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Abstract 
Image fusion is the generation of an image 𝑓𝑓 that combines the most relevant information from a set of images of the same scene, acquired 
with different cameras or camera settings. Multi-Focus Image Fusion (MFIF) aims to generate an image 𝑓𝑓𝑒𝑒  with extended depth-of-field 
from a set of images taken at different focal distances or focal planes, and it proposes a solution to the typical limited depth-of-field problem 
in an optical system configuration. A broad variety of works presented in the literature address this problem. The primary approaches found 
there are domain transformations and block-of-pixels analysis. In this work, we evaluate different systems of supervised machine learning 
applied to MFIF, including k-nearest neighbors, linear discriminant analysis, neural networks, and support vector machines. We started 
from two images at different focal distances and divided them into rectangular regions. The main objective of the machine-learning-based 
classification system is to choose the parts of both images that must be in the fused image in order to obtain a completely focused image. 
For focus quantification, we used the most popular metrics proposed in the literature, such as: Laplacian energy, sum-modified Laplacian, 
and gradient energy, among others. The evaluation of the proposed method considered classifier testing and fusion quality metrics 
commonly used in research, such as visual information fidelity and mutual information feature. Our results strongly suggest that the 
automatic classification concept satisfactorily addresses the MFIF problem. 
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Evaluando aproximaciones basadas en aprendizaje supervisado para 
la fusión en el dominio espacial de imágenes multi-foco 

 
Resumen 
La fusión de imágenes genera una imagen 𝑓𝑓 que combina las características más relevantes de un conjunto de imágenes de la misma escena 
adquiridas con diferentes cámaras o configuraciones. La Fusión de Imágenes Multifoco (MFIF) parte de un conjunto de imágenes con 
diferente distancia focal para generar una imagen 𝑓𝑓𝑒𝑒  con una profundidad de campo extendida. Lo que constituye una solución al problema 
de la profundidad de campo limitada en la configuración de un sistema óptico. La literatura muestra una amplia variedad de trabajos que 
abordan este problema. Las transformaciones de dominios y el análisis de bloques de píxeles son la base de los principales enfoques 
propuestos. En este trabajo se presenta una evaluación de diferentes sistemas de aprendizaje supervisado aplicados a MFIF, incluyendo k-
vecinos más cercanos, análisis discriminante lineal, redes neuronales y máquinas de soporte vectorial. El método inicia con dos imágenes 
de la misma escena, pero con diferentes distancias focales que se dividen en regiones rectangulares. El objetivo principal del sistema de 
clasificación, que está basado en aprendizaje de máquina, es elegir las partes de ambas imágenes que deben estar en la imagen fusionada 
para obtener una imagen completamente enfocada. Para la cuantificación del enfoque se utilizaron las métricas más populares propuestas 
en la literatura como: la Energía Laplaciana, el Laplaciano Modificado por Suma y el Gradiente de Energía, entre otras. La evaluación del 
método propuesto incluye la fase de prueba de los clasificadores y las métricas de calidad de fusión utilizadas comúnmente en la 
investigación, tales como la fidelidad de la información visual y la característica de información mutua. Los resultados muestran que el 
concepto de clasificación automática puede abordar satisfactoriamente el problema MFIF. 
 
Palabras clave: Fusión de imágenes mutifoco; procesamiento de imágenes; aprendizaje supervisado; aprendizaje de máquina. 
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1.  Introduction 

 
Traditional optical systems are limited by focus range, 

which means that not all objects in a scene appear clearly 
defined [1], so only the objects within the field of depth of 
the camera are focused and are perceived clearly, while the 
rest of the scene is blurred [2]. Thus, to generate an image 
with all objects adequately focused, the academic community 
used the idea of forming a synthetic image by fusing a set of 
images of the same scene. This is called Multi-Focus Image 
Fusion (MFIF). The MFIF process consists of merging 
multiple images with different focal planes to generate an 
image in which all objects appear sharp [3] without the 
introduction of any artifacts. 

The application of MFIF is widespread and used to solve 
problems related to three-dimensional reconstruction [2,4], 
mobile image processing, microscopic imaging [5], and 
computer vision [6], among others. 

To generate an extended-focus image from a sequence of 
partially focused images of the same scene, digital image 
descriptors called focus measures [7] are used in different 
approaches.  

MFIF is generally divided into two major types of 
methods [1,8-9]: 
• spatial-domain image fusion methods; 
• frequency-domain image fusion methods. 

The spatial-domain methods use measurable 
characteristics of spatial information of image pixels. They 
estimate these measures pixel by pixel or by using pixel sets 
[10,11]. The principal advantages of these methods are that 
they are easy to implement and require low computational 
complexity. However, they do require rich texture 
information in an image to generate good results and are 
usually weak in smooth image regions. Furthermore, 
grouping of pixels presents difficulties related to the correct 
determination of group size for quality maximization and to 
the presence of artifacts generated on border blocks [3].  

