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Abstract 
The transport of students presents important challenges in the case of the city of Bogota, where an important cluster of schools is located 
in one zone, but there is only one road connecting these schools to residential zones. Thus, traffic congestion is high, generating long travel 
times for students, high operational costs, and mobility problems. This paper studies the impacts of a cooperative strategy between logistics 
operators using a mixed integer programming mathematical model, to find the optimal design of school routes on a network with the 
topology that describes the aforementioned road system. Two strategies are compared: a mixed loads strategy, where students from different 
schools share buses; and a single load strategy, where students from different schools cannot share buses. The objective is to minimize the 
total operational costs while satisfying the schools’ time windows. Comparative results of the two models using exact and heuristic 
approaches are presented.   
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Estrategias de cooperación en el sistema de transporte de estudiantes 
en Bogotá usando optimización 

Resumen 
El transporte de estudiantes tiene desafíos importantes en el caso de la ciudad de Bogotá, donde un grupo de escuelas se encuentra en una 
zona, pero sólo hay una carretera que las conecta con zonas residenciales. Por lo tanto, la congestión del tráfico es alta, generando largos 
tiempos de viaje, altos costos de operación y problemas de movilidad. Se estudia el impacto de una estrategia cooperativa entre operadores 
logísticos a través de modelos de programación de entera mixta, para encontrar el diseño óptimo de rutas escolares en una red con la 
topología que describe el mencionado sistema vial. Se comparan dos estrategias: Cargas mixtas y carga única, donde los estudiantes de 
diferentes escuelas comparten o no los autobuses disponibles. El objetivo es minimizar los costos totales de operación respetando las 
ventanas de tiempo de las escuelas. Se presentan los resultados comparativos de los modelos usando enfoques exactos y heurísticos. 

Palabras clave: ruteo de buses escolares; ruteo y secuenciación; heurísticas; congestión vehicular, modelos matemáticos. 

1. Introduction

Cities have the challenge of defining a sustainable urban
mobility model to improve the population’s quality of life 
[1]. High traffic congestion levels tend to increase despite 
infrastructure investments as a result of the rise in the number 
of vehicles [2]. This congestion generates low productivity, 
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and pollution. 
School buses are part of transportation systems and 

contribute to traffic congestion, since these buses transport 
students during rush hours. Thus, an interest to study the school 
bus routing problem (SBRP) arises. The problem is first studied 
by [3] who propose to design a schedule for a fleet of school 
vehicles to pick up students at different geographic points and 
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Figure 1. Map of the north of Bogota – School zone.  
Source:http://mapas.bogota.gov.co/?webmap=1bca24092fc447cfb9417730
5a272a2e&widgettoopen=Legend 

 
 

deliver them to their designated schools, while respecting the 
maximum capacity of students in a bus, the maximum time 
travel, and the time window that students have to arrive to 
class. Different variants have been studied, such as 
considering a heterogeneous fleet of buses; multiple school 
systems in rural or urban zones; different planning horizons 
(morning, afternoon, or both); or special-education students 
(e.g., students with disabilities). Different objectives are 
sought, such as: the reduction of the number of buses; travel 
times; and the minimization of the distance that students have 
to walk to bus pick-up points (see [4]).  

In the case of Bogota, Colombia, and the highway called 
Autopista Norte, a high level of traffic is found on the 
Autopista Norte during rush hours, since this is the only road 
that links the northern school zone to residential zones (see 
Fig. 1). The problem is the increased travel times that 
students spend on the bus. Further, according to the INRIX 
Global Traffic Scorecard, Bogota was the fifth-worst city in 
the world in terms of traffic severity in 2016. 

This problem has been analyzed by the district 
government. In 2017, the District Department of Mobility [5] 
restricted a lane to be used exclusively by school buses in 
rush hours. Results show that average travel times on the 
highway have been reduced from 43 to 23 minutes. Despite 
these measures, traffic congestion in the city remains a 
problem.  

Case studies on this issue have been presented. For 
instance, in Beijing, congestion and pollution consequences 
of driving-to-school trips were analyzed by [6]. For Dublin, 
a study of sustainable school commuting was done by [7] and 
in US the cost of school transportation was analyzed [8].   

This paper studies the impact of collaborative strategies 
for student transportation in the north of the city of Bogota, 
through the use of optimization models. The transportation 
system is analyzed considering independent routes. This 
strategy is known as “Single load” [9]; it consists of 
designing routes to pick up students who attend a single 

school. The shared routes strategy; known as “Mixed load”, 
is also analyzed, where students from different schools share 
buses [10]. 

The mixed load strategy offers better coordination in 
highway sequencing, since a collaborative planning of routes 
for different schools is feasible. The single load strategy 
presents some issues: entry to the highway can only be 
coordinated for buses going to the same school, but buses 
from different schools will get on to the highway in an 
uncoordinated way. The collaborative strategy has potential 
benefits such as shorter routes (less travel time); less 
operating costs (less buses); greener operation (less fuel 
consumption); and reduced traffic congestion. 

The main contribution of the paper is the analysis of the 
benefits and implications of both strategies, and the 
conclusions as to the most efficient route design for the 
school transportation system in the city. A routing and 
scheduling model is presented to perform this analysis. This 
paper is organized as follows: section 2 presents a literature 
review; section 3 presents the proposed mathematical 
formulation; section 4 presents a proposed heuristic 
approach; section 5 shows computational results; and section 
6 presents the conclusions and future research. 

 
2.  State of the art 

 
This section presents a review of the literature related to 

the school bus routing problem. Notions referring to vehicle 
scheduling are presented to contextualize the school bus 
routing problem. The objective of SBRP is to plan an 
efficient schedule for a fleet of school buses to pick up 
students at different geographic points and deliver them to 
the designated school [4]. The SBRP is a particular 
application of the vehicle routing problem (VRP). In the 
latter problem, several clients are visited by a set of vehicles, 
which leave a depot, visit the clients, and return to the depot 
after completing the route [11]. One variant of the classical 
VRP, that is similar to the SBRP, as presented in this 
research, is the multi-depot open vehicle routing problem 
(MDOVRP), which is studied by [12]. The MDOVRP 
considers the vehicles to start their journeys from multiple 
depots to deliver products to clients. When vehicles complete 
the journey, it is not necessary to return to the depot where 
the route started [13]. Compared to SBRP, depots correspond 
to the points where buses start their routes; clients that have 
to be visited correspond to students who have to be included 
on different routes; and the designated school in which buses 
complete the route correspond to the last client in the route. 
In some European and North American countries, students 
are collected at fixed points (often clusters of houses or 
neighborhoods). Nonetheless, in Bogota, students must be 
picked up right outside their houses.   

The SBRP is known to be NP-Hard [14]. A mathematical 
model to optimize school bus service of two schools is 
proposed in [15]; the model is solved by an exact method. 
Recently, models in the literature have aimed to minimize the 
transportation costs associated with travel time. A rural 
school district SBRP using heuristics is proposed in [16]. 
Similarly, [17] propose an ant colony optimization algorithm. 
Mathematical models to determine the routes of each bus, 

http://mapas.bogota.gov.co/?webmap=1bca24092fc447cfb94177305a272a2e&widgettoopen=Legend
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and the stations where students have to walk to be picked up 
is developed in [18]. A particle swarm optimization to solve 
the SBRP is proposed in [19]. 

