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Abstract 
This work aims to develop and test a computational mathematical model, based on the fuzzy set theory, to predict the rate of thermal comfort 
by means of the swine behavior in relation to their age and to the black globe humidity index for two nursery types.  Nursery 1 had brick 
stalls with fully slatted metal flooring, and nursery 2 had wooden stalls with fully slatted plastic flooring. Nursery style 2 presented a higher 
frequency of behavior in the condition comfort than nursery style 1, respectively 39,32% and 38,16%. The thermal comfort values for the 
fuzzy system were 3,58% for the standard deviation and 72,86% for the coefficient of determination. The developed fuzzy model has proven 
adequate in predicting thermal comfort by means of the animal's behavior. 

Keywords: Thermal environment; fuzzy model; swine confinement facilities; frequency of behavior. 

Índice fuzzy para confort térmico de cerdos en la fase de pre-ceba 
con base en su comportamiento 

Resumen 
Este trabajo tuvo como objetivo desarrollar y evaluar un modelo matemático computacional, con base en la teoría de los conjuntos fuzzy, 
para predecir el confort térmico a partir del comportamiento de lechones, en función de su edad y del índice de temperatura de globo y 
humedad, en dos tipologías de instalación de preceba. La instalación 1 estaba compuesta por corrales de mampostería y piso de malla 
metálica, y la instalación 2 tenía corrales construidos con tablilla de madera y piso en malla plástica. La instalación 2 presentó una mayor 
frecuencia comportamental en la condición de confort que la instalación 1, con 39,32% y 38,16% respectivamente. Los valores da tasa de 
confort térmico estimados por el sistema fuzzy presentaron una desviación estándar media de 3,58% y coeficiente de determinación de 
72,86%. El modelo fuzzy desarrollado mostró ser adecuado para la predicción de la tasa de confort térmico a partir del comportamiento de 
los animales.  

Palabras-clave: Ambiente térmico; modelamiento fuzzy; instalaciones para cerdos; frecuencia comportamental. 

1. Introduction

The intensive rearing environment influences the comfort
and welfare conditions of animals, producing direct effects 
on its health status and productivity [1]. A way animals 
demonstrate comfort or discomfort regarding the 
environment in which they are raised is by their behavior [2], 
which is a tool utilized to indicate the animal welfare status 
[3]. 
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84(203), pp. 201-207, December, 2017.

The pigs in the nursery stage, particularly in post-weaning 
early ages have the lower thermal insulation of tissue and fur, 
suffering from the temperature changes of installation. As a 
consequence, there is a lower weight gain and feed 
conversion, affecting the productivity and the permanence 
time of the animals at this stage [4]. 

The first reaction of a pig to a temperature variation is a 
change in its behavior [5]. When in cold thermal conditions, 
they usually gather up over or near each other. In comfort 

mailto:daianececchin@yahoo.com.br


Ramos Freitas et al / Revista DYNA, 84(203), pp. 201-207, December, 2017. 

202 

conditions, when lying, they nearly touch one another, while 
in heat conditions pigs lie around scattered [6,2]. According 
to [7] and [8], under thermal stress conditions, pigs show a 
reduced frequency of feeding, standing, walking, and 
nuzzling behaviors. 

Understanding the animal behavior and their small 
variations due to environmental thermal changes is necessary 
in order to develop models that simulate welfare from 
responses of the animal to the environment [9]. 

In this regard, mathematical techniques and sensors allow 
the processing of diversified information about the 
production process, adding precision to animal production-
related actions [10]. The fuzzy sets theory is a mathematical 
technique that has been adopted to predict situations such as 
the environmental comfort of facilities [11,12], physiological 
parameters [13-15], and occupation rate [16]. 

The Fuzzy Set theory was introduced by Lotfi Asker 
Zadeh in 1965 as a mathematical theory that generalizes the 
classical theory of sets. A fuzzy set is defined mathematically 
by assigning a value, which reflects the degree of the 
pertinence of the individual to the set. This degree of 
pertinence varies in the range of 0 to 1 and represents the 
similarity of this individual the characteristics that give 
identity to the set [17]. 

The fuzzy mathematics is a highly flexible structure that 
allows the integration of different types of information to 
formulate conclusions. The theory addresses uncertainties 
through the semantic or linguistic reasoning, providing an 
analysis of rules or assumptions that can be altered or updated 
according to the knowledge of the subject matter [18]. 