Various approaches within the special-domain methods 
of MFIF have been applied. For example, K.L. Hua et al.  
[11] used random walks on graphs created from several 
feature sets of focus measures and color consistency to model 
local and global characteristics. This approach estimated the 
measures in each pixel locally for each input image and used 
them to maximize the global focus score and color 
consistency. On the other hand, a method based on sparse 
feature matrix decomposition using morphological filtering 
to extract salient features of original input images, was 
proposed in [12]. They used a pixel-wise methodology to 
fuse each sparse feature matrix estimation based on 
morphological filtering to generate the fused image. 

Some works use hierarchical structures called QuadTree 
for recursively partitioning the pixel space of the image and 
decompose the input images into blocks of variable size 
[13,14]. Using a focus measure based on the sum-modified-
Laplacian (SML), the method detects the focused regions. So, 
the resulting image is generated using the focused regions of 
input images. The main problem with partitioned methods is 
determination of the correct block size. Avoiding defocused 
regions in large regions or small blocks with low-contrast 

variance is the main challenge of QuadTree [14]. Similarly, 
the accuracy of the partitioning depends on searching deep in 
the tree, which has a direct impact on the computational cost. 
Other graph-based works are found in [15,16]. 

Another approach for dealing with the selection of 
focused regions in images is the segmentation approach.   S. 
Li et al. [17] proposed a method that uses morphological 
filtering for rough segmentation of the images based on an 
initially estimated focus map.  The method then uses the 
image matting technique to refine the segmentation results 
and a merging process to generate the final image. Another 
segmentation approach was proposed by M. Nejati et al. [18], 
based on a training and a testing phase. The training phase 
constructs a dictionary using focus information maps from 
local patches of source images. Each pixel from each input 
image is classified as in focus or not in focus. The final image 
results from pixel fusion according to a decision map that 
indicates which source image must be used to obtain the pixel 
intensity value. Overall, although the 
segmentation/optimization-based methods applied to the 
problem of image fusion generate adequate results, they 
involve a high computational cost.   

Frequency-domain image fusion methods transform input 
images into a frequency domain representation where they 
are combined. One approach within this category is based on 
multi-scale decomposition.  This is the most commonly 
reported approach to MFIF.  For example, a shift and rotation 
invariant pyramid representation called Steerable Pyramid 
was applied by Z. Lin et al. [22]. Other frequency 
representations reported are Discrete Wavelet Transform 
[7,23] and Robust Principal Component Analysis [6]. 
Frequency-domain image fusion methods can be applied to 
multi-focus and multi-modal images with acceptable 
behavior. However, they add some noise level and cannot 
guarantee fidelity of the input image in the final image.  

The MFIF problem can be stated as a classification 
problem where the classifier must decide in which source 
image the pixel or region has a high focus measure. J. Saeedi 
and K. Faez proposed a wavelet-based MFIF method which 
used a two-class Fisher classifier to group the regions into 
focused and defocused ones [19]. To reduce the number of 
misclassified regions due to uncertainty, they included a 
fuzzy logic algorithm. On the other hand, some works 
reported the use of other types of classifiers, such as neural 
networks, to tackle the MFIF problem [20,21]. 

The aim of this study is to compare various classification 
approaches to the MFIF problem. We selected four popular focus 
measures and proposed a new one based on morphological 
features; then we used these as classifier inputs. 

This paper is organized as follows. In Section 2, we present 
the methodology used in this study, including the data and vector 
feature selection, training, and fusion stages. Section 3 presents 
the results obtained and comparisons. Finally, Section 4 
concludes with a summary and future works. 

 
2.  Methodology 

 
We establish the MFIF as a classification problem where 

the aim is to process a pair of input images, labeling their  
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Figure 1. Blocks diagram of used methodology.  
Source: The authors. 

 
 

 
Figure 2. The scheme used to form the subset of images.  
Source: The authors. 

 
 

regions as focused and defocused, in order to build up a final 
image that merges the focused regions. The methodology begins 
by selecting the image set used for the training and testing stages. 
After the image set was defined, we selected focus measures 
reported in the literature and machine-learning-based classifiers. 
The training process and the image fusion were the next 
methodological stages. Finally, we carried out an evaluation step 
to compare the behaviors of the selected classifiers. Figure 1 
shows a block diagram of the methodology used. 

 
2.1.  Image-set selection and rectangular segmentation 

 
Our initial set of images consisted of 30 pairs of 

multifocus images taken from public datasets [18,24] and a 
set of images of our own acquired in the laboratory. Every 
pair consisted of two images: a near-focused one and a far-
focused one. Then, using rectangular cropping, a subset of 
830 images was constructed and associated with a binary tag 
(focused:1, defocused:0) by human judgment. Figure 2 
illustrates this process. 

 
2.2.  Focus measures and feature vector formation 

 
In the MFIF context, a focus image operator is a local 

metric that quantifies the quality of focus in an image region. 
Ideally, when the region is perfectly focused, these operators 
must generate a maximum value [25] that decreases in a 
similar way when the image becomes blurred. Many focus 
metrics have been proposed by the scientific community. A 
typical focus metric should satisfy the following 
requirements [7]: 

• independence of image content 
• monotonicity of blur 
• unimodality (only one maximum value) 
• value variation according to degree of blurring  
• minimal computation complexity 
• robustness to noise 

We selected four focus measures frequently used in 
reported works [7] and proposed a new focus measure based 
on morphological features.  