At the national level, the SBRP has already been applied 
to a private school in the city of Bogota by [20]. They 
modeled the system as a capacitated vehicle routing problem 
(CVRP) and solved it in two phases: the first stage assigns 
students to buses, and the second determine the vehicle routes 
via an ant colony optimization. The total distance covered by 
buses is reduced by 8,3% in the morning. However, this 
research does not take traffic congestion into account. 

Further, the mixed load strategy for the SBRP has been 
studied by [21], who developed an algorithm to improve the 
results obtained in [10]. The implementation of the mixed 
load to a single load strategy is compared in [22]. In contrast 
to previous research, we will include the bus scheduling 
decisions at the node that represents the path along the 
highway that connects schools to students’ houses.  

Additionally, [23] studied the vehicle routing and 
scheduling in a cross-docking system. In this research, school 
buses are scheduled at the node that represents the highway, 
an analogy of the cross-docking system for a single bus dock 
is implemented here, where the vehicle entry is scheduled 
while it is unloaded and delivered from the station [24].  

The conclusion of this review is that there is no— 
to the best of our knowledge—paper that simultaneously 

combines the routing and scheduling decisions of buses in a 
school routing system of single and mixed load strategies 
where vehicles have to tackle heavy traffic congestion on 
highways to transport students to their designated schools. 
Moreover, the impact of each of the two strategies for school 
route transportation will be analyzed for the studied case. 

 
3.  Mathematical formulations 

 
In this section, the mathematical formulations based on 

mixed integer programming (MIP) for the single load and 
mixed load strategies are presented. We assume that students 
have no special requirements other than being picked up at 
their homes. The fleet of buses is homogeneous and the 
transfer of students between buses is not allowed. Thus, the 
bus that picks up each student is the same bus that delivers 
the student to his/her school.   

 
3.1.  Mathematical formulation for school bus routing and 

scheduling problem – single load strategy 
 
Let the problem be mathematically defined on a directed 

graph 𝐺𝐺 = {𝑣𝑣, 𝑒𝑒}. The set 𝑣𝑣: {𝜃𝜃𝑘𝑘} ∪ {𝑗𝑗} ∪ {𝑎𝑎} ∪ {𝑚𝑚}, where 
𝜃𝜃𝑘𝑘 < 𝑗𝑗 < 𝑎𝑎 < 𝑚𝑚. That is, the set of nodes 𝑣𝑣 is composed by a 
set 𝜃𝜃𝑘𝑘 of bases where buses are located at the beginning of the 
journey, the set 𝑗𝑗 represents the students to pick up. The total 
number of students in the system is denoted by the constant 𝐶𝐶. 
The vertex 𝑎𝑎 represents the Autopista Norte highway, and the 
vertex 𝑚𝑚 represents the destination school. We assume that set 𝑘𝑘 
denotes the set of available buses, each with a maximum capacity 
of 𝑄𝑄 students, and a fixed cost of used of 𝐶𝐶𝐶𝐶. Let set 𝑣𝑣1 be a copy 
of set 𝑣𝑣; set 𝑗𝑗1 be a copy of set 𝑗𝑗; and set 𝑘𝑘1 a copy of set 𝑘𝑘.  

Set 𝑗𝑗 is associated with a parameter 𝑑𝑑𝑗𝑗 to indicate the number 
of students to collect at each node and the service time 𝑠𝑠𝑗𝑗   at node 

𝑗𝑗. The school is associated with parameters 𝑤𝑤1,𝑤𝑤2, indicating the 
earliest and latest times, respectively, that the students are 
expected to arrive at school.   

The set of edges 𝑒𝑒 in the graph represent the roads in the 
city of Bogota. Using a geographical information system, the 
parameter 𝑡𝑡𝑡𝑡(𝑣𝑣,𝑣𝑣1) representing the travel time from node 𝑣𝑣 to 
node 𝑣𝑣1 in set 𝑉𝑉 is computed. The variable cost of the bus 
operation, denoted as 𝐶𝐶𝐶𝐶(𝑣𝑣,𝑣𝑣1) ∀ (𝑣𝑣, 𝑣𝑣1) , is calculated with 
the expression: (𝐷𝐷(𝑣𝑣,𝑣𝑣1) ∗ 𝐶𝐶𝐶𝐶𝐶𝐶), where 𝐷𝐷(𝑣𝑣,𝑣𝑣1) refers to the 
distance between the nodes 𝑣𝑣 and 𝑣𝑣1, a parameter that is 
calculated with the following expression (𝑡𝑡𝑡𝑡(𝑣𝑣,𝑣𝑣1) ∗ 𝑉𝑉), where 
𝑉𝑉 is a constant that represents average bus speed. 
Additionally, the parameter 𝐶𝐶𝐶𝐶𝐶𝐶 is a constant that refers to 
the cost per unit of distance. Further, let 𝑅𝑅 denote the desired 
minimum time difference between two consecutive bus 
arrivals to the highway. The bigger the parameter 𝑅𝑅, the less 
likely it is that buses will create a bunching effect.  

The decision variables in this model are the following: Let 
𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘 be equal to 1 if the bus 𝑘𝑘 uses edge (𝑣𝑣, 𝑣𝑣1), otherwise it 
is equal to 0. Let 𝑌𝑌𝑘𝑘,𝑘𝑘1 be 1 if bus  𝑘𝑘 precedes bus  𝑘𝑘1 in the 
sequence to pass along the highway, otherwise let it be 0. Let 𝐿𝐿𝑣𝑣,𝑘𝑘 
be the cumulative number of students in bus 𝑘𝑘 after visiting node 
𝑣𝑣 ∈ 𝑉𝑉. Let 𝑇𝑇1𝑣𝑣,𝑘𝑘  be the arrival time of bus 𝑘𝑘 at node 𝑣𝑣, only 
defined at nodes in the set 𝑘𝑘 and 𝑗𝑗 (points where the routes start 
and the children houses.) Let 𝑇𝑇2𝑎𝑎,𝑘𝑘 be the arrival time of bus 𝑘𝑘 at 
node 𝑎𝑎. Let  𝑇𝑇3𝑎𝑎,𝑘𝑘 be the leaving time of bus 𝑘𝑘 at node 𝑎𝑎. Finally, 
let 𝑇𝑇4𝑚𝑚,𝑘𝑘 be the arrival time of bus 𝑘𝑘 to node 𝑚𝑚. The objective 
function (1) of the model is to minimize the total cost of the 
operation of the fleet of buses, which is in function of the route 
variable cost (𝐶𝐶𝑣𝑣) and the fixed cost (𝐶𝐶𝐶𝐶) of the operation of each 
bus, explained above. 

