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Abstract 
In this work, vibration analysis and Gaussian Processes techniques are used in useful life prognostics of ball bearings. The database is 
provided by The Prognostics Data Repository from NASA, and shows the failure evolution in ball bearings.  The data basis also provides 
training and validation data sets for ball bearing useful life prediction. Several time and frequency characteristics are extracted from ball 
bearing vibration signals for trending analysis, and finally one of these is taken as input for the Gaussian process and describe, with a 
probabilistic strategy, the failure evolution system. No dimensionality reduction algorithm is used in this paper, only the evaluation of 
trends in failure evolution is taken for decision.  
This data basis was used in 2012 IEEE classification contest.  Several participants used classification techniques based on time-frequency 
transformation and Artificial Intelligence algorithms but none of them used Gaussian Processes in a classification scheme.  Although, the 
present work does not have the best results in classification it does show a major simplicity in formulation and implementation than most 
of the classification schemes.  
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Procesos gaussianos en el pronóstico de vida útil en rodamientos de 
bolas 

 
Resumen 
Este trabajo combina el análisis de vibraciones con la regresión gaussiana para realizar el pronóstico de vida útil en rodamientos de bolas. 
La base de datos es suministrada por “The Prognostics Data Repository” de la NASA, esta base de datos muestra la evolución de falla en 
rodamientos de bolas. Se extraen múltiples características en tiempo y en frecuencia a partir de la señal de vibración, y finalmente una de 
ellas es empleada como entrada del proceso Gausiano y se describe, mediante una estrategia probabilística, la evolución de la falla en el 
sistema. En este trabajo no se utilizan algoritmos de reducción de la dimensionalidad, solamente se evalúa la tendencia de las características 
en función  de la evolución de la falla como método de selección. 
Esta base de datos fue usada en el 2012 en un concurso de clasificación organizado por la IEEE. Aunque este trabajo no tiene los mejores 
resultados de clasificación, si presenta una metodología de análisis mucho más simple que la mayoría de los concursantes y aplicable a un 
esquema de análisis y clasificación on-line. 
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1.  Introduction 
 
Machine Prognosis according ISO 13181 – 4 [1] “is the 

convenient process that allows to estimate the Remaining 
Useful Life (RUL) of the system and thus taking appropriate 
decision”. 

In recent years research in machine component prognosis has 

                                                      
How to cite: López-López, J.F., Cuesta-Ramirez, J.J. and Quintero-Riaza, H.F., Gaussian processes in ball bearing prognostics DYNA, 84(203), pp. 214-219, December, 2017. 

been increasing due to the understanding of the importance of 
prognosis in Condition Based Maintenance (CBM). Beyond 
corrective and preventive maintenance there is a wide research 
field in predictive maintenance where the Remaining Useful Life 
(RUL) of machine components is calculated based in data from 
the normal operation or through system mathematical modeling. 

There are three principal techniques in machine prognosis 
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[2,3]. The first one is based in vibration data or any measure 
data from the component studied, this variable permits the 
formulation of a data-based model which could be 
probabilistic or AI based. The second technique is model-
based prognosis, here a residual is calculated from the real 
signal and the mathematical model of the system and there 
must be a degeneration modelling of the material or the 
machine component. The third technique is experience-
based. Different reliability models are used as Weibull, 
exponential or another probability distribution which 
estimates the RUL of the component studied. 

The Prognostics Data Repository from NASA was used 
in IEEE contest in 2012 which rewarded the team with the 
minor error percentage in ball bearing RUL estimation. 
Sloukia et al. [4] used Mixture of Gaussians-Hidden Markov 
Models (MoG-HMM) and Support Vector Machine (SVM) 
with accuracy superior to 99%. Another approach used by 
Mosallam et al [5], is Empirical Mode Decomposition 
(EMD) to discover the trend in the failure evolution with an 
absolute error of 0.0751. Li and Wang used Logistic 
Regression Model (LRM) to define a reliability model. The 
error from the RUL estimation is 4.77%. Most of these 
techniques are mathematical and time computing demanding. 
The aim of this work is the RUL estimation based in the 
simplest as possible GP implementation. This permits the 
future implementation in online industrial schemes.   