Let us consider 𝑓𝑓(𝑥𝑥, 𝑦𝑦), the intensity level of a pixel 
(𝑥𝑥,𝑦𝑦). The selected focus measures are defined below: 

 
2.2.1.  Energy of Laplacian  

 
The Energy of Laplacian (EOL) of an image 𝑓𝑓 is 

computed as: 
 

𝐸𝐸𝐸𝐸𝐸𝐸 =  ��(𝑓𝑓𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑦𝑦𝑦𝑦)2
𝑦𝑦𝑥𝑥

 (1) 

 
Where 
 
𝑓𝑓𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑦𝑦𝑦𝑦 = −𝑓𝑓(𝑥𝑥 − 1, 𝑦𝑦 − 1) − 4𝑓𝑓(𝑥𝑥 − 1, 𝑦𝑦)

− 𝑓𝑓(𝑥𝑥 − 1, 𝑦𝑦 + 1)
− 4𝑓𝑓(𝑥𝑥,𝑦𝑦 − 1) + 20𝑓𝑓(𝑥𝑥,𝑦𝑦)
− 4𝑓𝑓(𝑥𝑥,𝑦𝑦 + 1)
− 𝑓𝑓(𝑥𝑥 + 1, 𝑦𝑦 − 1)
− 4𝑓𝑓(𝑥𝑥 + 1, 𝑦𝑦)
− 𝑓𝑓(𝑥𝑥 + 1, 𝑦𝑦 + 1) 

(2) 

 
2.2.2. Sum-modified Laplacian 

 
The modified Laplacian is a proposal to avoid the 

cancellation trend of the second derivate in the EOL basic 
definition [25]. So, the SML is defined by equations (3) and (4): 

 
𝛻𝛻2𝑀𝑀𝑀𝑀𝑓𝑓(𝑥𝑥, 𝑦𝑦) = |2𝑓𝑓(𝑥𝑥, 𝑦𝑦) − 𝑓𝑓(𝑥𝑥 − 𝛽𝛽, 𝑦𝑦)

− 𝑓𝑓(𝑥𝑥 + 𝛽𝛽, 𝑦𝑦)|
+ |2𝑓𝑓(𝑥𝑥, 𝑦𝑦) − 𝑓𝑓(𝑥𝑥, 𝑦𝑦 − 𝛽𝛽)
− 𝑓𝑓(𝑥𝑥, 𝑦𝑦 + 𝛽𝛽)| 

(3) 

 
where 𝛽𝛽 is a spacing parameter addressing the 

accommodation of texture variation in the image and set to 
𝛽𝛽 = 1.  

 

𝑆𝑆𝑆𝑆𝐸𝐸 = � � 𝛻𝛻2𝑀𝑀𝑀𝑀𝑓𝑓(𝑖𝑖, 𝑗𝑗)𝑓𝑓𝑓𝑓𝑓𝑓
𝑗𝑗=𝑥𝑥+𝑁𝑁

𝑗𝑗=𝑥𝑥−𝑁𝑁

𝑖𝑖=𝑥𝑥+𝑁𝑁

𝑖𝑖=𝑥𝑥−𝑁𝑁

𝛻𝛻2𝑀𝑀𝑀𝑀𝑓𝑓(𝑖𝑖, 𝑗𝑗) ≥ 𝑇𝑇 (4) 

 
where 𝑇𝑇 is a discrimination threshold value and 𝑁𝑁 is the 

window size. 
 

2.2.3. Energy of image gradient 
 
This operator is based on the concept of determining the 

local high-frequency variations. The Energy of Gradient 
(EOG) can be computed as: 
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𝐸𝐸𝐸𝐸𝐸𝐸 = ���𝑓𝑓𝑥𝑥2 + 𝑓𝑓𝑦𝑦2�
𝑦𝑦𝑥𝑥

 (5) 

 
Where 
 

𝑓𝑓𝑥𝑥 = 𝑓𝑓(𝑥𝑥 + 1, 𝑦𝑦) − 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (6) 
  

𝑓𝑓𝑦𝑦 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦 + 1) − 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (7) 
  

2.2.4. Spatial Frequency 
 
Spatial frequency (SF) is a modification of the energy of 

image gradient operator. It is defined as: 
 

𝑆𝑆𝑆𝑆 = �𝑅𝑅𝑆𝑆2 + 𝐶𝐶𝑆𝑆2 (8) 

 
where RF and CF are the row and column frequency 

respectively. 
 