 
𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 = ��𝐶𝐶𝐶𝐶 ∗ 𝑋𝑋𝜃𝜃𝑘𝑘,𝑗𝑗,𝑘𝑘

𝑗𝑗𝑘𝑘

+���𝐶𝐶𝐶𝐶(𝑣𝑣,𝑣𝑣1) ∗ 𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘
𝑘𝑘𝑣𝑣1𝑣𝑣

 (1) 

 
Subject to:  
 

𝑋𝑋𝑣𝑣,𝜃𝜃𝑘𝑘,𝑘𝑘1 = 0; ∀𝑣𝑣,∀𝑘𝑘,∀𝑘𝑘1 (2) 
  
𝑋𝑋𝑎𝑎,𝑗𝑗,𝑘𝑘 = 0; ∀𝑗𝑗,∀𝑘𝑘 (3) 
  
�𝑋𝑋𝑣𝑣,𝑣𝑣,𝑘𝑘
𝑘𝑘

= 0; ∀𝑣𝑣 (4) 
  
��𝑋𝑋𝜃𝜃𝑘𝑘,𝑣𝑣,𝑘𝑘1

𝑘𝑘1𝑣𝑣

= 0; ∀𝑘𝑘 ≠ 𝑘𝑘1 (5) 
  
�𝑋𝑋𝑚𝑚,𝑣𝑣,𝑘𝑘
𝑣𝑣

= 0; ∀𝑚𝑚,∀𝑘𝑘   (6) 
  
𝑌𝑌𝑘𝑘,𝑘𝑘 = 0,∀𝑘𝑘 (7) 

 
The first group of constraints indicate which routes do not 

exist. Eq. (2) guarantees that no starting point will be visited after 
starting the route. Expression (3) forbids that buses pick up 
students after having visited node 𝑎𝑎 (highway). Eq. (4) forbids that 
buses leave a node and return to it consecutively. Eq. (5) forces 
buses to avoid starting a route from another bus’s base. Expression 
(6) guarantees that the routes finish when the bus arrives to school. 
Finally, eq. (7) avoids the scenario in which 𝑘𝑘 precedes itself. 
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��𝑋𝑋𝑣𝑣,𝑗𝑗,𝑘𝑘
𝑘𝑘𝑣𝑣

= 1; ∀𝑗𝑗 (8) 
  
�𝑋𝑋𝑣𝑣,𝑗𝑗,𝑘𝑘
𝑣𝑣

= �𝑋𝑋𝑗𝑗,𝑣𝑣,𝑘𝑘
𝑣𝑣

;  ∀𝑗𝑗,∀𝑘𝑘    (9) 
  
�𝑋𝑋𝑣𝑣,𝑎𝑎,𝑘𝑘
𝑣𝑣

= �𝑋𝑋𝑎𝑎,𝑣𝑣,𝑘𝑘
𝑣𝑣

;  ∀𝑘𝑘 (10) 
  
�𝑋𝑋𝜃𝜃𝑘𝑘,𝑗𝑗,𝑘𝑘
𝑗𝑗

≤ 1; ∀𝑘𝑘 (11) 

  
𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘 ≤�𝑋𝑋𝑘𝑘,𝑗𝑗,𝑘𝑘

𝑗𝑗

;  ∀𝑘𝑘,∀𝑣𝑣,∀𝑣𝑣1, 𝑣𝑣 ≠ 𝑣𝑣1 (12) 

  
�𝑋𝑋𝜃𝜃𝑘𝑘,𝑗𝑗,𝑘𝑘
𝑗𝑗

≤�𝑋𝑋𝑗𝑗1,𝑎𝑎,𝑘𝑘
𝑗𝑗1

;  ∀𝑘𝑘 (13) 

  
𝐿𝐿𝑗𝑗,𝑘𝑘 ≥ 𝑑𝑑𝑗𝑗 ∗�𝑋𝑋𝑣𝑣,𝑗𝑗,𝑘𝑘

𝑣𝑣<𝑎𝑎

;  ∀𝑘𝑘,∀𝑗𝑗 (14) 

  
𝐿𝐿𝑗𝑗,𝑘𝑘 ≤ 𝑄𝑄 ∗�𝑋𝑋𝑣𝑣,𝑗𝑗,𝑘𝑘

𝑣𝑣<𝑎𝑎

;  ∀𝑘𝑘,∀𝑗𝑗 (15) 
  
𝐿𝐿𝑣𝑣,𝑘𝑘 + �𝑑𝑑(𝑣𝑣1) ∗ 𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘� ≤ 𝐿𝐿𝑣𝑣1,𝑘𝑘 + 𝐶𝐶 ∗ �1 − 𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘�; 
 ∀𝑣𝑣,∀𝑣𝑣1 ≤ 𝑎𝑎,∀𝑘𝑘 (16) 
  
𝐿𝐿𝑣𝑣,𝑘𝑘 + �𝑑𝑑(𝑣𝑣1) ∗ 𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘� ≥ 𝐿𝐿𝑣𝑣1,𝑘𝑘 − 𝐶𝐶 ∗ �1 − 𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘�;  
∀𝑣𝑣,∀𝑣𝑣1 ≤ 𝑎𝑎,∀𝑘𝑘 (17) 
  
𝐿𝐿𝑣𝑣1,𝑘𝑘 ≤ 𝐶𝐶 ∗�𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘

𝑣𝑣

;  ∀𝑣𝑣1 ≤ 𝑎𝑎,∀𝑘𝑘 (18) 
  
𝐿𝐿𝜃𝜃𝑘𝑘,𝑘𝑘1 = 0; ∀𝑘𝑘,∀𝑘𝑘1 𝑘𝑘 (19) 

 
The second group of constraints refers to the school bus 

transportation system. Expression (8) forces all students to be 
picked up only once. Expressions (9) and (10) are related to 
the flow conservation at nodes that represent students and the 
highway. They guarantee that if a bus picks up a student, it 
continues the route leaving the node visited. Eq. (11) 
guarantees that each route starts from its own starting point. 
Eq. (12) guarantees that when a bus picks up students, it 
leaves from its own base. Expression (13) guarantees that the 
node that represents the highway is included in all the routes 
used. Eq. (14)-(15) control the number of students that are 
being picked up at node visited (in this case, one student), and 
that the bus capacity is respected. Expressions (16) and (17) 
compute the total number of students a bus picks up. Eq. (18) 
guarantees that a bus adds children when that bus picks them 
up. Finally, eq. (19) guarantees that buses are empty when 
they start each route. 