The Gaussian Processes (GP) technique shows an 
interesting application, establishing a probabilistic model 
over data, adjusting an underlying function for posterior 
bearing prognostics. This procedure is simplest than most of 
the previous works, showing an elevate accuracy in bearing 
RUL and speed in computing. 

In section 2 the mathematical formulation of Gaussian 
Processes for regression and classification is briefly explained.  

In section 3 the application of GP’s technique in 
prognosis is shown comparing the RUL estimation error with 
the actual RUL results from the full data basis. 

Finally, Section 4 discusses the results of the methodology 
applied to mechanical vibration signals of ball bearing failure. 

 
Table 1. 
Nomenclature.  

𝒙𝒙 
𝑿𝑿 
𝜎𝜎 
𝜎𝜎2 
𝜎𝜎𝑛𝑛2 
𝛴𝛴 
𝑥̅𝑥 

𝔼𝔼[𝑓𝑓(𝒙𝒙)] 
𝑘𝑘(𝒙𝒙,𝒙𝒙′) 
𝐾𝐾(𝑿𝑿,𝑿𝑿) 
𝐾𝐾𝑣𝑣 

𝑁𝑁(0,𝜎𝜎𝑛𝑛2) 
𝑚𝑚(𝒙𝒙) 
𝑁𝑁𝑁𝑁𝑁𝑁 
𝑇𝑇𝑇𝑇𝑇𝑇 
𝑇𝑇𝑇𝑇𝑇𝑇 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
𝑁𝑁 

Data vector 
Data vectors matrix 
Standard deviation 
Variance 
Noise variance 
Covariance matrix 
Mean value from data vector 𝒙𝒙 
Expected value of function 𝑓𝑓 
Kernel function of 𝒙𝒙 
Covariance function of evaluated in 𝑋𝑋 
Bessel function 
Normal or Gaussian distribution 
Mean function of  𝒙𝒙 
Number of vibration signals 
Time between data acquisition 
Total bearing life 
Gaussian Process RUL estimation 
Actual data basis RUL 
Number of elements in data vector 𝒙𝒙 

Source: The authors 

2.  Time – frequency features  
 
Several time-frequency features can be used in a 

prognostics scheme. The aim of this part in methodology is 
the identification of the process most defining characteristics. 
However there are many dimensionality reduction methods 
e.g. Principal Components Analysis (PCA) or Independent 
Component Analysis (ICA), the purpose of this work is use 
all the amount of features in RUL identification. 

Table 2 shows the time domain features with their 
formulae and Table 3 shows the features in frequency domain 
which consist in energy by frequency bands. The bands are 
related to the defects in rotating machinery. First band is 
associated with misbalance, alignment problems and cage 
deterioration. Second and Third band are associated with the 
harmonics of alignment problems and mechanical looseness. 
The Fourth band encloses outer race problems (BPFO) and 
the Fifth band is used to detect inner race problems (BPFI) 
[10]. The frequency bands are especially calculated in 
relation with analyzed ball bearing.   

 
Table 2. 
Time domain features 

Standard deviation 
𝜎𝜎 = �∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚)2𝑁𝑁

𝑖𝑖=1

𝑁𝑁 − 1
 

 
Root Mean Square 

�∑ (𝑥𝑥𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

 
Crest Factor 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝑅𝑅𝑅𝑅𝑅𝑅
 

 
Skewness ∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)3𝑁𝑁

𝑖𝑖=1

(𝑁𝑁 − 1)𝜎𝜎3
 

 
Kurtosis ∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)4𝑁𝑁

𝑖𝑖=1

(𝑁𝑁 − 1)𝜎𝜎4
 

 
Impulse Factor 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝑥̅𝑥
 

 
Shape Factor 𝑅𝑅𝑅𝑅𝑅𝑅

𝑥̅𝑥
 

 
Energy in time 
domain  �

∑ �|𝑥𝑥𝑖𝑖|𝑁𝑁
𝑖𝑖=1

𝑁𝑁
�
2

 

 
Entropy in time 
domain −� 𝑥𝑥𝑖𝑖 log 𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 

 
Clarence factor 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 

 
Mean 

𝑥̅𝑥 =
∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

 
Variance 𝜎𝜎2 

 
Maximum Value 𝑚𝑚𝑚𝑚𝑚𝑚(𝒙𝒙) 

 
Minimum Value 𝑚𝑚𝑚𝑚𝑚𝑚(𝒙𝒙) 