𝑅𝑅𝑆𝑆 = �
1

𝑆𝑆 × 𝑁𝑁
��[𝑓𝑓(𝑥𝑥, 𝑦𝑦) − 𝑓𝑓(𝑥𝑥, 𝑦𝑦 − 1)]2

𝑁𝑁

𝑦𝑦=2

𝑀𝑀

𝑥𝑥=1

 (9) 

𝐶𝐶𝑆𝑆 = �
1

𝑆𝑆 × 𝑁𝑁
��[𝑓𝑓(𝑥𝑥, 𝑦𝑦) − 𝑓𝑓(𝑥𝑥 − 1, 𝑦𝑦)]2

𝑁𝑁

𝑦𝑦=1

𝑀𝑀

𝑥𝑥=2

 (10) 

 
2.2.5. Energy of morphological features 

 
We propose a new focus measure based on the metric defined 

in [17] and the concept of the energy of the image.  We named 
this focus measure as the Energy of Morphological Features 
(EMF).  We used a combination of bottom-hat and top-hat 
operations to first extract salient local features and then calculate 
the sum of maximum values for a window. 

 

𝐸𝐸𝑆𝑆𝑆𝑆(𝑊𝑊𝑀𝑀×𝑁𝑁
𝐼𝐼 )

=
1

𝑆𝑆 × 𝑁𝑁
��𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑖𝑖,𝑗𝑗 ,𝐵𝐵𝑖𝑖,𝑗𝑗�

2
𝑀𝑀

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 
(11) 

 
Let T and B be top-hat and bottom-hat morphological 

operations, respectively, centered at the pixel with 
coordinates (i,j). We describe the EMF of a local window W 
of an input image I. Finally, we build up a feature vector �⃗�𝛾 
composed of the ratio of each focus measure of input images 
A and B. Figure 3 shows the structure of the feature vector. 

 

 
Figure 3. Vector feature structure.  
Source: The authors. 

2.3.  Classifier selection 
 
Because the MFIF has been established as a classification 

problem, we selected the most representative classification 
approaches in the literature: Linear Discriminant Analysis 
(LDA) [26], naïve Bayes [27-29], k-nearest neighbors (k-
NN) [30], random forest, multilayer perceptron (MLP) [31], 
and support vector machine (SVM) [32]. The two classes for 
region classification were focused and defocused regions, 
represented as a binary tag. 

 
2.4.  Training procedure 

 
We created a binary classification dataset using the 

previously created subset of images with binary tags and the 
feature vector formation scheme described in Section 2.2. 

With this dataset, each binary classifier was trained and 
tested using cross-validation. Then, the best score classifier 
of each classification technique was saved for the posterior 
fusion scheme. 

For this purpose, the Python with Scikit-learn [33] and 
PyBrain [34] libraries were used to configure, train, and test 
different classifiers. 

 
2.5.  Fusion scheme 

 
The fusion scheme proposed in this work is composed of 

two main stages. In the first stage, a binary mask is generated 
with information about which regions of both images have 
high focus (Fig. 4). In the second stage, the fused image is 
obtained using input images 𝐴𝐴 and 𝐵𝐵 and the binary mask 
obtained in the first stage (Fig. 5). 

 
2.5.1.  Stage 1 – Binary mask generation 

 
The first stage begins by moving a rectangular window 

over a pair of input images and iteratively describing each 
window as a feature vector. Then, the ratio 𝛾𝛾 of these two 
vectors (Fig. 3) is used as an input for a trained classifier 
which returns a binary label (focused:1, defocused:0) for the 
highest focus in image 𝐴𝐴 or 𝐵𝐵 respectively. This binary label 
is used to build a binary mask 𝑍𝑍 of resolution equal to the 
moving window size. This mask contains information about 
the highly focused regions in both input images.  

 
𝑍𝑍 �

𝑥𝑥0: 𝑥𝑥1,
𝑦𝑦0: 𝑦𝑦1 � =  𝐶𝐶(�⃗�𝛾𝑥𝑥0:𝑥𝑥1,𝑦𝑦0:𝑦𝑦1)  (12) 

 
Equation (21) describes stage 1, where 𝑍𝑍 is the binary 

mask matrix, the range (𝑥𝑥0: 𝑥𝑥1,𝑦𝑦0: 𝑦𝑦1) is the image portion of 
the sliding window, 𝐶𝐶 is the binary classifier, and �⃗�𝛾𝑥𝑥0:𝑥𝑥1,𝑦𝑦0:𝑦𝑦1  
is the ratio of the feature vector of input images 𝐴𝐴 and 𝐵𝐵 for 
the sliding window in the range (𝑥𝑥0: 𝑥𝑥1,𝑦𝑦0: 𝑦𝑦1). 

A scheme of the generation of the binary mask 𝑍𝑍 in stage 
1 is shown in Figure 4. 

 
2.5.2.  Stage 2 – Image fusion  

 
It is possible to generate a fused image using the binary 

mask obtained in stage 1, but because of the rectangular 
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nature of the moving window, a high number of artifacts can 
be generated in regions containing borders of objects (see the 
rough behavior of borders and holes in 𝑍𝑍 in Figure 4). An 
improved result can be obtained by smoothing the binary 
mask. 

This stage begins by applying the morphological 
operation close to group individual pixels and fill holes in the 
binary mask. Then a low-pass filter (median blur) is applied 
to delete random noise and smooth the borders of the binary 
mask. Both operations used rectangular kernels of the same 
size. Finally, using the smoothed binary mask 𝑍𝑍′, input 
images 𝐴𝐴 and 𝐵𝐵 are cropped to generate the fused image 𝑆𝑆. 
This process is illustrated in Figure 5. 