Given this scenario, the present study aimed to develop 
and test a computational mathematical model, based on the 
fuzzy set theory, to predict thermal comfort by analyzing the 
behavior of piglets according to age and two thermal 
variables in two nursery types. 

 
2.  Material and methods 

 
2.1.  Description of facilities 

 
This study was carried out in two swine nursery facilities of 

Niterói Farm, located in Lavras-MG, Brazil (21º 14’ S latitude 
and 45º 00’ W longitude; 918 m altitude), from August 22 to 
September 25, 2014. According to the Köppen classification, the 
climate of the region is a subtropical rainy temperate 
(mesothermal) Cwa type with dry winters and rainy summers, 
with an average annual temperature of 20.4 ºC [19]. 

The farm had a full-cycle swine production system, i.e., 
animals were confined from birth to slaughter. 

Nursing facilities were intended for the production of 
commercial hybrid swine for 35 days. Animals entered the 
nurseries at 21 days of age and left them at 56 days of age. 

The diet was prepared on the farm according to the 
nutritional requirements and specific intake of the animals in 
this production stage, provided in a feeder with automatic 
distribution. Water was supplied by automatic nipple 
drinkers with no restrictions to consumption. 

Nurseries were oriented in the east-west direction and had 
the same external structure, with 2.40 m-high metal columns, 
gable roofing with 30% slope, fibrocement tiles with 6 mm  

 
a) b) 

Figure 1. Internal structure of Nursery 1 (a) and Nursery 2 (b) 
Source: The authors. 

 
 

thickness supported by a metal structure without a louver and 
0.45 m eaves. The sides were fully covered with yellow 
canvases with adjustable height. 

Nurseries had different internal structures. Nursery 1 
measured 31.02 × 10.38 m (length × width) and had a 0.90 
m-long central corridor with 1.94 × 4.00 m-sided stalls. 
Suspended 0.50 m above the ground, stalls were made of 
masonry, with 0.68 m in height, equipped with a 0.32 m-high 
protective metal grid above the masonry wall and around the 
stall. Flooring was a metal slatted type, with a 1.00 × 1.50 m 
central concrete part where the automatic feeder was located. 
The nipple drinker was located on the left side of the stall. 
The heating system was provided by 250 W infrared bulbs 
fixed 0.40 m from the concentrate, at a height of 0.55 m. 
Nursery 1 was closed at every three stalls up to the roof by 
translucent corrugated sheets (Fig. 1a) and its housing 
capacity was 720 animals, with 24 piglets per stall (two 
litters). 

Nursery 2 measured 23.61 × 10.10 m (length × width) and 
had a 0.90 m-long central corridor with twelve 1.94 × 4.00 
m-sided stalls. Stalls were closed with wood laths with 0.80 
m in height and slatted polyethylene floor at the level of the 
central corridor. Below the floor level was a 1.50 m deep 
ditch for waste. The feeder, the drinker, and the heating 
system were positioned as in nursery 1. At every three stalls, 
Nursery 2 was closed by concrete slabs at the same height as 
the stall (Fig. 1b), and its housing capacity was 576 animals, 
with 24 piglets per stall (two litters). 

 
2.2.  Behavior 

 
To evaluate the behavior of the animals, one sample of six 

piglets from each nursery was observed in the stalls intended for 
the experiment. Observations were conducted during 10 non-
consecutive days, from 07h00 to 17h00, every 10 min. 

The quantified behaviors were based on the ethogram 
proposed by [20] and [2], as follows: lying (L) - when the 
animal lay alone, gathering (G) - when the animal lay 
together with the others, wallowing (W), eating (E), sitting 
(S), standing/walking (SW), and showing agonistic behavior 
(AB). Data referring to behavioral variables were analyzed 
non-parametrically. 

To evaluate the comfort condition of the animals, the 
frequencies of the behaviors named nuzzling (N), eating (E), 
sitting (S), and standing/walking (SW) were added together, 
as they represent some of the natural behaviors of these 
animals [21]. 
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2.3.  Environmental parameters 
 
In the nurseries, there was a divider at every set of three 

stalls, forming a microenvironment between them. To better 
represent it, thermal comfort, air quality, and sound pressure 
level data were collected from the central stall of the set. Air 
temperature, air relative humidity, and black globe 
temperature were collected automatically using dataloggers 
(Hobo, U12-013) with an accuracy of ± 0.5 °C, at 10-min 
intervals, for 24 h, for the 35 days during which the piglets 
remained in the nurseries. 

