06366 0,01825 

Simple Ratio IR/R 0,11080 0,32847 0,20803 0,02324 0,14296 0,43445 0,24116 0,04851 0,01530 
DVI 0,24145 0,52038 0,34963 0,03666 0,28868 0,58669 0,41494 0,05788 0,04512 

Principal 
Components 0,22944 0,49949 0,37474 0,04886 0,23874 0,42861 0,30858 0,02990 0,05557 

SQRT Simple Ratio 0,33287 0,57312 0,45541 0,02509 0,37810 0,65912 0,48861 0,04930 0,01480 
Fusion 

Brovey b1 0,102632 0,405798 0,276628 0,043670 0,129313 0,352955 0,215832 0,038883 0,044773 

Fusion 
Brovey b2 0,23399 0,52370 0,38782 0,04966 0,16153 0,46510 0,26448 0,04159 0,16669 

Fusion  
Brovey b3 0,23680 0,50283 0,36759 0,04199 0,19373 0,47682 0,27829 0,03663 0,10140 

Fusion  
Wavelet b1 0,01816 0,52410 0,38967 0,04094 0,16098 0,44768 0,33866 0,03893 0,03257 

Fusion  
Wavelet b2 0,15785 0,57595 0,44899 0,04255 0,07567 0,50531 0,34262 0,03853 0,13955 

Fusion 
Wavelet b3 0,11004 0,51312 0,40129 0,03783 0,03641 0,50656 0,32582 0,03547 0,07769 

*SD: Standard deviation. **FDR: Fisher’s discriminant ratio.  
Source: The Authors. 

 
 

 
Figure 5. Classification of open-pit mining zones in the study area (yellow 
polygons), using the Brovey transform in its band 2. 
Source: The Authors. 

 
 

5.  Conclusions and recommendations 
 
The Brovey transform image fusion technique in its band 2 

was determined as the procedure with the highest discriminant 
power to classify open-pit mining zones, using as classification 
thresholds values between 0.3225 and 0.5237 for the area under 
study, with a weighted apparent error rate of 8.9%. It is 
important to highlight however, that this value is conditioned 
by the size of the mining and non-mining samples. 

It was also shown that the ferrous minerals and clay 
minerals spectral indices have the least discriminant power for 
the area under study, despite the fact that these indices have 
been mainly designed for, and implemented in, the detection of 

certain types of minerals. 
From the results obtained, the Brovey transform image fusion 

technique is identified as a major input for the detection and 
identification of open-pit mining areas, with a plausible 
prospection of being used as part of a monitoring system for such 
areas. 

It is recommended to incorporate to the results presented in 
this article, an object-oriented image analysis, which enables 
the integration of other elements that could lead to the 
constitution of a new mappable thematic unity of the official 
map of land cover (Corine Land cover) called “Mining Zones”. 
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