 
𝑇𝑇1𝑣𝑣,𝑘𝑘 + 𝑠𝑠(𝑣𝑣) + 𝑡𝑡𝑡𝑡(𝑣𝑣, 𝑣𝑣1) ≤ 𝑇𝑇1𝑣𝑣1,𝑘𝑘 +𝑤𝑤2 ∗ �1 − 𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘�;  
                                                                                    ∀𝑣𝑣,∀𝑣𝑣1 < 𝑎𝑎,∀𝑘𝑘 

(20) 

  
𝑇𝑇1𝑣𝑣,𝑘𝑘 + �𝑠𝑠(𝑣𝑣) + 𝑡𝑡𝑡𝑡(𝑣𝑣, 𝑣𝑣1)� ∗ 𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘

≥ 𝑇𝑇1𝑣𝑣1,𝑘𝑘 − 𝑤𝑤2 ∗ �1 − 𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘�;  
                                                                                    ∀𝑣𝑣,∀𝑣𝑣1 < 𝑎𝑎,∀𝑘𝑘 

 
(21) 

  

𝑇𝑇1𝑗𝑗,𝑘𝑘 + 𝑠𝑠(𝑗𝑗) + 𝑡𝑡𝑡𝑡(𝑗𝑗, 𝑎𝑎) ≤ 𝑇𝑇2𝑎𝑎,𝑘𝑘 +𝑤𝑤2 ∗ �1 − 𝑋𝑋𝑗𝑗,𝑎𝑎,𝑘𝑘�;  
                                                                                   ∀𝑗𝑗,∀𝑘𝑘 

(22) 

  
𝑇𝑇1𝑗𝑗,𝑘𝑘 + �𝑠𝑠(𝑗𝑗) + 𝑡𝑡𝑡𝑡(𝑗𝑗, 𝑎𝑎)� ∗ 𝑋𝑋𝑗𝑗,𝑎𝑎,𝑘𝑘 ≥ 𝑇𝑇2𝑎𝑎,𝑘𝑘 − 𝑤𝑤2 ∗ �1 −𝑋𝑋𝑗𝑗,𝑎𝑎,𝑘𝑘�;  
                                                                                   ∀𝑗𝑗,∀𝑘𝑘 

(23) 

  
𝑇𝑇2𝑎𝑎,𝑘𝑘 + 𝑠𝑠(𝑎𝑎) ≤ 𝑇𝑇3𝑎𝑎,𝑘𝑘 +𝑤𝑤2 ∗ �1 − 𝑋𝑋𝑗𝑗,𝑎𝑎,𝑘𝑘�;     ∀𝑗𝑗,∀𝑘𝑘 (24) 
  
𝑇𝑇2𝑎𝑎,𝑘𝑘 + 𝑠𝑠(𝑎𝑎) ∗ 𝑋𝑋𝑗𝑗,𝑎𝑎,𝑘𝑘 ≥ 𝑇𝑇3𝑎𝑎,𝑘𝑘 − 𝑤𝑤2 ∗ �1 −𝑋𝑋𝑗𝑗,𝑎𝑎,𝑘𝑘�;  
                                                                                   ∀𝑗𝑗,∀𝑘𝑘 

(25) 

  
𝑇𝑇3𝑎𝑎,𝑘𝑘 + 𝑡𝑡𝑡𝑡(𝑎𝑎,𝑚𝑚) ≤ 𝑇𝑇4𝑚𝑚,𝑘𝑘 +𝑤𝑤2 ∗ �1− 𝑋𝑋𝑎𝑎,𝑚𝑚,𝑘𝑘�;  
                                                                                  ∀𝑚𝑚,∀𝑘𝑘 

(26) 

  
𝑇𝑇3𝑎𝑎,𝑘𝑘 + �𝑡𝑡𝑡𝑡(𝑎𝑎,𝑚𝑚) ∗ 𝑋𝑋𝑎𝑎,𝑚𝑚,𝑘𝑘� ≥ 𝑇𝑇4𝑚𝑚,𝑘𝑘;  ∀𝑚𝑚,∀𝑎𝑎,∀𝑘𝑘 (27) 
  
𝑇𝑇2𝑎𝑎,𝑘𝑘1 ≥ 𝑇𝑇3𝑎𝑎,𝑘𝑘 − 𝑅𝑅 − 𝑤𝑤2 ∗ �1− 𝑌𝑌𝑘𝑘,𝑘𝑘1�;  
                                                                          ∀𝑘𝑘,∀𝑘𝑘1,𝑘𝑘 ≠ 𝑘𝑘1 

(28) 

  
𝑇𝑇2𝑎𝑎,𝑘𝑘 ≥ 𝑇𝑇3𝑎𝑎,𝑘𝑘1 − 𝑅𝑅 − 𝑤𝑤2 ∗ �𝑌𝑌𝑘𝑘,𝑘𝑘1�; ∀𝑘𝑘,∀𝑘𝑘1, 𝑘𝑘 ≠ 𝑘𝑘1 (29) 
  
𝑇𝑇4𝑚𝑚,𝑘𝑘 ≥ 𝑤𝑤1 ∗�𝑋𝑋𝑘𝑘,𝑗𝑗,𝑘𝑘

𝑗𝑗

;  ∀𝑘𝑘,∀𝑚𝑚 (30) 

  
𝑇𝑇4𝑚𝑚,𝑘𝑘 ≤ 𝑤𝑤2 ∗�𝑋𝑋𝑘𝑘,𝑗𝑗,𝑘𝑘

𝑗𝑗

;  ∀𝑘𝑘,∀𝑚𝑚 (31) 

  
𝑇𝑇1𝑣𝑣,𝑘𝑘 ≤ 𝑤𝑤2 ∗�𝑋𝑋𝑘𝑘,𝑣𝑣1,𝑘𝑘

𝑣𝑣1

;  ∀𝑘𝑘,∀𝑣𝑣 < 𝑎𝑎 (32) 

  
𝑇𝑇2𝑎𝑎,𝑘𝑘 ≤ 𝑤𝑤2 ∗�𝑋𝑋𝑘𝑘,𝑗𝑗,𝑘𝑘

𝑗𝑗

;  ∀𝑘𝑘 (33) 

  
𝑇𝑇3𝑎𝑎,𝑘𝑘 ≤ 𝑤𝑤2 ∗�𝑋𝑋𝑘𝑘,𝑗𝑗,𝑘𝑘

𝑗𝑗

;  ∀𝑘𝑘 (34) 

 
The third group of constraints controls the time variables and 

guarantees the right sequencing of buses at the highway. 
Expressions (20) to (27) limit the time from the moment bus k 
starts a route, picks up students, and travels along highway a, 
until it finishes in school m. Expression (28) guarantees 
sequencing when bus k precedes bus k1, by respecting a 
minimum amount of time R, in which bus k1 cannot enter the 
highway. Eq. (29) guarantees the consistency between arrival 
time of bus k to the highway and the leaving time of bus k1 to the 
highway when bus k does not precede bus k1. Further, eq. (30)-
(31) guarantees that children arrive on time to schools (within the 
time window). Expressions (32)-(34) guarantee that if a bus k 
does not start a route, its time T1, T2, and T3 are not calculated. 