Sensors were coupled to the dataloggers and placed in the 
globe for its temperature collection. To prevent interferences 
from the heat emitted by the heating system in the 
measurements, the datalogger was installed at a height of 
0.80 m and 0.70 m apart from the heating system. For the 
same reason, the black globe was installed at a height of 0.55 
m and placed 0.50 m from the heating system. In the 
nurseries’ external environment, the datalogger and the globe 
were also installed at the same height as those inside the 
stalls. 

The black globe humidity index (BGHI) was calculated 
based on the thermal environment data using Eq. 1 below, 
developed by [22]: 

 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵 +  0.36 𝐷𝐷𝐷𝐷𝐷𝐷 −  41.5                                      (1) 

 
Where BGt is the black globe temperature (°C) and DPt 

is the dew point temperature (°C). 
 

2.4.  Fuzzy model 
 
Data pertaining to environment and frequency of 

behavior in thermal comfort condition were used in the 
development of a fuzzy mathematical model, in which the 
age of the animals (days) and the black globe humidity index 
(BGHI) were used as input variables, as they directly 
influence the animals’ behavioral response. Based on the 
input variables and using the experimental data collected 
during field analyses as reference, the fuzzy model predicts 
the output variable Thermal comfort index of the animals 
based on their behavior. 

Based on the data collected from the field experiment for 
the two nurseries evaluated, 115 datasets (100%) were 
selected, in which the characteristic thermal comfort 
behavior had a direct influence of age and thermal 
environment conditions. Of this total, 43% (50 datasets) were 
used in the development of the membership and rule 
functions and 57% (65 datasets) were used to test the 
developed model. 

The analysis was performed using Mamdani’s fuzzy 
inference method, whose response is a fuzzy set originating 
from the combination of input values and their respective 
degrees of membership, by the minimum operator, and then 
by overlapping the rules by the maximum operator [15]. 

The input variable Age was adjusted as a function of the 
period of life of the animals during the experiment (26; 56); 
this interval was divided into five membership functions 
(Table 1). 

 

Table 1.  
Fuzzy sets for the input variables. 

Variable Fuzzy sets 

Age 

Age 1 [26.0; 33.5] 
Age 2 [26.0; 41.0] 
Age 3 [33.5; 48.5] 
Age 4 [41.0; 56.0] 
Age 5 [48.5; 56.0] 

BGHI 

Level 1 [60; 62] 
Level 2 [60; 66] 
Level 3 [62; 70] 
Level 4 [66; 74] 
Level 5 [70; 78] 
Level 6 [74; 82] 
Level 7 [78; 84] 
Level 8 [82; 84] 

Source: The authors. 
 
 

 
Figure 2. Membership curve for the input variable Age. 
Source: The authors. 

 
 

 
Figure 3. Membership curves for the input variable BGHI. 
Source: The authors. 

 
 
For the BGHI variable, the interval was determined based 

on the observed thermal data (60; 84), divided into eight levels 
(L) corresponding to the pertinence functions (Table 1). 

The domains in the intervals of the input variables Age and 
BGHI are presented in Fig. 2 and Fig. 3. The triangular pertinence 
curve model was adopted, as it fits better the input variables’ data. 

For the output variable, Thermal comfort index (%), the 
behavior data were clustered according to characteristic 
behavioral patterns related to thermal comfort: eat, wallow, 
sit, and standing/walk. These behavioral traits were 
quantified in frequencies, and their values determined the 
intervals for the eight pertinence functions represented by 
Degree (D) according to Table 2. 
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Table 2. 
Interval of fuzzy sets for the output variable Thermal comfort index (%). 

Fuzzy sets Interval 
Degree 1 [0; 14] 
Degree 2 [0; 29] 
Degree 3 [14; 43] 
Degree 4 [29; 57] 
Degree 5 [43; 71] 
Degree 6 [57; 86] 
Degree 7 [71; 100] 
Degree 8 [86; 100] 

Source: The authors. 
 
 

 
Figure 4. Membership curve for the output variable Thermal comfort index (%). 
Source: The authors. 

 
 

Table 3. 
Composition of the rules system as a function of the input variables Age and 
BGHI 

       BGHI 
Age L 1 L 2 L3 L 4  L 5 L 6 L 7 L 8 

Age 1 D 4 D 5 D 5 D 3 D 1 D 2 D 4 D 3 
Age 2 D 2 D 2  D 4 D 5  D 5 D 2  D 2 D 1 
Age 3 D 7 D 7 D 6 D 2 D 3 D 3 D 3 D 2 
Age 4 D 1 D 2 D 4 D 2 D 3 D 3 D 3 D 3 
Age 5 D 2  D 3 D 4 D 3 D 3 D 4 D 3 D 2 

Source: The authors. 
 
