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Abstract 
In this paper, a real-world forestry transport planning problem is presented. A mathematical programming model has been developed for 
the assignment of loading cranes and the transport of logs. For the solution, GAMS and CPLEX modeling systems were used. An MS 
Excel interface was used for both data and parameter loading and result analysis. This allows input data to be loaded and modified quickly 
and data to be analyzed in an approachable manner. In addition, decisions can be made expeditiously. The model was applied to a Chilean 
forestry company under multiple scenarios, and the results were obtained in a reasonable computational time (less than 1 minute), in relation 
to those required for decision-making.  
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Optimizando el uso de grúas y camiones en operaciones forestales 
 

Resumen 
En este trabajo, se presenta un problema de planificación de transporte forestal en el mundo real. Un modelo de programación matemática 
ha sido desarrollado para la asignación de grúas de carga y el transporte de troncos. Para la solución, se utilizaron los sistemas de modelado 
GAMS y CPLEX. Una interfaz de MS Excel se utiliza tanto para la carga de datos y parámetros como para análisis de resultados. Esto 
permite que los datos de entrada sean cargados y modificados rápidamente y que los datos se analizaron de manera accesible. Además, se 
pueden tomar decisiones con rapidez. El modelo se aplicó en una empresa forestal chilena bajo múltiples escenarios, y los resultados se 
obtuvieron en tiempos inferiores a un minuto siendo, razonables en relación a los requeridos para la toma de decisiones. 
 
Palabras clave: optimización de operaciones forestales; transporte de troncos; planificación de los bosques; modelo de programación 
matemática. 
 

 
 

 

1.  Introduction 
 

1.1.  Problem context 
 
The logistic chain in forestry operations is very complex 

[1] and different from the logistic chains of traditional 
manufacturing companies. For instance, the forest trunk 
supply chain to the industrial plants of sawmills, pulp and 
boards must consider a series of strategic decisions, such as 
the management assignment to different forests. In a tactical 
level decisions must also be made, e.g., selection of forests to 
be harvested during the following year, the construction of 
secondary roads to provide access to forests, etc. From the 
operational point of view, an important decision is 
assignment of a specific production line for a forest. 

                                                      
How to cite: Pradenas-Rojas, L., and Passicot-Guzmán, P., Optimizing the use of cranes and trucks in forestry operations. DYNA 84(201), pp. 172-179, 2017. 

Additionally, determining the quality of the logs is according 
to their diameters and is complex and expensive process. For 
this reason, forestry planning, in relation to the production of 
logs according to diameter and length, is normally performed 
by means of different scenarios, where the quality of the 
information is not accurate. 
The forestry company under study produces a daily average 
of 13,000 cubic meters of Pinus radiata timber, 
geographically dispersed over dozens of origins, which must 
be transported to each of the 42 plants that consume each of 
the different raw materials from the forest, and whose logs 
are classified according to length and diameter. Each plant 
presents its own technical particularities that imply that said 
plant can absorb a subset of the eight different products in 
terms of both the length and diameter of the logs in question. 
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Figure 1. General scheme of the forestry programming problem. 
Source: The authors. 

 
 

In Fig. 1, the scheme of the main origins, products, means of 
loading, transport and destination is presented. 

In addition to the dozens of timber origins, it is necessary 
to add the available stock from origins that are without active 
production but have not been abandoned; this situation can 
arise for multiple reasons, such as the overproduction of a 
given product as a result of errors in production projections 
or the temporary cutting off of access roads to an origin 
because of bad weather. Production operations of timber are 
performed continuously throughout the year with an average 
of 44 forest farms producing simultaneously. Each farm has 
forests of different ages and managements, and they generate 
a different amount of each of the products. 

A dispatch program of products to each final destination 
is conducted daily. This program considers the following 
aspects: the location of the necessary cranes for the loading 
of trucks, the number of trucks needed for transport, the 
reception rate for each destination, and the distances between 
each origin/destination pair. As with production, this 
program is subject to a number of problems that are difficult 
to predict and undermine the fulfillment of the dispatch 
program. 

Due to the multiple abovementioned reasons, the dispatch 
program begins to suffer deviations inherent to the operation 
of harvest, loading, transportation and reception of logs, 
though decisions are made to correct those deviations. 
However, these decisions are currently considered without a 
formal and parameterized optimization model to ensure that 
the decision corresponds to the best solution to a given 
scenario and, in turn, evaluates and quickly provides the 
different scenarios to be negotiated with customers. 