 
𝑆𝑆 =  𝐴𝐴 × 𝑍𝑍𝐴𝐴′ + 𝐵𝐵 × 𝑍𝑍𝐵𝐵′  (13) 

 

 
Figure 4. Scheme of the generation of binary mask 𝑍𝑍 in stage 1.  
Source: The authors. 

 
 

Figure 5. Scheme of stage 2 for the generation of the fused image F.  
Source: The authors. 

Equation (22) describes stage 2, where 𝑆𝑆 is the image 
fused using the proposed scheme, 𝐴𝐴 and 𝐵𝐵 are the input 
images, 𝑍𝑍𝐴𝐴′  and 𝑍𝑍𝐴𝐴′  are the pixels of the smoothed mask 
belonging to images 𝐴𝐴 and 𝐵𝐵 respectively, and × is an 
element-wise multiplication of two matrices. 

 
2.6.  Fusion quality measure 

 
The fusion quality metric reflects the quality of visual 

information of a fused image obtained from a set of input 
images [35]. Evaluation of image fusion algorithms has 
become an important issue due to the different complexity 
characteristics used by several proposed approaches. 
Typically, the way in which the quality of the fused images 
is measured is by the mean of experts who score them. This 
approach does not offer a general way to evaluate approaches 
automatically and implies a costly effort. However, for 
objective evaluation of fusion results, we use three fusion-
quality metrics including Visual Information Fidelity for 
Fusion (VIFF) [36], Petrovic’s metric based on edge 
information (𝑄𝑄𝐴𝐴𝐵𝐵/𝐹𝐹) [35], and Feature Mutual Information 
(FMI) [37]. 

 
2.6.1.  Visual information fidelity for fusion 

 
VIFF is founded on the Visual Information Fidelity (VIF) 

quality metric based on Natural Scene Statistics theory, 
which measures the visual information by computing mutual 
information between different models estimated from 
images. These models are in the wavelet domain and include 
Gaussian Scale Mixture, the distortion model, and the Human 
Visual System. 

The common procedure for VIF estimation is to divide 
the images into 𝑘𝑘 sub-bands, each of which is divided in turn 
into 𝑏𝑏 blocks. The mutual information between the different 
models is estimated and VIF can be stated as: 

 

𝑉𝑉𝑉𝑉𝑆𝑆(𝑉𝑉𝑟𝑟 , 𝑉𝑉𝑑𝑑) =

∑ ∑ �1 +
𝑔𝑔𝑘𝑘,𝑏𝑏
2 ∙ �𝜎𝜎𝑘𝑘,𝑏𝑏

𝑟𝑟 �2

��𝜎𝜎𝑘𝑘,𝑏𝑏
𝑑𝑑 �2 − 𝑔𝑔𝑘𝑘,𝑏𝑏

2 ∙ �𝜎𝜎𝑘𝑘,𝑏𝑏
𝑟𝑟 �2 + 𝜎𝜎𝑁𝑁2�

�𝑏𝑏𝑘𝑘

∑ ∑ �1 +
�𝜎𝜎𝑘𝑘,𝑏𝑏

𝑟𝑟 �2

𝜎𝜎𝑁𝑁2
�𝑏𝑏𝑘𝑘

 (14) 

 
2.6.2.  Edge-based fusion performance 

 
This metric is based on the idea of quantifying the 

important information preserved in the fused image. The 
important information is associated with edge information, 
and therefore the metric measures the amount of edge 
information transferred from input images to the fused image, 
using a Sobel operator to get the relative edge strength and 
orientation between the input and fused images [35].  

Let 𝐴𝐴 be an input image and let the pixel 𝐴𝐴(𝑖𝑖, 𝑗𝑗) have an 
edge strength 𝑔𝑔𝐴𝐴(𝑖𝑖, 𝑗𝑗) and orientation 𝛼𝛼𝐴𝐴(𝑖𝑖, 𝑗𝑗) defined as: 

 

𝑔𝑔𝐴𝐴(𝑖𝑖, 𝑗𝑗) =  �𝑆𝑆𝐴𝐴𝑥𝑥(𝑖𝑖, 𝑗𝑗)2 + 𝑆𝑆𝐴𝐴
𝑦𝑦(𝑖𝑖, 𝑗𝑗)2 (15) 
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𝛼𝛼𝐴𝐴(𝑖𝑖, 𝑗𝑗) = tan−1 �
𝑆𝑆𝐴𝐴𝑥𝑥(𝑖𝑖, 𝑗𝑗)
𝑆𝑆𝐴𝐴
𝑦𝑦(𝑖𝑖, 𝑗𝑗)