 
Source: The authors  
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Table 3. 
Frequency domain features 

Energy by 
frequency Band 

Frequency boundaries 

1 0 – 50 Hz 
2 50 Hz – 80 Hz 
3 80 Hz – 110 Hz 
4 110 Hz – 160 Hz 
5 160 Hz – 300Hz 

Source: The authors 
 
 

3.  Gaussian processes 
 
A Gaussian Process can describe a system response or 

stochastic process according to a normal distribution or 
Gaussian distribution, where the mean and covariance 
function depends of the training data. “Gaussian process is a 
collection of random variables, any finite number of which 
have a joint Gaussian distribution” [6]. This means that any 
function sample from the GP has a Gaussian distribution. 

A Gaussian process is completely defined by its mean 
function 𝑚𝑚(𝑥𝑥) and covariance function 𝑘𝑘(𝑥𝑥, 𝑥𝑥′). 
Furthermore, a Gaussian process is a probability distribution 
over functions, whereas a Gaussian distribution is a 
distribution over vectors.  

 
𝑓𝑓(𝑥𝑥)~𝐺𝐺𝐺𝐺(𝑚𝑚(𝑥𝑥), 𝑘𝑘(𝑥𝑥, 𝑥𝑥′)) (1) 

 
If 𝑓𝑓(𝑥𝑥) refers to a real process the mean and covariance 

functions can be defined as 
 

𝑚𝑚(𝑥𝑥) = 𝔼𝔼[𝑓𝑓(𝑥𝑥)] (2) 
  
𝑘𝑘(𝑥𝑥, 𝑥𝑥’) = 𝔼𝔼[(𝑓𝑓(𝑥𝑥) −𝑚𝑚(𝑥𝑥))(𝑓𝑓(𝑥𝑥′)

−𝑚𝑚(𝑥𝑥′))] 
(3) 

  
𝑘𝑘(𝑥𝑥, 𝑥𝑥’) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑥𝑥′)) (4) 

 
A prior probability function over the GP is defined. This 

prior probabilities define what kind of functions are expected 
to be observed, before seen any data and are chosen in 
advance. After adding training points the mean and 
covariance chance and the probability distribution is called 
the posterior over functions and is again Gaussian. 

A covariance function is a semi-positive definite function 
that measures the similarity between pairs of points over the 
input space D. Such functions are used to compute the so-
called Gram matrix or kernel matrix. Some covariance 
functions are the Squared Exponential (RBF kernel) 
expressed as 

 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = exp �−
‖𝑥𝑥 − 𝑥𝑥′‖2

2𝑙𝑙2
� (5) 

 
Where l corresponds to the length-scale; and the Mátern 

Class given by 
 

𝑘𝑘(𝑟𝑟) =
2𝑙𝑙−𝑣𝑣

𝛤𝛤(𝑣𝑣)
�
√2𝑣𝑣𝑟𝑟
𝑙𝑙

�
𝑣𝑣

𝐾𝐾𝑣𝑣 �
√2𝑣𝑣𝑟𝑟
𝑙𝑙

� (6) 

where 𝑟𝑟 = ‖𝑥𝑥 − 𝑥𝑥′‖, 𝑣𝑣 and 𝑙𝑙 are positive parameters and 
𝐾𝐾𝑣𝑣 is a modified Bessel function. Common cases of 𝑣𝑣 are 
1
2

, 3
2

, 5
2
 In the case of 𝑣𝑣 = 1/2 and 𝐷𝐷 = 1 (𝑥𝑥 dimension) this 

kernel function is called Ornstein Uhlenbeck kernel (OU-
kernel). 