 
1.2.  State of the art 

 
Regarding or close to the subject under study, various 

studies can be considered [2-6]. In [2], an integer mixed 
mathematical model is proposed to plan the short term supply 
of logs to the different processing plants that are 
geographically dispersed. There are several types of logs, 
which are demanded in different quantities by various 
consumption centers. The authors of this study took into 
account two sequentially addressed problems in response to 
the great problem. The first considers groups of products, 

e.g., the demands and the productions for the group, reducing 
the size of the problem and finding a solution in reasonable 
time in relation to the forests to be harvested. The second 
problem to be addressed considers the details of the products 
and finally delivers a response regarding how to meet the 
different log demands of each plant at the minimum possible 
cost. To achieve this, a particular heuristic was developed and 
20 different scenarios were generated; this approach solved 
both the heuristics programmed in the C++ computer 
language and the exact way by means of CPLEX software. 
For small problems with less than five products and less than 
four forests, both the heuristics and CPLEX obtained an 
optimal solution, with CPLEX doing so faster than the 
heuristics. For instances with more than four forests, five 
plants and five products, a maximum iteration time of 1,000 
seconds was defined. For each of the 50 problems solved in 
instances equal to or larger than those described, better 
results were obtained through CPLEX, expressed as 
objective functions with lower values. 

In [3], the authors mention that management of the supply 
chain and optimization has had strong development in the 
forest industry in recent years. The flow of timber begins 
from the forests, where harvesting, bucking of trees, ordering 
of products and transportation to the different consumption 
centers is decided. These consumption centers may be 
sawmills, pulp mills, or boards or Bioenergy plants. A total 
of five problems related to the logistic chain of the Swedish 
Company Cell AB, which produces pulpwood logs to supply 
the requirements of several plants, are presented. The 
geographic dispersion of the pulpwood logs is a very 
important for the freshness of the logs required by the 
consumption centers. One possible way to address the new 
requirements is to perform a classification by quality in the 
forest, e.g., stacking separately the different qualities of 
pulpwood logs. However, production costs rise from the 
necessity of performing a classification of the logs in the 
forest. In the present study, a mixed integer mathematical 
model was constructed to meet the number of piles of 
pulpwood to be generated in the forest and to find the optimal 
combination of pulpwood logs of the entire system. Variables 
such as the demand of logs according to type and destination, 
different classification alternatives of logs in each forest, 
classification costs of logs and transportation costs of each 
origin/destination pair were considered. Three actual cases 
were validated, with 500 restrictions and up to 3,000 
iterations. The binary variables are between 200 and 1,000, 
and the continuous variables are between 2,000 and 3,000. 
The potential trips with loaded return were in the millions. In 
the three cases, an optimal solution to the presented problem 
was found. The developed model is a supporting tool for 
making strategic decisions concerning how the pulpwood in 
forests should be classified and how to plan the flow of 
timber for an annual time horizon, meeting the new quality 
restrictions imposed by consumers and controlling the costs 
of production and transportation. 

In [4], a case study of the Swedish forestry sector is 
presented. In this study, the status of the roads is a major 
problem at the time of removing logs from the forest, 
especially during the spring season when the melting of snow 
occurs. This, added to the constant transportation, produces 
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severe damage to the surface of the road and generates high 
maintenance costs. In the abovementioned study, an 
optimization model intended to find an optimal solution to 
the transportation of logs is presented. Here, the necessary 
investment in the roads that must be made to access the 
timber during the periods of snow melting is also presented. 

An actual forestry operations problem can have between 
5,000 and 10,000 binary decision variables; thus, it is 
difficult to find optimal solutions in reasonable amounts of 
time, making it necessary to use heuristic methods to find 
solutions close to the optimum. The proposed model selects 
the areas to be harvested during the different seasons of the 
year. This selection affects the investment cost in roads and 
the transportation costs of timber logs during the snow-
melting period. LINGO 6.0 software was used, and it was 
tested in three instances; all tests were performed over a 10-
year horizon, but each had different annual log demands 
during the snow-melting period. The first scenario raises the 
duration of the snow-melting period to three weeks, and the 
corresponding demand of 1,000 cubic meters of logs was 
carried out without problems; the software found the optimal 
solution in a few seconds, without the need to resort to 
heuristic methods. The second scenario has a six-week snow-
melting period, and the corresponding demand of 2,000 cubic 
meters of logs could not be optimally solved by LINGO 6.0. 
To find a feasible and near-optimal solution, it was necessary 
to use heuristic methods. First, a feasible solution considered 
as the upper limit was found with LINGO 6.0; then, LINGO 
6.0 was used further to find a solution with a lower value of 
the objective function, and 10 hour-long iterations were 
considered to be the ending criterion. The first solution was 
obtained after three iterations. The third and last scenario 
posed a nine-week snow-melting period, corresponding to a 
demand of 3,000 cubic meters of logs, and also required the 
heuristic method; the best solution was found after four 
iterations. The problem size posed in the third scenario only 
represents 10% of the size of an actual problem in Northern 
Sweden. The model of scenario three had 2,870 decision 
variables and 2,402 restrictions; 780 variables were binary, 
and the others were continuous variables. The large amount 
of binary variables makes it impossible to find the optimal 
solution in a reasonable amount of time using LINGO 6.0 
software, which makes it necessary to resort to heuristic 
methods to find near-optimum solutions. 