 
𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘 ,𝑌𝑌𝑘𝑘,𝑘𝑘1 = {1, 0},∀𝑣𝑣,∀𝑣𝑣1,∀𝑘𝑘,∀𝑘𝑘1 (35) 
  
𝐿𝐿𝑣𝑣,𝑘𝑘 ,𝑇𝑇1𝑣𝑣,𝑘𝑘 ,𝑇𝑇2𝑎𝑎,𝑘𝑘 ,𝑇𝑇3𝑎𝑎,𝑘𝑘 ,𝑇𝑇4𝑚𝑚,𝑘𝑘 ,𝑍𝑍 ≥ 0;∀𝑣𝑣,∀𝑘𝑘,∀𝑚𝑚 (36) 
  
�𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘
𝑘𝑘

+�𝑋𝑋𝑣𝑣1,𝑣𝑣,𝑘𝑘
𝑘𝑘

≤ 1; ∀(𝑣𝑣 < 𝑎𝑎),∀(𝑣𝑣1 < 𝑎𝑎) 
(37) 
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�𝑋𝑋𝜃𝜃𝑘𝑘+1,𝑗𝑗,𝑘𝑘+1
𝑗𝑗

≤�𝑋𝑋𝜃𝜃𝑘𝑘,𝑗𝑗,𝑘𝑘
𝑗𝑗

;  ∀𝑘𝑘 
(38) 

  

��𝑋𝑋𝑣𝑣,𝑗𝑗,𝑘𝑘
𝑘𝑘>𝑗𝑗𝑣𝑣<𝑎𝑎

= 0; ∀𝑗𝑗 
(39) 

Finally, the fourth group of constraints (35)-(36) 
guarantees the nature of the binary and positive variables, 
respectively. The previous groups of constraints lead to the 
single load base model. Moreover, there is a last group of 
expressions known as valid inequalities, which increase the 
efficiency of the model. Details will be given in section 5. 
Expression (37) avoids the generation of sub-trips between 
two nodes visited consecutively. Eq. (38)-(39) guarantee that 
routes are generated in ascending order. 

 
3.1.  Mathematical formulation for school bus routing and 

scheduling problem – mixed load strategy 
 
The formulation for the mixed load strategy is similar to 

that of the single load strategy. Additional sets, parameters, 
variables and expressions will be presented in this numeral. 
In each case, the elements that remain constant for both 
models will be explicitly shown. For this strategy, the sets j, 
k, 𝜃𝜃𝑘𝑘, a, v1, j1, and k1 remain the same as in the single load 
strategy. Let set m be the destination schools. We include the 
node f representing a fictitious node where all routes finish. 
The parameters Q, dj, sj, w1, w2, C, ti(v,v1), Cv(v,v1) ,C and 
R remain the same in this model. Now, the parameter denoted 
as 𝜙𝜙𝑗𝑗𝑗𝑗 is a binary parameter indicating if the student j goes 
to school m. The set 𝑣𝑣: {𝜃𝜃𝑘𝑘} ∪ {𝑗𝑗} ∪ {𝑎𝑎} ∪ {𝑚𝑚} ∪ {𝑓𝑓}, where 
𝜃𝜃𝑘𝑘 < 𝑗𝑗 < 𝑎𝑎 < 𝑚𝑚 < 𝑓𝑓. 𝑚𝑚1 is a copy of 𝑚𝑚.  

In addition to decision variables 𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘, 𝑌𝑌𝑘𝑘,𝑘𝑘1, 𝐿𝐿𝑣𝑣,𝑘𝑘, 𝑇𝑇1𝑣𝑣,𝑘𝑘, 
𝑇𝑇2𝑎𝑎,𝑘𝑘, 𝑇𝑇3𝑎𝑎,𝑘𝑘, 𝑇𝑇4𝑚𝑚,𝑘𝑘 that remain the same in this model, the 
following decision variables are included: let 𝑊𝑊𝑣𝑣,𝑘𝑘 be equal 
to 1 if node 𝑣𝑣 is visited by bus 𝑘𝑘, otherwise let if be equal to 
0. Also, let 𝑇𝑇5𝑚𝑚,𝑘𝑘 be the arrival time of bus 𝑘𝑘 at school 𝑚𝑚. 
The function objective of mixed load model is the same as 
expression (1) of the single load model. The following 
constraints are considered: 

 
�𝑋𝑋𝑎𝑎,𝑓𝑓,𝑘𝑘
𝑘𝑘

= 0; ∀𝑘𝑘 (40) 
  
𝑋𝑋𝑓𝑓,𝑣𝑣,𝑘𝑘 = 0; ∀𝑣𝑣,∀𝑘𝑘 (41) 

 
The first group of constraints contains the expressions 

(2)-(5) and (7) of the single load model. The added 
expressions (40) guarantees that going directly from the node 
a to the fictitious node is not allowed (used in the mixed load 
as final point of routes), and (41) guarantees that bus k does 
not visit more nodes after finishing the route on the fictitious 
node f. 

In the second group, constraints remain the same as 
expressions (8)-(19) of the single load. Additionally, the 
following constraints, for the mixed load model, are defined: 

 

�𝑋𝑋𝑣𝑣,𝑚𝑚,𝑘𝑘
𝑣𝑣

≤ 𝑊𝑊𝑚𝑚,𝑘𝑘;  ∀𝑚𝑚,∀𝑘𝑘 (42) 

��𝑋𝑋𝑣𝑣,𝑚𝑚,𝑘𝑘
𝑘𝑘𝑣𝑣

≥ 1; ∀𝑚𝑚 (43) 

𝐿𝐿𝑣𝑣1,𝑘𝑘 ≤ 𝐶𝐶 ∗𝑊𝑊𝑣𝑣1,𝑘𝑘; ∀𝑣𝑣1 ≤ 𝑎𝑎,∀𝑘𝑘 (44) 
𝑊𝑊𝑣𝑣,𝑘𝑘 ≤ 𝑊𝑊𝑣𝑣1,𝑘𝑘; ∀(𝑘𝑘 < 𝑣𝑣 < 𝑎𝑎),∀(𝑣𝑣1 > 𝑎𝑎),∀𝑘𝑘, 
                                                     ∀(𝑣𝑣, 𝑣𝑣1) | 𝜙𝜙(𝑣𝑣,𝑣𝑣1) > 0 (45) 

�𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘
𝑣𝑣1

≥ 𝑊𝑊𝑣𝑣,𝑘𝑘;  ∀𝑣𝑣,∀𝑘𝑘 (46) 

�𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘
𝑣𝑣1

≤ 𝑊𝑊𝑣𝑣,𝑘𝑘;  ∀𝑣𝑣,∀𝑘𝑘 (47) 

�𝑋𝑋𝑚𝑚,𝑓𝑓,𝑘𝑘
𝑚𝑚

≤ 1; ∀𝑘𝑘 (48) 

 
Expression (42) guarantees that bus k visits school m only 

once if it delivers students of that school, while eq. (43) 
guarantees that school m is visited at least once for bus k. 
Expression (44) guarantees that bus k only cumulates children 
when they are effectively picked up by this bus. Eq. (45) 
guarantees that when a student is picked up in route k, this is 
delivered to the school destination. Expressions (46) and (47) 
guarantee that if a student is picked up by a bus k, it only has one 
predecessor node. Finally, eq. (48) guarantees that bus k finishes 
the route at fictitious node f after delivering students to schools.  

