

© The author; licensee Universidad Nacional de Colombia.
Revista DYNA, 84(203), pp. 75-79, December, 2017, ISSN 0012-7353

DOI: http://dx.doi.org/10.15446/dyna.v84n203.65480

Performance evaluation of M-ary algorithm using reprogrammable
hardware •

Sergio Andrés Arenas-Hoyos & Álvaro Bernal-Noreña

Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle, Santiago de Cali, Colombia. sergio.arenas@correounivalle.edu.co,

alvaro.bernal@correounivalle.edu.co

Received: June 5th, 2017. Received in revised form: August 23th, 2017. Accepted: September 18th, 2017

Abstract
Several ways to perform data encryption have been found, and one of the functions involved in standard algorithms such as RSA is the
modular exponentiation. Basically, the RSA algorithm uses some properties of modular arithmetic to cipher and decipher plain text, with
a certain performance dependence on text lengths. The growth in computing capacity has created the need to use robust systems that can
perform calculations with significantly large numbers and the formulation of procedures focused on improving the speed to achieve it. One
of these is the M-ary algorithm for the execution of the modular exponential function. This paper describes an implementation of this
algorithm in reprogrammable hardware (FPGA) to evaluate its performance.
The first section of this work introduces the M-ary algorithm. The second section uses block description for implementation understanding.
The third section shows the results in time diagrams, and finally, the last section conclusions.

Keywords: cryptosystems; modular exponentiation; modular arithmetic; RSA algorithm; FPGA; M-ary algorithm.

Evaluación del desempeño del algoritmo M-ary en hardware
reprogramable

Resumen
Se han encontrado diversas formas de realizar cifrado de datos, y una de las funciones involucradas en algoritmos estándar como el RSA
es la exponencial modular. Básicamente, el algoritmo RSA utiliza algunas propiedades de la aritmética modular para cifrar y descifrar
textos planos, con cierta dependencia en la longitud del texto. El crecimiento en la capacidad de cómputo ha creado la necesidad de utilizar
sistemas robustos que puedan realizar cálculos con números significativamente grandes, y la formulación de procedimientos enfocados en
mejorar la velocidad para lograrlo. Uno de éstos es el algoritmo M-ary para la ejecución de la función exponencial modular. Este artículo
describe una implementación de este algoritmo en hardware reprogramable (FPGA) para evaluar su desempeño.
La primera sección introduce el algoritmo M-ary. La segunda, usa descripción en bloques para comprender la implementación. La tercera,
muestra los resultados en diagramas de tiempo, y finalmente, la última sección expone conclusiones.

Palabras clave: criptosistemas; exponencial modular; aritmética modular; algoritmo RSA;FPGA; Algoritmo M-ario.

1. Introduction

Modern systems are designed to obtain better performance in

terms of merit figures, such as power, area and/or speed. In
hardware terms, the natural language of a computer is a set of
integers restricted by a number, named modulo, establishing a
ring of integers. This introduces the concept of modular
arithmetic and its consequent number representation that is used

How to cite: Arenas-Hoyos, S.A. and Bernal-Noreña, A., Performance evaluation of M-ary algorithm using reprogrammable hardware DYNA, 84(203), pp. 75-79, December,
2017.

in many areas, including digital signal processing or
cryptographic systems [5]. This representation been probed using
modular arithmetic, specifically Residue Number System RNS
[12], instead of two-complement or classical weighted binary, to
increase the speed performance in FIR filters [8,9].

This paper focuses on a specific implementation of a
special modular function, modular exponentiation. Taking
advantage of the inherent flexible characteristics of FPGA

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 84(203), pp. 75-79, December, 2017.

76

architecture, it is possible to develop a system that uses the
M-ary algorithm [10] to test various characteristics, which
are verified with a software equivalent and compared with
previous implementations of the method.

Previous systems were made with different schemes,
taking advantage of a pure hardware co-design approach
(hardware subsystem and software subsystem) or using
algorithms such as an addition-chain to reduce multiplication
steps [7,11]. These systems were based on combining their
best characteristics.

Modular exponentiation consists in finding a solution to
the following eq. (1):

𝑍𝑍 = 𝑋𝑋𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 2(𝑛𝑛−1) < 𝑀𝑀 < 2𝑛𝑛 (1)

where n is the length of M in bits.
The M-ary algorithm can be subdivided into different sub

processes as follows [5]: exponent segmentation in w
windows of d bits, preprocessing and storing of every
possible power of any base in a range determined by 0 to 2^d,
squaring and multiplying to obtain a result. These steps are
illustrated in the pseudo code scheme shown in Fig. 1.