In [5], the authors compare two different strategies for the 
planning of the chain value of the forest industry, which is 
performed after forest planning. In the first strategy, the planning 
of the forest is decoupled from that of the industry, which is 
performed after the forest planning and seeks to maximize the 
current value of timber and maximize the profit margin according 
to the logs delivered from the forest. On the contrary, the 
decoupled strategy is compared with a second strategy in which 
the forest and the industrial plants are coupled to generate the 
product that maximizes the maximum integrated benefit to the 
company. The major difference between both strategies is the use 
of the information of product demand to perform the planning of 
the chain value. To assess these strategies, a mixed integer 
mathematical model in which the integrated planning of the 
forest and the industry is described was established. To obtain the 
results of the first strategy, the model is subdivided into two parts, 

determining first the optimal forest harvest and then using this 
information to plan the production of the industrial plants. To 
obtain the results of the second strategy, the model is run in an 
integrated manner with the demand for the final products 
produced by the industrial plants by considering that the objective 
function of the mathematical model seeks to maximize the net 
present value of the forest. Therefore, it must decide what areas 
of the forest should be harvested over a 5-year horizon, 
considering the demand for different types of logs in each 
industrial plant and the transportation costs between each area to 
be harvested and its destination. 

The mathematical model was built in the AMPL language 
and solved with CPLEX. A total of four baseline scenarios for 
each of the four groups of the modeled instances were 
constructed. The first group of instances considered changes in 
the interest rates; the second group considered differences in the 
prices of the final products and differences in the demand of logs; 
the third group considered changes in the pulpwood logs; and, the 
final group considered differences in the growth of the forests. 
For all modeled scenarios, the coupled strategy that considers the 
demands in relation to the final products generated by each 
industrial plant always obtained greater benefits or greater value 
in the objective function in a band that ranges between 1.53% and 
5.21% than the decoupled strategy. The main explanation for this 
constant variation in the value of the objective function is that the 
coupled strategy can determine that the final products are those 
for which higher profits are obtained and, thus, can determine 
how to produce them at the lowest possible cost and obtain the 
maximum possible profit. By means of the integrated model, the 
time to harvest a given surface to produce a certain type of log 
can be better decided, depending on the value of the final product 
that can be manufactured with such logs. 

In [6], authors propose and solve a MIP model for the 
tactical planning in forest harvesting using Cplex software 
considering up to 260,000 variables in total, 48,000 integer 
variables and 10,000 constraints. 

According to the above, the aim of the present study is to 
propose a mixed integer mathematical programming model 
to optimize the use of cranes and the transport of logs in an 
actual forestry company. 

 
2.  Materials and methods 

 
A mathematical programming model is proposed with the 

objective function of minimizing the total cost of log 
transportation. These logs will be produced in a highly 
dispersed manner and in different amounts and qualities 
according to the amount of harvesting equipment that has 
been used in each forest farm or specific production area and 
the quality of the forest to be harvested. The model considers 
five periods that consist of the following: the first four 
periods represent one day each, and the fifth period 
represents 11 days. Altogether, they represent a fortnight of 
production and shipment of logs for the next four days. 
Additionally, a proposal for the remainder of the fortnight is 
provided to project how the movement of logs will take place 
for the next 11 days. The model considers the following: 
• The demand of the different types of logs from 

geographically dispersed industrial plants are not hard 
constraints to be fulfilled from period to period for the first 
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four periods. However, the total amount of demanded loads 
must be completed at the end of the fourth period. This 
provides great flexibility to the model to search for the lowest 
cost and thus advance or delay the sending of logs by up to 
four days without causing problems in the production 
operations of the destinations. Instead, the fifth period 
considers a demand constraint that must be strictly met. 

• Limited transportation capacity for each of the periods. A 
load equivalent to the standard capacity of a 28 cubic meter 
log truck was considered. Transportation capacity is 
expressed in available hours of transport for each period. For 
this reason, a constraint that quantifies the necessary 
transportation hours for each period was developed. This 
constraint quantifies the necessary hours of transport for each 
period to carry the loads of each period, which should not 
exceed the total number of available hours for the period.  

• To quantify the necessary transportation hours, the 
distance of the paved route and the distance of the 
unpaved route between each origin/destination pair is 
known, as is the average speed on the unpaved and paved 
route, which reaches 35 and 65 km/hr, respectively. 

• A limited number of cranes for log loading in the farms 
of origin were considered, as well as the fact that each 
crane has a maximum payload capacity per period and a 
limited displacement capacity within a limited 
geographic area. This is because cranes are part of a 
harvest production line and the operation costs are 
included in the production fee of the logs, which in turn 
considers that the cranes are operating in double shifts 
every day, so they have a limited time for the 
displacement between farms. That is, the model considers 
that the cranes have a limited geographic scope in which 
their operation costs are already covered in the costs of 
the harvest. Cranes were allocated with a maximum of 
two per farm in each period. This is because it is 
operationally complex to coordinate the movement of 
trucks within a farm with more than two loading points, 
in addition to the strong rejection from the neighboring 
communities against the high traffic of trucks. 