� (16) 

 
where 𝑆𝑆𝐴𝐴𝑥𝑥(𝑖𝑖, 𝑗𝑗) and 𝑆𝑆𝐴𝐴

𝑦𝑦(𝑖𝑖, 𝑗𝑗) are the result of applying a 
horizontal and vertical Sobel template centered on 𝐴𝐴(𝑖𝑖, 𝑗𝑗). 
The relative edge strength (𝐸𝐸𝐴𝐴𝐹𝐹) and orientation (∆𝐴𝐴𝐹𝐹) of the 
image A with respect to a fused image are defined as: 

 

𝐸𝐸𝐴𝐴𝐹𝐹(𝑖𝑖, 𝑗𝑗) =

⎩
⎪
⎨

⎪
⎧𝑔𝑔𝐹𝐹(𝑖𝑖, 𝑗𝑗)
𝑔𝑔𝐴𝐴(𝑖𝑖, 𝑗𝑗)

, 𝑔𝑔𝐴𝐴(𝑖𝑖, 𝑗𝑗) > 𝑔𝑔𝐹𝐹(𝑖𝑖, 𝑗𝑗)

𝑔𝑔𝐴𝐴(𝑖𝑖, 𝑗𝑗)
𝑔𝑔𝐹𝐹(𝑖𝑖, 𝑗𝑗)

, 𝐸𝐸𝑂𝑂ℎ𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒             
 (17) 

  

∆𝐴𝐴𝐹𝐹(𝑖𝑖, 𝑗𝑗) = 1 −
|𝛼𝛼𝐴𝐴(𝑖𝑖, 𝑗𝑗) − 𝛼𝛼𝐹𝐹(𝑖𝑖, 𝑗𝑗)|

𝜋𝜋
2

 (18) 

 
The edge strength and orientation preservation values can 

be derived by: 
 

𝑄𝑄𝑔𝑔𝐴𝐴𝐹𝐹(𝑖𝑖, 𝑗𝑗) =
Γ𝑔𝑔

1 + 𝑒𝑒𝑘𝑘𝑔𝑔(𝐺𝐺𝐴𝐴𝐴𝐴(𝑖𝑖,𝑗𝑗)−𝜎𝜎𝑔𝑔)
 (19) 

  

𝑄𝑄𝛼𝛼𝐴𝐴𝐹𝐹(𝑖𝑖, 𝑗𝑗) =
Γ𝛼𝛼

1 + 𝑒𝑒𝑘𝑘𝑔𝑔(Δ𝐴𝐴𝐴𝐴(𝑖𝑖,𝑗𝑗)−𝜎𝜎𝛼𝛼)
 (20) 

 
where the constants Γ𝑔𝑔, 𝑘𝑘𝑔𝑔, 𝜎𝜎𝑔𝑔, Γ𝛼𝛼, 𝑘𝑘𝛼𝛼, and 𝜎𝜎𝛼𝛼 determine 

the shape of sigmoid functions used to form the edge strength 
and orientation preservation value [35]. 

The edge preservation value is defined as: 
 

𝑄𝑄𝐴𝐴𝐹𝐹(𝑖𝑖, 𝑗𝑗) = 𝑄𝑄𝑔𝑔𝐴𝐴𝐹𝐹(𝑖𝑖, 𝑗𝑗)𝑄𝑄𝛼𝛼𝐴𝐴𝐹𝐹(𝑖𝑖, 𝑗𝑗) (21) 

 
Finally, for input images 𝐴𝐴 and 𝐵𝐵, the final weighted 

performance measure 𝑄𝑄𝐴𝐴𝐵𝐵/𝐹𝐹 with respect to the fused image 
𝑆𝑆 is estimated as: 

 
𝑄𝑄𝐴𝐴𝐵𝐵/𝐹𝐹

=
∑ ∑ [𝑄𝑄𝐴𝐴𝐹𝐹(𝑖𝑖, 𝑗𝑗)𝑒𝑒𝐴𝐴(𝑖𝑖, 𝑗𝑗) + 𝑄𝑄𝐵𝐵𝐹𝐹(𝑖𝑖, 𝑗𝑗)𝑒𝑒𝐵𝐵(𝑀𝑀

𝑚𝑚=1
𝑁𝑁
𝑛𝑛=1

∑ ∑ (𝑒𝑒𝐴𝐴(𝑖𝑖, 𝑗𝑗) + 𝑒𝑒𝐵𝐵(𝑖𝑖, 𝑗𝑗))𝑀𝑀
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1

 
(22) 

 
2.6.3.  Feature mutual information 

 
Mutual Information (MI) is derived from information 

theory and quantifies the amount of information obtained 
about one variable from another variable. Thus, FMI 
quantifies the amount of image features transferred from the 
source images into the fused image. Gradient maps represent 
the images’ features because they contain information about 
edges, directions, texture, contrast, and pixel neighborhoods 
[37].  Like classic approaches used to estimate MI, FMI 
estimation is based on the calculation of the joint probability 
distribution functions. Assuming the intensity pixels of the 
fused image 𝑆𝑆(𝑥𝑥,𝑦𝑦) and input images 𝐴𝐴(𝑧𝑧,𝑒𝑒) and 𝐵𝐵(𝑧𝑧,𝑒𝑒), 
the methods use the normalized values of gradient magnitude 
image features, like marginal distributions, and therefore the 

amount of feature information in the fused image 𝑆𝑆 from 
input images 𝐴𝐴 and 𝐵𝐵 is given by [37]: 