Modular exponentiation implies another operation, modular
multiplication. This function is implemented with an algorithm
called the Montgomery Method [6,12]. This process takes two
cycles, one for pre-calculating a result in a space called the M-
residues Space with an undesirable factor R^-n called the
multiplicative inverse of R = 2^n mod M. After the first cycle, a
second cycle is used to recover the desired multiplication without
the R^-n factor. This method avoids computing the integer
division, which is an expensive operation in hardware.

The Montgomery Method is described in the pseudo code
shown in Fig. 2.

Figure 1. Pseudo code for M-ary algorithm
Source: [4]

Figure 2. Pseudo code for Modular Multiplication using the Montgomery
algorithm.
Source: [2]

Figure 3. Pseudo code for Modular Multiplication
Source: The authors.

Modular multiplication can be described as shown in Fig. 3.

2. Implementation

The complete system was modeled with VHDL language

using basic libraries like the IEEE Standard, allowing the
system to be more generic and portable among different
architectures. Reprogrammable hardware is used because it
allows the design of digital architectures with certain
flexibility.

In a block description, modular exponentiation has four
subsystems that work together including the Montgomery
Multiplier, the Storage Unit, the Exponent Segmentation
Unit, and the Control Unit. These blocks are shown in Fig. 4.

Sequential logic uses a Finite States Machine under the
Moore scheme, where the outputs depend only on the actual
state because asynchronous behaviors should be avoided due
to a complex and significant quantity of states
(approximately 40 for the principal control module).

Internally, the Montgomery Multiplier has another sub
control unit, which synchronizes a data path and advertises to
the central unit when multiplication is finished. This
controller also switches sources in the multiplier when a
Montgomery cycle is completed, as illustrated in Fig. 5.

Operands have a 12-bits length, implying the use of 12-
bits and 1-bit carry units.

Figure 4. Modular exponentiation general system
Source: The authors.

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 84(203), pp. 75-79, December, 2017.

77

Figure 5. Modular multiplication subsystem
Source: The authors.

Figure 6. Segmentation Unit
Source: The authors.

The segmentation unit uses a 4-to-3 multiplexer in order

to fragment the exponent in fields that are used as a kind of
pointer to preprocessing powers. A counter helps select
which of those segments is going to be used. There is an
offset of 2 addresses because X^0 and X^1 are not stored in
the memory register bank. The block diagram (Fig. 6) shows
the internal constitution of this unit.

Address lines are used to control a storage unit, which is
composed by a set of 16 registers with 12 bits width each,
and an input decoder takes the address and enables writing to
one register. When reading is required, a 16-to-12
multiplexer connected to the address lines takes the register
data and puts it into the output register; these lines send a Vj
signal to the Montgomery Multiplier. This system allows
writing and reading one register at a time, and the internal
structure of the system is shown in Fig. 7.

3. Experimental results

For testing purposes, a test block is added. The test block

contains the inputs pattern to the M-ary block. Each block
contains a set of 48 bits, which are subdivided in 4 numbers

Figure 7. Storage Unit
Source: The authors.

Figure 8. Testing system
Source: The authors.

of 12-bit length and represent the needed inputs as follows: a
base (X), an exponent (Y), a modulus (M) and a correction
factor (R). There are a total of 4 samples, as reflected in the
use of a storage system with an attribute of 4 words - 48 bits
ROM. This system starts each exponential process and senses
a finish flag bit provided by the exponential block. When an
exponential process finishes, a counter changes the address
pointer that is controlling the ROM behavior and loads the
respective data subsets in the output registers. Fig. 8
illustrates the testing structure.

Figure 9. Test block, detailed overview
Source: The authors.

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 84(203), pp. 75-79, December, 2017.

78

Figure 10(a). Data set X = 1697, Y = 25, M = 2773, Inv = 566, Z = 1197

Figure 10(b). Data set X = 2000, Y = 140, M = 2901, Inv = 733, Z = 982
Source: The authors.

A detailed scheme of the internal structure in the testing

block can be seen in Fig. 9.
This system is for testing purposes, so the hardware

requirements were not great, allowing for a low-cost system,
such as the DE0 evaluation board.