• The inventory of each product in each farm and for each 
period is built with the production of the period plus the 
available inventory that was left from the previous period. In 
this study, raw material inventory (logs) is not considered on 
farms at the beginning of the planning period 
Finally, the model constrains the loads in stock for each 

period that can be available in farms in which the harvest is being 
performed in tower production lines. This harvest system is 
necessary in mountain sectors, where the topography makes it 
necessary to install towers with steel cables to extract trees. These 
are later bucked and stuck in very narrow sectors. For this reason, 
the stock should necessarily be low because, otherwise, it is not 
possible to continue producing logs without the necessary space 
to store them. The constraint generated is that the model must 
perform the dispatch of loads constantly from these forest farms, 
despite that going against the effort to minimize the 
transportation cost. 

 
2.1.  Sets and subindexes 

 
I: Set of farms in which the logs are found. I = {1,…,42}. 

𝐼𝐼𝑛𝑛: Subset of farms that belong to the geographic area n 
in which the logs are found. 𝐼𝐼𝑛𝑛 = {1,…,10}. 
ITO: Subset of farms that an offer of logs produced with 
tower Harvest equipment. ITO = {1,…,12}. 
J: Set of industrial plants that demand logs. J = {1,…,37}. 
K: Set of logs classified according to length, diameter and 
quality. K = {1,…,13}. 
T: Set of periods. T = {1,…,5}. 
T3: Subset of periods that considers periods 2, 3 and 4. T3 
= {2,…,4}. 
T4: Subset of periods in which only the fourth period is 
considered. T4 = {4}. 
T1: Subset of periods in which only the first period is 
considered. T1 = {1}. 
T-1: Subset of periods prior to each period. T-1= {1, 
…,4}. 
W: Subset of periods in which the first four periods are 
considered. W = {1,…,4}. 
Q: Subset of periods in which only the fifth period is 
considered. Q = {5}. 
i: Subscript of the farm where the log is located. 
j: Subscript of the industrial plant that demands logs. 
k: Subscript for each raw material. 
t: Subscript for each period.  
 

2.2.  Parameters 
 
The unit of measurement is the number of logs. One load 

is equivalent to the standard capacity of a truck, which is 28 
cubic meters of logs. The parameters used in the model are 
as follows: 

𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 : Stock of logs, expressed in the number of loads of 
product k in farm i for period t. 

𝑏𝑏𝑗𝑗𝑖𝑖𝑖𝑖 : Demand of logs, expressed as the number of loads 
of product k in destination j during period t.  

𝐶𝐶𝑖𝑖𝑗𝑗 : Unit cost of transport, expressed as the load between 
farm i and destination j.  

𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑗𝑗  : Paved distance, expressed in kilometers between 
farm i and destination j.  

𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑗𝑗: Non-paved distance, expressed in kilometers 
between farm i and destination j. 

r1: Total transport capacity for each of the first four 
periods, expressed in hours. 

r2 : Total transportation capacity for the fifth period, 
expressed in hours. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖: Number of cranes available in the subset of 
farms, with i ϵ 𝐼𝐼𝑛𝑛 . 

𝑏𝑏𝑏𝑏𝑑𝑑𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖: Number of maximum possible loads (80) in 
period 4 in the farms in which the harvest was performed with 
towers, with i ϵ ITO and t ϵ T4. 

In addition, the average speed of a truck on a paved road 
was considered as 65 kilometers per hour; on an unpaved 
road, this speed was 35 km/hr.  

 
2.3.  Decision variables 

 
𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖  : Volume of logs, expressed in the number of loads 

of product k to be sent from farm i to destination j in period 
t; continuous variable.  

𝑦𝑦𝑖𝑖𝑖𝑖 : Number of cranes to be allocated to farm i in period 
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t; integer variable.  
𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 : Volume of logs, expressed as the number of loads 

of product k that will be present in farm i (with i ϵ ITO) during 
period t; continuous variable. 

Z : Total cost of transportation; linear variable 
 

2.4.  Proposed mathematical model 
 
Objective function: 
 

Min Z =  ����   𝐶𝐶𝑖𝑖𝑗𝑗   ∗   𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖  
𝑖𝑖ϵ𝑇𝑇𝑖𝑖ϵ𝐾𝐾𝑗𝑗ϵ𝐽𝐽𝑖𝑖ϵ𝐼𝐼

 (1) 

 
Subject to: 
 

�𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗ϵ𝐽𝐽

≤ 0   ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑏𝑏 ∈ 𝑇𝑇1 (2) 

�� 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 −�𝑏𝑏𝑗𝑗𝑖𝑖𝑖𝑖
𝑖𝑖𝑡𝑡𝑡𝑡 𝑖𝑖𝑡𝑡𝑡𝑡