In the third group of constraints, expressions (20) to (29) 
and (32) to (34) stay as in single load model. Moreover, the 
following expressions, for the mixed load model, are defined: 

 
𝑇𝑇4𝑚𝑚,𝑘𝑘 + 𝑠𝑠(𝑚𝑚) + 𝑡𝑡𝑡𝑡(𝑚𝑚,𝑚𝑚1) ≤ 𝑇𝑇5𝑚𝑚1,𝑘𝑘 + 𝑤𝑤2 ∗ �1 −𝑋𝑋𝑚𝑚,𝑚𝑚1,𝑘𝑘�; 
                                                                              ∀𝑚𝑚,∀𝑚𝑚1,∀𝑘𝑘    (49) 

  
𝑇𝑇4𝑚𝑚,𝑘𝑘 + �𝑠𝑠(𝑚𝑚) + 𝑡𝑡𝑡𝑡(𝑚𝑚,𝑚𝑚1)� ∗ 𝑋𝑋𝑚𝑚,𝑚𝑚1,𝑘𝑘

≥ 𝑇𝑇5𝑚𝑚1,𝑘𝑘 − 𝑤𝑤2 ∗ �1 − 𝑋𝑋𝑚𝑚,𝑚𝑚1,𝑘𝑘�; 
                                                                            ∀𝑚𝑚,∀𝑚𝑚1,∀𝑘𝑘 

(50) 

  
𝑇𝑇5𝑚𝑚,𝑘𝑘 + 𝑠𝑠(𝑚𝑚) + 𝑡𝑡𝑡𝑡(𝑚𝑚,𝑚𝑚1) ≤ 𝑇𝑇5𝑚𝑚1,𝑘𝑘 + 𝑤𝑤2 ∗ �1 −𝑋𝑋𝑚𝑚,𝑚𝑚1,𝑘𝑘�;  
                                                                           ∀𝑚𝑚,∀𝑚𝑚1,∀𝑘𝑘 (51) 

  
𝑇𝑇5𝑚𝑚,𝑘𝑘 + �𝑠𝑠(𝑚𝑚) + 𝑡𝑡𝑡𝑡(𝑚𝑚,𝑚𝑚1)� ∗ 𝑋𝑋𝑚𝑚,𝑚𝑚1,𝑘𝑘

≥ 𝑇𝑇5𝑚𝑚1,𝑘𝑘 − 𝑤𝑤2 ∗ �1 − 𝑋𝑋𝑚𝑚,𝑚𝑚1,𝑘𝑘�; 
                                                                            ∀𝑚𝑚,∀𝑚𝑚1,∀𝑘𝑘 

(52) 

  
𝑇𝑇4𝑚𝑚,𝑘𝑘 ≥ 𝑤𝑤1 ∗ 𝑋𝑋𝑎𝑎,𝑚𝑚,𝑘𝑘;∀𝑘𝑘,∀𝑚𝑚 (53) 
  
𝑇𝑇4𝑚𝑚,𝑘𝑘 ≤ 𝑤𝑤2 ∗ 𝑋𝑋𝑎𝑎,𝑚𝑚,𝑘𝑘;∀𝑘𝑘,∀𝑚𝑚 (54) 
  
𝑇𝑇5𝑚𝑚,𝑘𝑘 ≥ 𝑤𝑤1 ∗ 𝑊𝑊𝑚𝑚,𝑘𝑘;∀𝑘𝑘,∀𝑚𝑚 (55) 
  
𝑇𝑇5𝑚𝑚,𝑘𝑘 ≤ 𝑤𝑤2 ∗ 𝑊𝑊𝑚𝑚,𝑘𝑘;∀𝑘𝑘,∀𝑚𝑚 (56) 
  
𝑋𝑋𝑣𝑣,𝑣𝑣1,𝑘𝑘 ,𝑌𝑌𝑘𝑘,𝑘𝑘1,𝑊𝑊𝑣𝑣,𝑘𝑘 = {1, 0},∀𝑣𝑣,∀𝑣𝑣1,∀𝑘𝑘,∀𝑘𝑘1 (57) 
  
𝐿𝐿𝑣𝑣,𝑘𝑘 ,𝑇𝑇1𝑣𝑣,𝑘𝑘 ,𝑇𝑇2𝑎𝑎,𝑘𝑘 ,𝑇𝑇3𝑎𝑎,𝑘𝑘 ,𝑇𝑇4𝑚𝑚,𝑘𝑘 ,𝑇𝑇5𝑚𝑚,𝑘𝑘 ,𝑍𝑍 ≥ 0;∀𝑣𝑣,∀𝑘𝑘,∀𝑚𝑚 (58) 

 
Eq. (49)-(52) calculate and control the time in which bus 

k arrives at node m1, immediately after visiting node m.  
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Expressions (53)-(56) guarantee that students are delivered to 
schools at the established time. Constraints (57)-(58) guarantee 
the nature of binary and positive variables. Expressions (37)-(39), 
mentioned in the single load model, are used in this model as 
well. 

 
4.  Proposed solution methodology 

 
A heuristic method is proposed to find near-optimal solutions 

to the problem and to keep better control of the computational 
times. The algorithm starts with a constructive approach known 
as “cluster first-route second”. This procedure consists of 
clustering students to assign them to each bus. Then, the sequence 
of students is computed. This approach has been applied by [25], 
who solved a pick-up and delivery routing problem, and [26], 
who develop a tabu search meta-heuristic to solve a problem that 
included the load balance of vehicles. Fig. 2 shows the flowchart 
of the heuristic for the single load and the mixed load strategies. 

The first step of the algorithm is to calculate the target number 
of buses. This corresponds to the integer obtained after rounding 
up the result of the relation j/Q. Then, the algorithm searches for 
homogeneous generation of clusters in relation to the number of 
children. To do so, clusters are built by dividing the y-axis of the 
geographical plane, in such a way that the number of students in 
each cluster is balanced. A nearest-neighbor routing heuristic is 
applied to determine the sequence in which students are picked 
up and the schools that are visited (for the case of the mixed load 
strategy). This approach is also used by [26]. The proposed 
approach is similar to the one presented by [27], their 
metaheuristic approach solves the generalized elementary 
shortest path problem, which consists on finding a shortest path 
from a known location to a known destination by visiting clusters 
of nodes where a profit is collected. 

Finally, the “longest processing time” rule from machine-
scheduling heuristic is used to determine the order and the time 
intervals in which routes will be performed. The objective of this 
is to sequence the buses at the node that represents the highway 
to avoid heavy congestion. The proposed algorithm uses a 
backward scheduling approach, starting with the longest route to 
the shortest one. This tries to guarantee that the longest route 
arrives within the time window limit at the schools. Thus, the 
second-longest route is scheduled to enter the highway with a 
delay of R time units after the previous route is scheduled. The 
procedure is repeated for the other routes until the shortest route 
is scheduled. In the case in which an infeasibility is generated 
because the length of the route is longer than the defined timeline 
(from 0 to w2), the algorithm starts the process again, increasing 
in 1 the number of clusters and until the maximum number of 
clusters is equal to the number of students. 

 
5.  Numerical Example 

 
A numerical example is presented to present some 

insights of the problem. For this example, three instances of 
the single load model are solved independently, each one 
with six students. Then these are combined to solve a mixed 
load system with 18 students and three schools (Instance 6-
18). In Fig. 3, the obtained geographical distribution for the 
different set of nodes is shown. 

Figure 4 shows the solutions obtained when these 

instances were solved under the single load strategy. In this 
case, the optimal solution for the instances of School1, 
School2, and School3 were found in 0.19, 0.27, and 0.21 
seconds respectively (0.67 seconds in total). After running 
the solution to solve this instance with the mixed load 
strategy, the optimal solution was obtained in 17 minutes. It 
is shown in Fig. 5. 