 
After a preliminary adjustment test, the triangular model 

was used for the pertinence functions of the output variable, 
according to Fig. 4. 

The fuzzy rules system was created based on the set of data 
obtained experimentally, on information from the literature, and 
with the aid of experts, in the form of linguistic sentences. 

Three experts were selected according to the fuzzy expert 
selection methodology proposed by [23] and utilized by 
several authors [24-26]. These experts have experience in 
ambience and animal behavior, and all have more than 10 
years of work in the respective areas, characterizing their 
mastery of the subject matter. This characteristic is desirable 
from an expert [27], given their direct influence in the 
reliability and quality of results [28-29]. 

According to the combinations of the input data, 40 rules 
were defined, as described in Table 3. For each rule, the 
weighting factor of 1 was assigned. 

The weighting factor of 1, usually adopted as default, was 
chosen because it showed to be appropriate for the proposed 

 
Figure 5. Behavioral frequency (%) of the animals in Nursery 1 and Nursery 2. 
Source: The authors. 

 
 

model based on the response of the results obtained with the 
simulations. Moreover, this value has been adopted in several 
fuzzy models reported in the literature [30-33]. 

Based on the rules system will be performed fuzzy 
inference (example: SE Age is Age 2 AND BGHI is L3 THEN 
thermal comfort Index is Degree 4). Immediately after the 
inference, the defuzzification process is performed where the 
output linguistic variable is converted into a numerical value 
[34]. 

 
3.  Results and discussion 

 
The behavioral frequencies of the piglets observed in 

Nurseries 1 and 2 are shown in Fig. 5. The frequencies of the 
gathering, lying alone, agonistic behavior, eating, nuzzling, 
sitting and walking/standing behaviors between the two 
nurseries were close. The gathering behavior was more 
frequent in Nursery 1, while lying was more common in 
Nursery 2. 

 

 
 
Figure 6. Behavioral frequency (%) in comfort condition in Nursery 1 and 
Nursery 2. 
Source: The authors. 
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Table 4.  
Comparison between thermal comfort indices (%) observed and simulated by the fuzzy model. 

Age (days) BGHI Thermal comfort index (%) Age (days) BGHI Thermal comfort index (%) 
Measured Fuzzy Std. deviation Measured Fuzzy Std. deviation 

26 60 36.11 43.00 30.41 42 76 33.33 28.62 20.23 
26 67 52.78 47.74 33.76 47 69 44.44 33.34 23.57 
26 71 30.56 24.33 17.21 47 75 27.78 28.65 20.26 
26 74 2.78 4.33 3.06 47 78 25.00 28.65 20.26 
26 62 55.56 57.00 40.31 47 80 27.78 28.62 20.23 
26 75 11.11 9.87 6.98 47 81 27.78 28.65 20.26 
26 79 25.00 23.24 16.43 47 82 38.89 28.65 20.26 
28 75 22.22 27.76 19.63 49 72 16.67 21.50 15.20 
28 78 25.00 14.35 10.15 49 75 38.89 29.99 21.21 
28 71 41.67 33.44 23.65 49 81 30.56 29.99 21.21 
28 77 25.00 26.90 19.02 49 82 30.56 28.67 20.27 
28 81 36.11 33.29 23.54 49 83 36.11 26.95 19.05 
33 63 20.00 25.06 17.72 49 73 36.11 24.56 17.37 
33 77 38.89 27.49 19.44 49 74 19.44 28.67 20.27 
33 78 16.67 14.33 10.14 49 79 19.44 29.99 21.21 
33 80 13.89 18.45 13.05 49 78 33.33 29.93 21.16 
33 70 58.33 53.63 37.92 54 67 44.44 33.43 23.64 
33 81 25.00 17.70 12.52 54 70 22.22 24.34 17.21 
35 67 47.22 43.81 30.98 54 73 19.44 24.53 17.35 
35 74 47.22 49.04 34.68 54 79 44.44 38.42 27.17 
35 71 50.00 43.52 30.77 54 75 33.33 32.68 23.11 
35 70 41.67 45.10 31.89 54 66 44.44 43.00 30.41 
35 75 36.11 42.05 29.74 54 68 25.00 30.98 21.91 
35 72 50.00 41.62 29.43 54 71 36.11 24.34 17.21 
40 77 36.11 31.81 22.49 54 74 22.22 28.65 20.26 
40 75 33.33 31.81 22.49 54 77 36.11 38.42 27.17 
40 74 41.67 34.22 24.20 54 78 38.89 38.42 27.17 
40 78 33.33 26.26 18.57 56 72 38.89 28.62 20.23 
40 73 33.33 30.04 21.24 56 80 38.89 35.62 25.19 
42 72 19.44 21.50 15.20 56 74 30.56 28.67 20.27 
42 79 36.11 28.65 20.26 56 81 27.78 32.66 23.09 
42 80 36.11 28.62 20.23 56 78 44.44 43.00 30.41 
42 73 27.78 24.56 17.37         