 

𝑉𝑉𝐹𝐹𝐴𝐴 = �𝑃𝑃𝐹𝐹𝐴𝐴(𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝑒𝑒) log2
𝑝𝑝𝐹𝐹𝐴𝐴(𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝑒𝑒)

𝑝𝑝𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∙ 𝑝𝑝𝐴𝐴(𝑧𝑧,𝑒𝑒)
𝑓𝑓,𝑎𝑎

 (23) 

  

𝑉𝑉𝐹𝐹𝐵𝐵 = �𝑃𝑃𝐹𝐹𝐵𝐵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝑒𝑒) log2
𝑝𝑝𝐹𝐹𝐵𝐵(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑒𝑒)

𝑝𝑝𝐹𝐹(𝑥𝑥, 𝑦𝑦) ∙ 𝑝𝑝𝐵𝐵(𝑧𝑧,𝑒𝑒)
𝑓𝑓,𝑎𝑎

 (24) 

 
where 𝑃𝑃𝐹𝐹𝐴𝐴 and 𝑃𝑃𝐹𝐹𝐵𝐵  are the joint distribution between the 

fused image and each input image. 𝑝𝑝𝐹𝐹 , 𝑝𝑝𝐴𝐴, and 𝑝𝑝𝐵𝐵 are the 
marginal distributions. The FMI is defined as: 

 
 𝑆𝑆𝑆𝑆𝑉𝑉𝐹𝐹𝐴𝐴𝐵𝐵 = 𝑉𝑉𝐹𝐹𝐴𝐴 + 𝑉𝑉𝐹𝐹𝐵𝐵   (25) 

 
Based on [37-39], the normalized FMI can be obtained as: 
 

𝑆𝑆𝑆𝑆𝑉𝑉𝐹𝐹𝐴𝐴𝐵𝐵 =
𝑉𝑉𝐹𝐹𝐴𝐴

𝐻𝐻𝐹𝐹 + 𝐻𝐻𝐴𝐴
+

𝑉𝑉𝐹𝐹𝐵𝐵
𝐻𝐻𝐹𝐹 + 𝐻𝐻𝐵𝐵

  
(26) 

 
where 𝐻𝐻𝐹𝐹 , 𝐻𝐻𝐴𝐴, and 𝐻𝐻𝐵𝐵 are the histogram-based entropies 

of the images 𝐴𝐴, 𝐵𝐵, and 𝑆𝑆. 
 

3.  Experiments and results 
 
In this section, we present detailed experimental settings 

used to evaluate the performance of the classification 
approach for MFIF from two perspectives: classifier 
performance and fusion quality. The first evaluates the 
learning ability of a classifier to decide whether or not an 
image is focused. The second measures the fusion result 
generated by a classifier of the information contained in the 
input images. Finally, we discuss the results exhibited. 

 
3.1.  Classifier performance 

 
We selected five binary classifiers and trained them with 

the parameters shown in Table 1 and a dataset of 830 images 
labeled as binary for focused or defocused cases. 

 
Training parameters were obtained experimentally, 

selecting the set of parameters that allowed us to obtain the 
best results. 

 
Table 1.  
Parameters used for training binary classifiers  

Binary Classifier Parameters Technology 
LDA N/A Scikit-learn 
k-NN 𝑘𝑘 = 3 Scikit-learn 
Gaussian Naïve Bayes N/A Scikit-learn 

RBF-SVM Gamma = 0.5; C = 1; Kernel 
= rbf Scikit-learn 

FFN-MLP 

HL neurons = 50 
HL activation function: 𝑇𝑇𝑚𝑚𝑇𝑇ℎ 
OL activation function: 
softmax 

PyBrain 

HL: Hidden Layer; OL: Output Layer 
Source: The authors 



Atencio-Ortiz et al / Revista DYNA, 84(202), pp. 137-146, Septiembre, 2017. 

143 

For each classifier, we progressively changed the dataset 
size and used the k-fold cross-validation technique [40] with 
𝑘𝑘 = 10 in each iteration, to measure the learning and test 
precision/error. This allowed us to evaluate the performance 
variation (standard deviation) of each classifier. Table 2 
shows the mean and standard deviation of precision of 
training and testing for each classifier. The highest scores are 
obtained by k-NN for training precision and by MLP for test 
precision. In contrast, the lowest precision is obtained by 
using Naïve Bayes in both the training and test stages. 

Learning curves obtained for each classifier are shown in 
Figure 6. The shaded area around the learning curves indicates 
the standard deviation of training error for 10 iterations per step. 

As shown in Figure 6c and Figure 6d, MLP and SVM are 
the most stable classifiers, as the learning and test curves do 
not show large differences when the training sample size is 
varied. MLP and k-NN achieve the highest scores in the 
training and test stages, but MLP presents high variation 
when using cross-validation (green shadow). 

 
Table 2.  
Mean and standard deviation of classifier precision for training and test 
stages. 