Tables 1-3 show the arrival times for single load routes, 
illustrated in Fig. 4. Tables 4 and 5 present the corresponding 
times to mixed load routes, represented in Fig. 5. 

 

 
Figure 2. Flowchart of developed heuristic.  
Source: prepared by authors 

 
 

 
Figure 3. Geographical distribution of nodes for instance 6 with 18 
students. 
Source: prepared by authors 
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Figure 4. Single load solution for instance 6 with 18 students. 
Source: own elaboration 

 
 

Table 1 
Single load strategy – Arrival times for route 1 

Route Node Arrival Time Arrival Hour 

Route1 

1 0 5:00 
10 18 5:18 

8 27 5:27 
12 43 5:43 
11 59 5:59 

7 73 6:13 
9 89 6:29 

13in  102 6:42 
13out 132 7:12 

14 150 7:30 
Source: prepared by authors 

 
 

Table 2. 
Single load strategy – Arrival times for route 2 
Route Node Arrival Time Arrival Hour 

Route2 

1 0 5:00 
10 12 5:12 
12 20 5:20 

9 33 5:33 
7 51 5:51 
8 69 6:09 

11 93 6:33 
13in 112 6:52 

13out 142 7:22 
14 154 7:34 

Source: prepared by authors 
 
 
The mixed load strategy, on the contrary, guarantees 

collaborative planning. In this manner, the entry of buses to 
the highway is carried out in an orderly and coordinated way 
for all schools, as shown in Tables 4 and 5. For this case, the 
arrival time is at 07:05 and 07:20, respectively. In other 
words, buses arrive 15 minutes apart (R=15), minimizing the 
bunching effect. Fig.6 shows a Gantt graph of the arrival 
times at the highway for the different routes of the two 
strategies.  

Table 3 
Single load strategy – Arrival times for route 3 
Route Node Arrival Time Arrival Hour 

Route3 

1 0 5:00 
9 27 5:27 

12 48 5:48 
7 72 6:12 
8 78 6:18 

10 106 6:46 
11 125 7:05 

13in 143 7:23 
13out 173 7:53 

14 183 8:03 
Source: prepared by authors 

 
 

 
Figure 5. Mixed load solution for instance 6 with 18 students. 
Source: prepared by authors 

 
 

Table 4 
Mixed load strategy – Arrival times for route 1 
Route Node Arrival time Arrival hour 

Route1 

1 13 5:13 
22 28 5:28 
20 37 5:37 
31 48 5:48 
32 54 5:54 
24 65 6:05 
23 81 6:21 
19 95 6:36 
35 106 6:46 
21 112 6:52 

37in 125 7:05 
37out 155 7:35 

40 165 7:45 
38 193 8:13 

Source: prepared by authors 
 
 

6.  Computational results 
 
Random instances are built to do experiments. To generate 

the data, the following assumptions are considered: the 
geographical location per node is random on a Cartesian plane of 
50 kilometers on the horizontal axis (coordinate x), and 20 
kilometers on the vertical axis (coordinate y). This plane has an 
area of 1000km2, which represents approximately 75% 
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Table 5 
Mixed load strategy – Arrival times for route 2 
Route Node Arrival time Arrival hour 

Route2 

2 11 5:11 
27 21 5:21 
36 29 5:29 
30 37 5:37 
33 51 5:51 
28 64 6:04 
25 72 6:12 
26 90 6:30 
34 113 6:53 
29 121 7:01 

37in 140 7:20 
37out 170 7:50 

40 180 8:00 
39 201 8:21 

Source: prepared by authors 
 
 

 
Figure 6. Gantt chart for the scheduling of buses on the highway. 
Source: prepared by authors 

 
of the area of Bogota. The timeline starts from 05:00a.m. to 
08:30a.m. in minutes (0 to 210 minutes). 

The time window for the school is from 07:30a.m. - 
08:30a.m. The average time taken in traffic congestion to travel 
along the highway is 30 minutes, and the average speed is 36 
km/hour. There are as many available buses as students, that is, 
k=j, and each bus has a capacity of 10 students. At each stop, the 
bus picks up only one student. The time one bus spends to pick 
up one student is 1 minute. That is, buses must be scheduled at 
least 15 minutes apart when they are about to enter to node that 
represents the highway (R = 15 minutes). The fixed cost is 50 
currency units. The variable cost relates to the covered distance; 
it is assumed to be five (5) currency units/km. 

Experiments are carried out using solver GAMS v. 23.5.1 
on a personal computer with an Intel® Core™ i3-2310M 
2.10GHz processor 8 Gb RAM.  51 instances are generated, 
which vary from four (4) to 20 students (three (3) different 
instances for the same problem size). The optimal solution is 
found in 21 instances, an integer solution is found in 23 
instances, and no solution is found in seven (7) instances with 
a time limit of four (4) hours. All the above demonstrate the 
complexity of the problem to be solved, since optimal 
solutions are found only for instances with 10 students. 

According to this, valid inequalities are proposed to make the 
mathematical model more efficient, and in this manner, 
optimal solutions for more instances are computed.  

For the case of the model with valid inequalities (WVI 
Model), the optimal solutions for 27 instances are found, an 
integer solution are found in 16 cases, and no solution is found in 
eight (8) cases. Additionally, a comparative analysis is carried out 
in terms of time for the 21 instances, in which an optimal solution 
is found, either with the base model as with WVI Model. Thus, 
the average time for the base model is 309.1 seconds while the 
average time for the WVI model is 7.87 seconds. In conclusion, 
for the sample of 21 instances, the WVI Model needs 2.5% of the 
base model time to find the optimal solution.  

Table 6 shows the consolidated results according to the 
size of the instances (N) for both cases. Column “CPU[s]” 
corresponds to the average solver run time in seconds. 
Column “Cost” refers to the average objective function value. 
Finally, column “O.S.F.” presents the number of optimal 
solutions found per instance size group.  

The WVI single load model structure is used to develop 
the mixed load model. Ten (10) instances are taken into 
account combining single load instances to obtain a system 
with multiple schools of mixed load, and in that way, carry 
out a comparative analysis between the two strategies, 
maintaining equality in the conditions of the two systems. 

Table 7 shows the results for the mixed load strategy 
instances and the comparison with the added results obtained 
with single load strategy, based on the size of the instance (8-
21). The column “N.R.” refers to the number of buses needed 
in the solutions. The column “CPU[s]” corresponds to 
execution time in seconds. The column “Cost” refers to the 
objective function value. A bold font is used to highlight 
when an optimal solution is found. The relationship in terms 
of cost (R.C) of mixed load strategy over single load strategy 
is also presented. (OOM means “Out of memory”). 

For the generated mixed load instances, the optimal 
solution for seven (7) out of 10 instances is found, an integer 
solution is found for two (2) instances, and the computer ran 
out of memory once. It is important to highlight that, for these 
nine (9) instances, the average number of routes used and the 
objective function value with mixed load strategy correspond 
to 74%, and 77% of the single load strategy, respectively. 

Additionally, in terms of computational time, the mixed load 
strategy is not competitive in terms of time when compared to the 
results of the single load. In this case, it is necessary to develop a 
heuristic method focused on improving this measure, since in 
instances with sizes adapted to reality, the tool should facilitate 
decision making in reasonable times. 