≥ 0   ∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑘𝑘 ∈ 𝐾𝐾 
𝑖𝑖𝑡𝑡𝐼𝐼

 (3) 

�𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 − 𝑏𝑏𝑗𝑗𝑖𝑖𝑖𝑖
𝑖𝑖𝑡𝑡𝐼𝐼

≥ 0   ∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑏𝑏 ∈ 𝑄𝑄 (4) 

���
𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑗𝑗

65
𝑖𝑖𝑡𝑡𝐾𝐾𝑗𝑗𝑡𝑡𝐽𝐽𝑖𝑖𝑡𝑡𝐼𝐼

∗ 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖

+ ���
𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑗𝑗

35
𝑖𝑖𝑡𝑡𝐾𝐾𝑗𝑗𝑡𝑡𝐽𝐽𝑖𝑖𝑡𝑡𝐼𝐼

∗ 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖

≤ r1  ∀t ∈ W 

(5) 

���
𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑗𝑗

65
𝑖𝑖𝑡𝑡𝐾𝐾𝑗𝑗𝑡𝑡𝐽𝐽𝑖𝑖𝑡𝑡𝐼𝐼

∗ 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖

+ ���
𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑗𝑗

35
𝑖𝑖𝑡𝑡𝐾𝐾𝑗𝑗𝑡𝑡𝐽𝐽𝑖𝑖𝑡𝑡𝐼𝐼

∗ 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖

≤ r1   ∀t ∈ Q 

(6) 

�𝑦𝑦𝑖𝑖𝑖𝑖
𝑖𝑖𝑡𝑡𝐼𝐼𝑛𝑛

≤ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖   ∀i ∈ 𝐼𝐼𝑛𝑛,∀t ∈ W (7) 

�𝑦𝑦𝑖𝑖𝑖𝑖
𝑖𝑖𝑡𝑡𝐼𝐼𝑛𝑛

≤ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖   ∀i ∈ 𝐼𝐼𝑛𝑛,∀t ∈ Q (8) 

𝑦𝑦𝑖𝑖𝑖𝑖 − 2 ≤ 0    ∀i ∈ I,∀t ∈ W (9) 
𝑦𝑦𝑖𝑖𝑖𝑖 − 20 ≤ 0   ∀i ∈ I, ,∀t ∈ Q (10) 

��𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 − 25 ∗  𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 0
𝑖𝑖𝑡𝑡𝐾𝐾𝑗𝑗𝑡𝑡𝐽𝐽

   ∀i ∈ I,∀t ∈ W (11) 

��𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 − 25 ∗  𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 0
𝑖𝑖𝑡𝑡𝐾𝐾𝑗𝑗𝑡𝑡𝐽𝐽

   ∀i ∈ I,∀t ∈ Q (12) 

�𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖
𝑗𝑗𝑡𝑡𝐽𝐽

– 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 0 ∀i ∈ I,∀k

∈ K,∀t ∈ T1 

(13) 

 𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖𝑖𝑖−1𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 −�𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗ϵ𝐽𝐽

 ∀i

∈ I,∀k ∈ K,∀t ∈ T 

(14) 

�𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 ≤
𝑖𝑖𝑡𝑡𝐾𝐾

𝑏𝑏𝑏𝑏𝑑𝑑𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖  ∀i ∈ ITO,∀t ∈ W (15) 

 
The objective function minimizes the total cost of 

transportation. To achieve this, the cost between each origin-
destination pair and the number of loads to be transported 
between each farm and the industrial plant is considered (eq. 1).  

The total number of loads transported during the first 
period to each destination must be equal to or less than the 
number of available loads (eq. 2). 

The total number of loads transported from each origin to 
each destination during the first four periods must be greater than 
or equal to the number of loads demanded of each product in each 
destination during the first four periods (eq. 3). 

The total number of loads transported from each origin to 
each destination during the fifth period must be greater than 
or equal to the number of loads demanded of each product in 
each destination during the fifth period (eq. 4). 

The total amount of transportation for each of the first four 
periods must be less than or equal to the total transportation 
capacity for each of the first four periods (eq. 5). 

The total amount of transportation for the fifth period 
must be less than or equal to the total transportation capacity 
for each of the fifth period (eq. 6). 

The number of cranes to be allocated to each subgroup of 
farms and in each of the first four periods must be less than 
or equal to the number of cranes available in each subgroup 
of farms for the first four periods (eq.7). 

The number of cranes to be allocated to each subgroup of 
farms and in the fifth period must be less than or equal to the 
number of cranes available in each subgroup of farms for the 
fifth period (eq. 8). 

More than two cranes should not be allocated to the same 
farm for each of the first four periods (eq. 9). 

More than twenty-two cranes should not be allocated to 
the same farm for the fifth period (eq. 10). 

The maximum payload capacity that can be dispatched for 
each crane during the first four periods is 275 loads (eq. 11). 

The maximum payload capacity that can be dispatched 
for each crane during the fifth period is 275 loads (eq. 12). 