Physical implementation of the previous block was
carried out using Quartus II software, Signal-Tap, and a DE0
development board that has an EP3C16F484C6N FPGA
from Altera Corp. Figs. 10(a) and 10(b) show the timing
diagrams for some data sets.

An estimation of the merit figures was obtained using
Timer Quest and Quartus II tools as follows:

Max. working frequency = 77,57 MHz

Total Thermal Power = 74,29 mW, Area percentage:
19 %

With all this examples in mind, it is convenient to show

another. The following example addresses the cryptographic
application of the modular exponentiation, and its aim is to
cipher and decipher a character that is written in an ASCII-
like style.

The next steps are used to obtain the public and private
keys of the RSA algorithm [3]:
1. Takes two prime numbers p and q as well as their

product n:

𝑝𝑝 = 11, 𝑞𝑞 = 227,𝑛𝑛 = 2497

2. Calculates Euler’s Phi function of n using:

𝜑𝜑(𝑛𝑛) = 𝜑𝜑(𝑝𝑝).𝜑𝜑(𝑞𝑞) = (𝑝𝑝 − 1). (𝑞𝑞 − 1) (2)

𝜑𝜑(𝑛𝑛) = (11 − 1). (227 − 1) = 10.226 = 2260

3. Chooses a prime number e, which is less than φ(n)

𝑒𝑒 = 137

4. Finds the multiplicative inverse in modulus φ(n) of e,
defined by:

𝑑𝑑 = 𝑒𝑒−1𝑚𝑚𝑚𝑚𝑚𝑚�𝜑𝜑(𝑛𝑛)� (3)

𝑑𝑑 = 137−1𝑚𝑚𝑚𝑚𝑚𝑚(2260)

5. Uses an iterative algorithm in Matlab to find the

multiplicative inverses, based on the following fact:

𝑑𝑑. 𝑒𝑒 = 𝑖𝑖.𝜑𝜑(𝑛𝑛) + 1 (4)

𝑑𝑑 =
(𝑖𝑖.𝜑𝜑(𝑛𝑛) + 1)

𝑒𝑒
 ,𝑑𝑑 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Iterating over i, where d is an integer, to find that:

𝑑𝑑 = 𝑒𝑒−1𝑚𝑚𝑚𝑚𝑚𝑚�𝜑𝜑(𝑛𝑛)� = 33

Multiplies both d and e:

𝑑𝑑. 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 �𝜑𝜑(𝑛𝑛)� = 33.137 𝑚𝑚𝑚𝑚𝑚𝑚(2260)
𝑑𝑑. 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚�𝜑𝜑(𝑛𝑛)� = 4521 𝑚𝑚𝑚𝑚𝑚𝑚 (2260) = 1

This proves that e is the multiplicative inverse of d in

modulo φ(n).
6. Creates a private key with the set (p, q, d) = (11, 227,

33) and a public key (n, e) = (2497, 137). Now, using
ASCII code, “s” is represented with 83 as the message
to transport to use the cipher and decipher steps.

7. Cipher step consists of using the modular
exponentiation to solve the next equation:

𝐶𝐶 = 𝑀𝑀𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛) (5)

 𝐶𝐶 = 83137𝑚𝑚𝑚𝑚𝑚𝑚 2497 = 283

Fig. 11 shows cipher results.

8. Finally, the decipher step consists of using modular
exponentiation to solve the next equation:

𝑀𝑀 = 𝐶𝐶𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛) (6)

𝑀𝑀 = 28333𝑚𝑚𝑚𝑚𝑚𝑚 2497 = 83

Figure 11. Ciphering “s” character (plain text)
Source: The authors

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 84(203), pp. 75-79, December, 2017.

79

Figure 12. Deciphering the cipher equivalent of “s” character
Source: The authors.

Fig. 12 shows the decipher results.

4. Conclusions

− With practical work experience, it was clearly shown
that the synchronization between blocks is affected by
the dependence of the data. Its solution facilitates the
treatment of the signals involved in the design of digital
systems.

− The design of equivalent procedures in software
facilitated error debugging in the hardware
implementation.

− The modular multiplication control system was
optimized using a Flip-Flop T to reduce the number of
steps in FSM. Additionally, if a zero value segment was
detected in the exponent, the central control unit
avoided a multiplication.

− Using an EP3C16F484C6N Cyclone III FPGA from
Altera Corp., the merit figures reported were as follows:
− Maximum working frequency = 77.57 MHz.
− Total thermal power = 74,29 mW.
− Area percentage = 19 % of 15408 logic elements.