         Mean = 3.58 
Source: The authors. 

 
 
The comfort condition observed through the eating, 

nuzzling, sitting, and standing/walking behaviors are 
illustrated in Fig. 6. Nursery 2 showed a higher percentage of 
behavioral frequency in the comfort condition than Nursery 
1: 39.32% and 38.16%, respectively. These percentage 
values show that less than 50% of the time during which 
animals remain in the nursery is comfort conditions. 

The thermal comfort index obtained by the fuzzy model, 
as well as the values observed experimentally and the 
standard deviation, are displayed in Table 4. 

The standard deviation is a measure of the variability or 
dispersion of the data, and as the deviation increases, so will 
be the dispersion of the data. 

The average standard deviation of the fuzzy model in 
relation to the values observed experimentally was 3.58%. 
The highest standard deviation observed was 8.32%, and the 
lowest was 0.33%. 

To measure the quality of the model as regards its ability 
to correctly estimate the values of the response variable, we 
calculated the coefficient of determination (R2, %), as shown 
in Fig. 7. The R2 obtained indicated that 72.86% of the 
variation can be explained by the model. 

The fact that the animals from Nurseries 1 and 2 remained 
most of their time lying without touching each other may be 
related to the thermal discomfort in the facility, as reported 

by [6] and [2]. Another aspect to be considered is the 
frequency of the natural behavior of the animals − eat, 
wallow, sit and standing/walk −; according to [8], a reduction 
of these behaviors may be related to discomfort of the animal 
due to thermal stress. 

 

 
Figure 7. Behavioral frequency (%) for the thermal comfort index. 
Source: The authors. 
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Studies on the occupation rate in dairy cattle facilities 
conducted by [16] have shown an average standard deviation 
of 3.93% and a determination coefficient of 75.45%, 
demonstrating the efficiency of the model developed for the 
simulated data. 

Estimating the weight of Japanese quail eggs, [35] 
obtained a coefficient of determination of 66.80%. According 
to these authors, the developed fuzzy model provides a 
realistic estimate of egg weight. 

The fuzzy model for predicting feed intake, weight gain, 
and feed conversion of broilers developed by [15] found the 
respective standard deviations: 4.31 g, 4.76 g, and 0.02 g g-
1, as well as the following coefficients of determination: 
99.8, 99.5, and 97.6%, showing to be adequate for the 
prediction of the analyzed variables. 

The coefficient of determination found in the present 
study was higher than that found by [35], lower than those 
obtained by [14], and close to those observed by [16]. 

Based on the exposed literature and the coefficient of 
determination found here (72.86%), the developed model 
satisfactorily estimates the response-variable values and can 
thus be used to determine thermal comfort in swine nursery 
facilities. 

 
4.  Conclusions 

 
The swine behavior can be used to characterize the 

thermal comfort condition of facilities. 
Based on the behavioral analysis, piglets from both 

nurseries remained less than 50% of their confinement period 
under comfort conditions, and Nursery 2 was more 
comfortable than Nursery 1. 

The fuzzy model developed as a function of piglet age and 
BGHI showed to be suitable for predicting the thermal 
comfort index based on the animal behavior, displaying low 
standard deviations and high correlation with the data 
measured during the field experiment. Therefore, it can be 
used as an instrument in decision-making regarding 
alterations in the thermal environment, preventing losses and 
providing better production rates. 

Therefore, new studies aiming at the characterization of 
the comfort condition, by means of rapid responses of the 
animal to the thermal stress suffered, being this one, of clear 
and objective interpretation to the man, is of paramount 
importance for the animal production that seeks, every day 
more the adoption of welfare practices. 
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