The total number of loads transported during the first 
period plus the warehouse of each farm and product for the 
first period must be less than or equal to the stock of logs per 
farm in the first period (eq. 13). 

The volume of logs to be sent from each forest plus the 
quantity remaining in inventory for the subsequent period is equal 
to the quantity produced during the current period plus the 
quantity from the inventory of the previous period (eq. 14). 

The warehouses of the subgroup of farms with harvests 
by means of logging towers must have an amount less than 
or equal to 80 in each of the first four periods (eq. 15). 

 
2.5.  Test scenarios 

 
The test scenarios used in the study are summarized in 

Table 1. All scenarios start from the baseline of scenario 1 
and only one parameter is modified at a time to quantify the 
impact of this parameter on the result. SCE= 1 indicates that 
said parameter had the same value as in scenario 1. 
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Table 1 
Test scenarios used. 

 
  Available hours of trucks Number of available cranes 

Scenari
o (SCE) 

Stock of logs 
(loads) 

Demand of logs 
(loads) 

For each of the 
first four periods 

For the fifth 
period 

For each of the first 
four periods For the fifth period 

1 8,191 4,086 1,200 13,200 62 440 

2 = SCE 1 = SCE 1 Unbounded Unbounded Unbounded Unbounded 

3 +30% c/r a SCE 
1 

= SCE 1 = SCE 1 = SCE 1 = SCE 1 = SCE 1 

4 -30% c/r a SCE 1 = SCE 1 = SCE 1 = SCE 1 = SCE 1 = SCE 1 

5 = SCE 1 +30% c/r a SCE 
1 

= SCE 1 = SCE 1 = SCE 1 = SCE 1 

6 = SCE 1 -30% c/r a SCE 1 = SCE 1 = SCE 1 = SCE 1 = SCE 1 

7 = SCE 1 = SCE 1 +5% c/r a SCE 1 +5% c/r a SCE 
1 

= SCE 1 = SCE 1 

8 = SCE 1 = SCE 1 +10% c/r a SCE 1 +10% c/r a 
SCE 1 

= SCE 1 = SCE 1 

9 = SCE 1 = SCE 1 -5% c/r a SCE 1 -5% c/r a SCE 
1 

= SCE 1 = SCE 1 

10 = SCE 1 = SCE 1 -10% c/r a SCE 1 -10% c/r a 
SCE 1 

= SCE 1 = SCE 1 

11 = SCE 1 = SCE 1 = SCE 1 = SCE 1 -1 crane per 
neighborhood c/r a SCE 1 

-10% crane per 
neighborhood c/r a SCE 1 

12 = SCE 1 = SCE 1 = SCE 1 = SCE 1 +1 crane per 
neighborhood c/r a SCE 1 

+10% crane per 
neighborhood c/r a SCE 1 

13 = SCE 1 = SCE 1 = SCE 1 = SCE 1 = SCE 1 = SCE 1 

14 = SCE 1 = SCE 1 763 = SCE 1 = SCE 1 = SCE 1 

15 4,086 = SCE 1 = SCE 1 = SCE 1 = SCE 1 = SCE 1 

Source: The authors. 
 
 

3.  Results and discussion 
 
Table 2 shows the results for the 15 proposed scenarios. 

Scenario 1 has a transportation cost of US$6.91 per load, uses 
100% of the transportation capacity during the first four days 
and plans to use only 92% of the transportation capacity 
during the next 11 days. Alternately, the cranes achieve an 
average use of 77% during the first four days, and lowering 
the utilization of said cranes to 48% is planned for the next 
days of the period. 

Scenario 2 achieves a cost (objective function) that is 4% 
lower with respect to the baseline scenario (scenario 1), but it 
must be taken into account that this scenario considers an 
unlimited capacity of transportation and payload, which 
generates the lowest cost of all scenarios with the same 
demand. The result in scenario 2 shows a marked trend to 
expect future periods to perform the transportation of logs 
because the forest farms that began to have stock permit found 
a better origin/destination combination, allowing for a 
reduction of the transportation costs. However, the need for 
transportation is completely unbalanced because it requires 
increasing the transportation capacity by more than five times 
in the period from 1 to 2 and more than double in the period 
from 2 to 3. This can be seen in column 2 of Table 2, regarding 
the number of hours of truck use. Regarding the cranes, the 
results show the same trend as for the case of transportation, 
but the differences are not so marked in each of the first 

periods; however, it indicates that more cranes are used than 
in the baseline scenario. This extreme flexibility in relation to 
the payload and transportation capacity is virtually impossible 
to achieve in reality. However, it is interesting to consider the 
possibility of counting on a degree of flexibility in the payload 
and transportation capacity to perform transportation 
programs with varying ability to delay or advance the 
transportation of logs and, thus, reduce costs. 