The proposed heuristic algorithm is implemented in 
Python. In the following, a comparative analysis of the 
heuristic method and the commercial solver is presented.  

Table 8 shows the consolidated results based on the size of 
the instances (N) for both methods and the single load strategy. 
The column “Cost” refers to the objective function value. The 
column “CPU[s]” corresponds to the average time of the run in 
seconds. The column “N.O.S” refers to the number of optimal 
solutions found in instances with a determined size. The column 
“GAP” refers to the absolute percentage deviation of the cost 
obtained with the heuristic method, according to the cost of the 
best known solution for each of the instances.  
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Table 6 
Comparative results by solver of single load model with and without valid 
inequalities. 

 Base Model  WVI Model 
N CPU[s] Cost O.S.F.  CPU[s] Cost O.S.F. 
4             0,2            373        3                 0,1            373        3    
5             0,4            398        3                 0,2            398        3    
6             0,7            428        3                 0,2            428        3    
7             2,3            427        3                 0,3            427        3    
8             3,0            480        3                 0,4            480        3    
9      1.936,4            525        3               52,8            525        3    

10         220,8            487        3                 1,1            487        3    
11      8.169,7            747  -       7.129,4            747        2    
12    13.284,9            713  -       8.481,4            712        2    
13      3.915,3            742  -     10.586,2            735        2    
14      6.280,4            742  -       4.837,1            742  - 
15      3.770,4            728  -       7.001,4            725  - 
16    13.980,5            787  -       5.097,2            785  - 
17      3.860,6            788  -       1.800,6            840  - 
18      2.250,7         1.200  -       2.600,7            788  - 
19  N.S.F   N.S.F  -       3.600,8            800  - 
20      4.001,1            840  -     10.201,0            840  - 

Source: prepared by authors 
 

Table 7. 
Comparative results by solver between mixed load and single load strategies 

  Mixed load strategy  Single load strategy  

Instance N.R. CPU [s] Cost  N.R. CPU [s] Cost R.C 
1-8 1 0,5 510  2 0,2 755 68% 
2-15 2 74,9 820  3 0,4 1.110 74% 
3-10 1 1,6 480  2 0,3 845 57% 
4-15 2 73,6 815  3 0,5 1.195 68% 
5-12 2 27.805,9 710  2 0,5 795 89% 
6-18 2 1.021,9 965  3 0,7 1.285 75% 
7-14 OOM  OOM  OOM  2 0,6 905 - 
8-21 3 20.001,2 1.200  3 0,8 1.280 94% 
9-13 2 68,9 860  3 0,4 1.160 74% 
10-16 3 9.300,6 1.215  3 0,5 1.280 95% 

Source: prepared by authors 
 
 

As observed in Table 8, with the commercial solver, 27 
optimal solutions are found, while with the heuristic method 
12 (56% less). Nevertheless, the average percentage (%) gap 
for the solutions with the heuristic method in relation to 
solver is 7.3%. This suggests competitiveness of the heuristic 
method. In the case of the solver, it is not possible to find a 
solution for eight (8) of the 51 instances, while the heuristic 
method attained a solution for each of the instances. To 
conclude, it is important to highlight the efficiency of 
computational time using the heuristic method; it required 
0.12% of the average time used by the solver. In other words, 
there is a reduction of 99.88%.  

To prove the capability of the heuristic method, three (3) 
random instances with 100 students are generated, in which the 
parameters are modified as follows: R=15, Q=30, Sj=0, Sa=10, 
and V=50. By running the algorithm, solutions with four (4) 
routes for each instance, with an average cost of 1,698.0 currency 
units in an average time of 0.001 seconds, are obtained.  

Table 9 shows the obtained results for the instances 
developed with mixed load strategy, both with the heuristic  

Table 8 
Comparative results between the commercial solver and the heuristic for the 
single load strategy 

 
Source: prepared by authors 

 
 

method as with the solver. The column “Cost” refers to the value 
of the objective function. The column “CPU[s]” corresponds to the 
run time in seconds. A bold font highlights if an optimal solution is 
found. The table also shows the column “GAP”, which refers to 
the absolute percentage deviation of the obtained cost with the 
heuristic method according to the cost of the best known solution 
for each of the instances. (OOM stands for “Out of memory”). 
Seven (7) optimal solutions are found with the solver, while with 
the heuristic method only one. Nevertheless, the average GAP of 
the solutions with the heuristic method according to the solver is 
7.8%. The case of the solver showed no solution for one (1) of the 
instances, while the heuristic method found one solution for each 
of the instances. The efficiency in terms of computational time of 
the heuristic method is important, since it spent in average only 
0.02% of the time than the solver to find a solution. 
 
 
Table 9. 
Comparative results between the commercial solver and the heuristic for 
mixed load strategy 
  Solver   Heuristic   
Instance Cost CPU[s]  Cost CPU[s] GAP 
1-8      510              0,5         540    0,0 5,9% 
2-15      820            74,9         975    0,0 18,9% 
3-10      480              1,6         500    0,0 4,2% 
4-15      815            73,6         825    0,0 1,2% 
5-12      710     27.805,9         720    0,0 1,4% 
6-18      965       1.021,9      1.345    0,0 39,4% 
7-14  OOM   OOM       965    0,0 0,0% 
8-21   1.200     20.001,2      1.285    0,0 7,1% 
9-13      860            68,9         860    0,0 0,0% 
10-16   1.215       9.300,6      1.025    0,0 0,0% 
Avg      842       6.483,2          904    0,0 7,8% 

Source: prepared by authors 
 
 
An instance is generated by taking the three (3) largest 

instances generated with the single load strategy. It means, 
an instance with 60 students in which the parameters are 
modified as follows: R=8, Q=15, Sv=0, and Sa=12. This is 
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done to prove the efficiency of the heuristic method 
proposed. By running the algorithm, a solution with five (5) 
routes, with a total cost of 2,165.0 currency units in a time of 
0.002 seconds is found. 
 
7.  Conclusions and future research 

 
Different strategies are studied to optimize the use of buses in 

the school transportation system, in the case of Bogota. Mixed 
integer formulations are presented for the single load and mixed 
load strategies. The proposed modelling approach decides the 
sequence in which students are collected and the times at which 
the buses take the main road to the school zone in order to reduce 
traffic congestion. We propose a set of valid inequalities to 
improve the performance of the mathematical models. Further, a 
comparative analysis of the performance measures and benefits 
between both strategies is presented.  

Results show that the mixed load strategy produces a better 
use of the resources. In the presented experiments, the number of 
buses is reduced in 25% in comparison to the single load strategy. 
Thus, fewer buses are needed in rush hours, less vehicle 
congestion is produced, and student travel times are reduced.  
Moreover, given the complexity of the problem, a heuristic 
method is developed to have better control of the CPU times. 
Competitive solutions are computed by the proposed method, 
with averages gaps between 7.3% - 7.8% in the optimal solutions. 
Future research includes considering special-education students; 
stochastic travel times; a heterogeneous fleet of buses; a multi-
objective version of the models to minimize environmental 
impacts; other performance measures; and more sophisticated 
exact and heuristic methodologies. 
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