 Training Precision Test Precision 
Classifier Mean Std dev. Mean Std dev. 

k-NN 0.9718 0.0072 0.9610 0.0115 
Naïve Bayes 0.9202 0.0244 0.9153 0.0268 
RBF-SVM 0.9678 0.0078 0.9574 0.0101 
LDA 0.9304 0.0133 0.9235 0.0259 
MLP 0.9688 0.0069 0.9646 0.0209 
Source: The authors. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 

e) 
Figure 6. Learning curves for the binary classifiers used. Red and green 
lines, respectively, represent the training and cross-validation scores 
obtained when varying the training sample size. 
Source: The authors. 

 
 
LDA (Figure 6a) and Naïve Bayes (Figure 6e) have the 

highest variations in training and test scores, which means 
that more iterations are required to train a good classifier. 

 
3.2.  Fusion quality 

 
A total of 30 pairs (near and far focused) of input images 

were fused using the proposed scheme. Fused images were 
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evaluated using the fusion quality metrics detailed in Section 
2.6. The mean fusion quality for each classifier over 30 cases 
is shown in Table 3.  

The Naïve Bayes classifier obtained the highest quality 
score for the VIFF and Qabf metrics, and MLP obtained the 
highest quality score for the FMI metric among all classifiers.  

The high mean fusion quality achieved by MLP is 
expected because this classifier obtained the highest test 
score, as shown in Table 2. On the contrary, Naïve Bayes 
achieved the lowest training and test scores (Table 2) out of 

all classifiers, but the highest fusion quality according to two 
out of three metrics among all classifiers (Table 3). 

Some examples of the fusion results of the classifiers with 
the best results (Naive Bayes and MLP) are presented in 
Figure 7. Subtle differences in the masks generated from both 
classifiers can be observed. A qualitative judgment about this 
result is that MLP generates fewer artifacts than Naive Bayes. 

Differences in fusion quality can be observed near the borders 
of objects, where artifacts are present due to the ambiguous nature 
of focus of the borders of objects in a natural scene (Fig. 8). 
 

 
 

    

    

    

    

    Figure 7. Results of image fusion scheme proposed for classifiers with the best fusion results: Naive Bayes and MLP. Column 1) input image 1; column 2) 
input image 2; column 3) Naive Bayes: near focus plane mask; column 4) MLP: near-focus plane mask. 
Source: The authors. 
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4.  Conclusions 
 
The results obtained in the previous section show that the 

automatic classification concept can satisfactorily address the 
MFIF problem; that is, a classification scheme can be used to 
decide whether an image is focused or defocused based on 
local features. Thus, using this classification scheme, a fused 
image can be generated in which most regions or pixels are 
focused. The main contribution of this work is that it 
compares different classifiers in an MFIF scheme, thus 
evaluating which one obtains the best results in both learning 
and fusion stages. However, this work only evaluates the 
main classifiers found in the literature, and other classifiers 
not evaluated in this work may obtain better results. 

 
Table 3.  
Average fusion quality obtained with different classification methods 

Quality 
Metric FFN-MLP LDA Naïve 

Bayes k-NN RBF-
SVM 

VIFF 0.9258 0.9258 0.9259 0.9253 0.9246 
Qabf 0.7572 0.7509 0.7573 0.7569 0.7564 
FMI 0.6089 0.6083 0.6084 0.6083 0.6078 

Source: The authors. 
 
 

  
a) b) 

  
c) d) 

 

 

e)  

Figure 8. Magnified regions of fusion results obtained by a) FFN-MLP; b) 
k-NN; c) LDA; d) Naïve-Bayes; and e) RBF-SVM. 
Source: The authors. 

The most important conclusions obtained from this work 
are as follows: 
• Classification precision does not guarantee fusion 

quality; that is, a classifier can have a low training and 
testing score but a high fusion quality.  

• Naïve Bayes is an example of the latter. It is well known 
that Naïve Bayes is a robust classifier, and thus, subject 
to overfitting problems. Thus, it can perform well with 
small amounts of training data, which is the case found in 
this work. It is possible that this can be related to the 
number of artifacts a classifier generates and therefore the 
fusion quality. 

• The MLP classifier shows good results in both the 
classification stage (training and test) and the fusion stage 
(fusion quality).  

• Artifacts are generated near the borders of objects in the 
scene due to the spatial nature of the scheme used and the 
rectangular shape of the moving window. A good 
classifier generates fewer artifacts in these regions. 

• MFIF is not a trivial problem, and a specific classifier can 
directly affect the fusion quality obtained using the 
proposed scheme in this work. 

• Both the size of the moving window and kernels for 
morphological operations directly affect the results. Thus, 
future work should focus on evaluating the impact of 
these parameters on fusion quality obtained by this 
scheme. 
Furthermore, the scheme proposed in this work could be 

adapted to address multi-focus scenes that present more than 
two (near and far) focal depths. An optimization technique 
based on region-growing could thus be used to generate a 
better smoothed mask 𝑍𝑍′ that encloses the objects that appear 
in the scene more precisely. 
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