− In future work, the optimization of system controllers is
a possible aim to reduce the number of clock cycles per
operation. For the data path, the systolic design should
be evaluated and considered to reduce complexity in the
system controllers and to avoid synchronization
between blocks. On the other hand, it would be
interesting to create a completely parameterizable block
where the amount of data and window bits are
adjustable to requirements within cryptographic
designs. Another important point to be explored is the
use of modular arithmetic to implement more efficient
digital signal processing filters in terms of time [5].

Bibliographic

[1] De Macedo-Mourelle, L. and Nedjah, N., Fast reconfigurable

hardware for the M-ary modular exponentiation. In Digital System
Design, DSD 2004. Euromicro Symposium on System Design, pp.
516-523, IEEE. August, 2004.

[2] Harris, D., Krishnamurthy, R., Anders, M., Mathew, S. and Hsu, S.,
An improved unified scalable radix-2 Montgomery multiplier. In
Computer Arithmetic, 2005. ARITH-17 2005. 17th IEEE Symposium
on IEEE. June, 2005, pp. 172-178.

[3] Rivest, R.L., Shamir, A. and Adleman, L., A method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2), pp. 120-126, 1978.

[4] Bernal, A., Conception et étude d'une architecture numérique de haute
performance pour le calcul de la fonction exponentielle modulaire Dr.
dissertation, Institut National Polytechnique de Grenoble-INPG,
France, 1999.

[5] Chang, C.H., Molahosseini, A.S., Zarandi, A.A.E. and Tay, T.F.,
Residue number systems: A new paradigm to datapath optimization
for low-power and high-performance digital signal processing
applications. IEEE circuits and systems magazine, 15(4), pp. 26-44,
2015.

[6] Montgomery, P.L., Modular multiplication without trial division.
Mathematics of Computation, 44(170), pp. 519-521, 1985.

[7] Nedjah, N. and de Macedo-Mourelle, L., Four hardware
implementations for the m-ary modular exponentiation. In
Information Technology: New Generations, 2006. ITNG 2006. Third
International Conference on 2006 IEEE. April, 2006, pp. 210-215.

[8] Di Claudio, E.D., Orlandi, G. and Piazza, F., Fast RNS DSP
algorithms implemented with binary arithmetic. In Acoustics, Speech,
and Signal Processing, 1990. ICASSP-90., 1990 International
Conference on IEEE. April, 1990, pp. 1531-1534.

[9] Ramírez, J. and Meyer-Baese, U., High performance, reduced
complexity programmable RNS-FPL merged FIR filters. Electronics
Letters, 38(4), pp. 199-200, 2002.

[10] Egecioglu, O. and Koç, C.K., Fast modular exponentiation.
Communication, Control and Signal Processing, 1, pp. 188-194,
1990.

[11] Nedjah, N., Mourelle, L.M., Santana, M. and Raposo, S., Massively
parallel modular exponentiation method and its implementation in
software and hardware for high-performance cryptographic systems.
IET Computers and Digital Techniques, 6(5), pp. 290-301, 2012.

[12] Menezes, A.J., Van Oorschot, P.C. and Vanstone, S.A., Handbook of
applied cryptography, Chap 14 Efficient Implementation. CRC press.
Retrieved from: http://cacr.uwaterloo.ca/hac/(1996).

S. Arenas-Hoyos, received the BSc. in Electronic Eng. from Universidad
del Valle, Colombia in 2015. In September 2011, he joined the Digital
Architectures and Microelectronic Group of the Universidad del Valle as
researcher. His areas of interests are the programmable architectures, digital
systems design, hardware description languages, embedded systems and
digital signal processing.
ORCID: 0000-0002-5396-241X

A. Bernal-Noreña, received the BSc. in Electrical Eng. in 1987 from
Universidad del Valle, Cali, Colombia, the MSc. degree in Science in
Electrical Engineering majoring in VLSI circuit design from Escola
Politécnica da Universidade de São Paulo, São Paulo, Brazil in 1997, and
the PhD degree in Microelectronics from Institute National Polytechnique
de Grenoble, Grenoble, France in 1999. Currently, is full professor at the
Engineering Faculty of Universidad del Valle, Cali, Colombia and leader of
the Group of Digital Architectures and Microelectronic.
ORCID: 0000-0003-4766-8086

	1. Introduction
	2. Implementation
	3. Experimental results
	4. Conclusions
	Bibliographic