Using 𝑁𝑁(0,𝐾𝐾) as GP prior over the functions 𝑓𝑓(𝑥𝑥) and a 
likelihood function given by 𝑦𝑦(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + 𝜖𝜖 (where 
𝜖𝜖 ~𝑁𝑁(0,𝜎𝜎𝑛𝑛2)) and using Bayes theorem, it is possible to 
obtain a predictive distribution for a set of new inputs 𝑋𝑋∗, 

 
𝑓𝑓∗|𝑋𝑋, 𝑦𝑦,𝑋𝑋∗~N(𝑓𝑓∗̅, cov(𝑓𝑓∗)) (7) 

 
where 
 

𝑓𝑓∗̅ ≜ 𝔼𝔼(f∗[X, 𝑦𝑦,𝑋𝑋∗])
= 𝐾𝐾(𝑋𝑋∗,𝑋𝑋)[𝐾𝐾(𝑋𝑋,𝑋𝑋) +  σn2I]−1 

(8) 

 
and the covariance 
 

cov(𝑓𝑓∗)
≜ K(X∗, X∗)−K(X∗, X)[K(X, X)
+  σn2I]−1K(X∗, X) 

(9) 

 
Here 𝐾𝐾(𝑋𝑋,𝑋𝑋) is the covariance function evaluated on the 

training set 𝑋𝑋, 𝐾𝐾(𝑋𝑋∗,𝑋𝑋) is the covariance of the training and 
test sets,  𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗) is the covariance of the new inputs and 
the parameter σn2  represents the variance of the noise. 

The estimation of the covariance function parameters is 
performed by maximizing the marginal likelihood by a 
gradient-descent algorithm. The log marginal likelihood is 
given as 

 

log 𝑝𝑝(𝑦𝑦|X,∅) = −
1
2

yΣ−1y

−
1
2

log|Σ|

−
N
2

D log(2π) 

(10) 

 
Where y are the outputs corresponding to the inputs 𝑋𝑋, ∅ 

represents the parameters and 𝛴𝛴 =  𝐾𝐾(𝑋𝑋,𝑋𝑋). 
 

4.  Experimental setup 
 
Data sets were provided by FEMTO-ST Institute. 

Experiments were carried on PRONOSTIA, an experimental 
set up designed to implement an accelerated degradation of 
ball bearings, under some constant operation conditions [7].  

The datasets consists basically in two groups: one for 
training, with ball bearing vibration signals from health to 
failure and a second group with a truncated sequence of ball 
bearing vibration from health to failure. 

Additionally there are three different operation conditions 
with different motor speed and radial load. Condition 1 
consists in 1800 rpm and 4000 N, condition 2, 1650 rpm and 
4200 N and condition 3, 1500 rpm and 5000 N. 
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Table 4. 
Tested bearings characteristics 

Characteristic Value 
Outside race diameter 32 mm 
Outer race diameter 29.1 mm 
Inner race diameter 22.1 mm 
Inside diameter 20 mm 
Thickness 7 mm 
Number of rolling 
elements 

13 

Ball diameter 3.5 mm 
Source: The authors 

 
 

 
Figure 1. Experimental set up.  
Source: PRONOSTIA set up [8]   

 
 

The ball bearing characteristics are described in Table 4. 
Additional information about the set-up, e. g. transducers, 
data acquisition systems are found in [8]. Fig. 1 shows the 
PRONOSTIA set up.  

 
4.  Final comments 

 
The aim extracting several characteristics from data basis 

is the search of trending in bearing vibration signals. In this 
work features in time and frequency domain has been 
extracted. Fig. 2 and Fig. 3 shows the features for every 
vibration signal in the training set for Bearing 1_1. It means 
the first bearing with the load condition number 1 from health 
to failure. The Bearing 1_1 data set counts with 2803 
vibration signal. It can be shown some trending in some 
features like kurtosis, RMS value, Clarence factor, max 
value, min value and the fourth and fifth energy frequency 
bands, which increase its magnitude with operation time. 
This is the base for the Gaussian Process regression that 
permits the RUL estimation.  

To keep the methodology simple, one of the features 
extracted is chosen for modelling the bearing degradation. 
The Gaussian Regression is done for all the features, and the 
chosen one, is which better fits the GP model with the 
minimum variance in the regression. 

The regression model input is the feature vector, and the 
output is the normalized vector with the number of the signal 
in the sequence of degradation bearing i.e. number 0 for the 
first healthy bearing signal and 1 for the last signal with the  

 
Figure 2. Frequency characteristics  
Source: The authors. 

 
 

 
Figure 3. Time domain characteristics  
Source: The authors. 

 
 

bearing in failure. Thus, in the abscissa axis the feature value 
is shown and the ordinate axis shows the number of the signal 
from health to failure. 

Fig. 4 shows the GP regression for data basis maximum value. 
The last values show an enormous variance which makes the 
model poor and gives mno confidence to the RUL estimation. 