Scenarios 3 and 4 consider variations in the stock of logs 
and achieve differences between -1% and 3% of the 
transportation costs in comparison to the baseline scenario, 
although it is expected that, by increasing the availability of 
loads by 30% in scenario 3, the cost of the freight decreases. 
Thus, it is important to take into account the order of 
magnitude in relation to the variation of the cost. Alternately, 
scenario 4 reduces the number of loads by 30% in comparison 
to the baseline scenario and generates a cost that is 3% higher 
than that of scenario 1.  

Increasing the availability of payloads by 30% requires a 
significant increase in production, which requires extending 
the production shifts or hiring additional production lines. Any 
of the alternatives has an extra cost higher than US$0.06 per 
load (-1% in comparison to the baseline scenario), which is 
reduced from the transportation cost in comparison to the 
baseline scenario. 

Scenarios 5 and 6, which vary in the demand of loads by 
+/- 30%, respectively, are relatively common for various 
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reasons. Among these is the need to enter with more loads of 
logs because the industrial plants are processing a given type 
of log and the programmed amount of products for the next 
shipment has not been achieved. Then, the input of additional 
loads of logs to finish the production on time is urgently 
required. On the contrary, drops in the demand of loads despite 
not being so frequent can be presented as a result of 
unexpected failures in industrial plants, and the dispatch of 
loads must be stopped to repair the failure. Scenario 5 poses a 
hard restriction to the model because the demand of loads is 
increased by 30% with respect to the base scenario and the 
stock of logs and the capacity of loading and transportation are 
maintained. The higher quality logs present high demand and, 
generally, a low stock in farms without gaps between stock 
and demand, generating a critical scenario. The model allows 
finding a feasible solution that has an additional cost of 21% 
with respect to the baseline scenario. Transportation capacities 
are 100% utilized in both the first four days and the remaining 
11 days. In the same line, this scenario requires activating the 
greatest number of cranes in all scenarios to load the trucks. 
An average of 81% of the cranes must be used during each of 
the first four days. The resolution time is also the highest of 
all scenarios, showing that the model is addressing a more 
complex situation than the other scenarios.  

On the contrary, scenario 6, with a 30% increase in the 
demand of logs over the baseline scenario, has a 6% lower cost 
than the baseline scenario. 

Scenarios 6, 7, 8, 9 and 10 consider modification to the 
transportation capacity with respect to the baseline scenarios. 
Scenarios 7 and 8 consider +5% and +10% of the 
transportation capacity with respect to scenario 1. The greater 
availability of transportation allows for finding an 
origin/destination combination that is 2 cents cheaper than that 
of the baseline scenarios. In the same line, scenario 8 
continues to reduce the transportation costs by having greater 
transportation capacity, but it is still more marginal than the 
baseline scenario rather than scenario 8.  Both scenarios show 
that the standard transportation capacity of the baseline 
scenario is virtually on the top of the economic optimum 
because although continuing to increase the transportation 
capacity allows for the reduction of costs, this reduction is 
marginal. This is corroborated by comparing the number of 
truck hours used in scenario 2, which had no limits in terms of 
the transportation capacity, i.e., in this scenario, the truck 
hours used are optimal for achieving the lowest possible 
transportation cost, and the truck hours used in scenarios 7 and 
8 represent 92% and 96%, respectively, that of scenario 2 for 
the first 4 days and 91% for the remaining 11 days.  

On the contrary, scenarios 9 and 10 consider -5% and -
10%, respectively, the transportation capacity with respect to 
scenario 1. The lower transportation availability raises the 
transportation costs by approximately 1%, but again, the 
movements in the costs are quite marginal. 

Of these four scenarios, it is possible to analyze that 
modifications of +/-10% in the amount of transportation for 
these scenarios that corresponds to +/- 240 truck hours per day 
generates no strong impacts on the transportation costs. This 
is due to the high flexibility of the model in terms of moving 
forward or delaying the delivery of the loads by at least 4 days. 
This accommodates the daily dispatch of loads according to 

the transportation capacity and thus meets at the fourth day 
with all customers at slightly higher or lower costs than those 
obtained with the standard transportation capacity. 

Finally, scenarios 11 and 12 consider modifications to the 
number of available cranes per geographic area for truck 
loading. Scenario 11 considers one crane less per geographic 
area for each of the first four days than for the baseline 
scenario. The lower availability of cranes suggests the 
necessity of generating a set of origin/destination pairs 
different from those of the baseline scenario, as a product of 
the impossibility of loading in certain farms. Although the 
transportation cost of scenario 11 is higher than that of the 
baseline scenario, it is only 0.35 higher. The opposite effect 
but with an equal order of magnitude is observed in the results 
from scenario 12. The high availability of cranes considered 
by the baseline scenario and the possibility of moving forward 
or delaying the delivery of loads by up to four days allows for 
changes in the loading capacity to be absorbed by the system 
without strong impacts on the transportation costs.  

In addition to the 2 above presented and solved scenarios, 
three additional scenarios that correspond to border scenarios 
for the first four periods of the model were considered. 

As discussed in several contexts, the developed model 
allows for moving forward or delaying the delivery of the 
loads by up to 4 days maximum. This allows for freedom in 
the model to find the set of origin/destination combinations 
that minimizes the total transportation cost. To quantify the 
magnitude of the additional cost that assumes not having the 
freedom of moving forward or delaying the delivery of the 
loads, scenario 13 was run with the same parameters as 
scenario 1 or the baseline scenario and the model was 
modified to restrict it such that the loads demanded of each 
product in each destination should be delivered in the same 
period in which they were demanded. 

The freight cost of scenario 13 or the scenario with fixed 
demand is where the advance or delay of the delivery of loads 
is 7.9 higher than that of the baseline scenario. This represents 
US$0.54 per load. 

Scenario 14 has the same parameters as scenario 1 but 36% 
less transportation capacity for each of the first four periods, 
which reduced the truck availability per period from 1,200 
hours to 763 hours. After performing successive approach 
runs, it was determined that scenario 1 cannot be solved with 
less than 763 truck hours for each of the first four periods. This 
decline in the transportation availability generates a rise in the 
average cost of transportation by 25% with respect to scenario 
1. Although it is unlikely that the transportation availability is 
reduced by 36% due to fewer trucks as a product of 
mechanical failures, it is possible that this takes place as the 
result of a strike. The developed model allows for finding a 
feasible solution due to the flexibility of the load dispatch.  

Finally, scenario 15 also poses a hard constraint to the model 
because, by considering the same parameters as for scenario 1 but 
maintaining both the supply and demand of each of the products, 
the offer is reduced to only the 4,086 demanded loads. The model 
continued to have the possibility of moving forward or delaying 
the delivery of loads by up to four days, but, at the end of the fourth 
period, all available loads should have been dispatched. This 
increases the transportation cost by 16% compared to that of 
scenario 1, resulting in US$1.08 more per load. 
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Table 2. 
Results. 

 Scenario 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Objective 
function 
(US$) 

28,227 27,085 27,983 29,200 44,581 18,617 28,155 28.119 28,351 28,558 28,328 28,194 30,458 35,442 32,642 

Total loads 4,086 4,086 4,086 4,086 5,311 2,860 4,086 4,086 4,086 4,086 4,086 4,086 4,086 4,086 4,086 
Cost per 
load 
transported 
(US$) 

6.91 6.63 6.85 7.15 8.39 6.51 6.89 6.88 6.94 6.99 6.93 6.90 7.45 8.67 7.99 

Hrs truck 
used 

               

Period 1 1,200 163 1,200 1,200 1,200 244 1,260 1,320 1,140 1,080 1,200 1,200 1,200 763 1,200 
Period 2 1,200 959 1,200 1,200 1,200 965 1,260 1,320 1,140 1,080 1,200 1,200 1,200 763 1,200 
Period 3 1,200 2,241 1,200 1,200 1,200 1,200 1,260 1,320 1,140 1,080 1,200 1,200 1,200 763 1,200 
Period 4 1,200 2,131 1,200 1,200 1,200 1,200 1,260 1,320 1,140 1,080 1,200 1,200 1,200 763 1,200 
Period 5 12,162 13,370 12,162 12,162 13,200 10,022 12,162 12,162 12,162 12,162 11,936 12,141 13,200 13,200 13,200 
Cranes used                
Period 1 47 58 48 49 50 44 47 49 49 48 41 51 48 50 43 
Period 2 49 58 48 50 51 45 47 48 47 49 40 52 32 47 44 
Period 3 47 58 49 50 50 49 49 49 48 50 38 53 32 49 42 
Period 4 47 62 47 47 50 47 48 46 47 46 38 54 32 47 39 
Period 5 210 924 210 210 241 178 210 210 210 210 188 226 155 210 198 
CPU time 
(s) 

17.56 17.78 17.09 18.12 20.04 15.61 17.89 17.46 17.6 17.9 19.62 18.50 17.89 23.60 18.93 

Source: The authors. 
 
 

4.  Conclusion 
 
The problem described in this study is a real-world 

problem solved only by experience in the forestry company. 
The mathematical model constructed and detailed in this 
work solves all of the raised instances accurately, which 
permits its use as a valuable tool for the aid of decision-
making against the problem of daily planning of both cranes 
and trucks for the dispatch of logs. 

The model proposed allows for accurate solutions to 
different scenarios to be found by first knowing the feasibility 
of each one and their associated costs. Thus, to comply with 
the client’s expected deliveries, anticipating the problems is 
crucial. Changes in the demands or in the capacities of 
loading and transportation should be taken into account in 
making decisions regarding the evaluation of costs and 
deliveries to each customer, with an average computation 
time of 20 seconds. 

The model developed without a fixed demand per period 
allows for balancing the use of the transportation capacity 
considering a later equitable programming of the 
transportation for all periods. That is, considering that 
different scenarios were established to incorporate the 
inherent variability of forest operations. 
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