Fig. 5 shows the kurtosis GP regression, chosen because 
the model fits the data basis trending. 

For RUL estimation the model for training data basis set, 
is established in every bearing. Subsequently, the test data 
basis set is evaluated taking care of operation conditions. It 
means that the ball bearings with operation condition number 
1 are evaluated with the GP model of operation condition 
number 1. For this data basis there are three operation 
conditions which change the motor speed and radial load. 
Full data basis description can be shown in [8]. 



López-López et al / Revista DYNA, 84(203), pp. 214-219, December, 2017. 

218 

 
Figure 4. GP regression for maximum value  
Source: The authors. 

 
 

 
Figure 5. GP regression for kurtosis  
Source: The authors. 

 
 
Once the test data is passed through the model, the RUL 

is calculated considering the output as a percentage of the 
bearing life. Every value from the input feature vector gives 
a percentage value, for this work, the RUL is calculated by 
two ways. First using the mean of the output last values, and 
second with maximum output value. Later, the total bearing 
life time is calculated with the number of vibration signals 
𝑁𝑁𝑁𝑁𝑁𝑁 and the elapsed time between data acquisitions 𝑇𝑇ba over 
the value extracted from the GP regression vector. The best 
estimate is chosen from those two values. 

 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇

max (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
 (11) 

 
The bearing RUL estimation is  
 

𝑅𝑅𝑅𝑅𝑅𝑅
= (1 − max(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺))
∗ 𝑇𝑇𝑇𝑇𝑇𝑇 

(12) 

The error percentage is calculated using the GP RUL 
estimation and the actual RUL from the complete data basis. 

 

%𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
 (13) 

 
Table 5. 
RUL results from GP regression 

Beari
ng 
test 
set 

Actu
al 

RUL 

GP 
mod

el 
RU
L 

% 
Err
or 

1-3 5730 
s 

5689 
s 

0.71 

1-4 339 s 398 
s 

17.4 

1-5 1610 
s 

2416 
s 

50.0 

1-6 1460 
s 

- - 

1-7 7570 
s 

7434 
s 

1.79 

2-3 7530 
s 

7521 
s 

0.11 

2-4 1390 
s 

1703 
s 

22.5
1 

2-5 3090 
s 

- - 

2-6 1290 
s 

1634 
s 

26.6
6 

2-7 580 s 611 
s 

5.34 

3-3 820 s 1279 
s 

55.9
7 

Source: The authors 
 
The squared exponential kernel (SE kernel) or Gaussian 

kernel is defined by 
 

𝑘𝑘(𝒙𝒙,𝒙𝒙′) = exp �−
1
2

(𝒙𝒙

− 𝒙𝒙′)𝑇𝑇∑−1(𝒙𝒙
− 𝒙𝒙′)� 

(14) 

 
If  ∑ is diagonal, this can be written as 
 

𝑘𝑘(𝒙𝒙,𝒙𝒙′) = exp �−
1
2
�

1
𝜎𝜎𝑗𝑗2

(𝑥𝑥𝑗𝑗

𝐷𝐷

𝑗𝑗=1

− 𝑥𝑥′𝑗𝑗)2� 

(15) 

 
We can interpret the σj as defining the characteristic 

length scale of dimension j. If σj = ∞, the corresponding 
dimension is ignored; hence this is known as the Automatic 
Relevance Determinator ARD kernel.  

 
5.  Conclusions 

 
The study of machinery prognostics is an important issue 

in this work due to the impact of maintenance in industry 
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costs. This work gives a step towards the on line ball bearing 
prognosis, developing a simple and fast computing 
methodology.  

In this paper we have provided a methodology for ball 
bearing prognosis using Gaussian Processes. To keep the 
methodology simple one of the time frequency features is 
selected, which better fix the GP regression. A deeper issue 
using all calculated features is the computing time and the 
loss of accuracy in the RUL estimation. One possible 
approach to this problem could be the use of a dimension 
reduction algorithm such as Principal Component Analysis 
(PCA) or Linear Discriminant Analysis (LDA) due to many 
calculated features are mathematical combination of others. 
Thus, this methodology is applicable to this kind of ball 
bearing but more research adjusting parameters like the 
kernel function or feature selection can be done to improve 
the RUL estimation. 
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