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Abstract 
This paper presents two pattern recognition approaches using Partial Discharges fingerprints as input features to classify PD patterns. A 
multi-layer perceptron (MLP) backpropagation neural network and a support vector machine (SVM) were trained to recognize three types 
of PD patterns. Experimental results showed that the algorithms can achieve high recognition rates. Moreover, the Discrete wavelet 
transform (DWT) was used to denoise PD signals as a prior stage to the classification process. Different mother wavelets were tested for 
different levels of decomposition in order to find appropriate wavelet parameters for better signal to noise ratio (SNR) and less distortion 
after the denoising process. 
 
Keywords: Partial Discharge (PD), Discrete Wavelet Transform (DWT), Artificial Neural Network (ANN), Support Vector Machine 
(SVM) 

 
 

Filtrado wavelet de descargas parciales y su clasificación de 
patrones usando redes neuronales artificiales y máquinas de soporte 

vectorial 
 

Resumen 
Este artículo presenta dos enfoques de reconocimiento de patrones usando huellas dactilares de descargas parciales como características de 
entrada para llevar a cabo la clasificación de patrones de DP. Un perceptrón multicapa (MLP) basado en el algoritmo de propagación hacia 
atrás y una máquina de soporte vectorial fueron entrenados para reconocer tres tipos de patrones de DP. Los resultados experimentales 
demostraron que los algoritmos pueden arrojar altas tasas de reconocimiento. De otra parte, la trasformada wavelet discreta (DWT) fue 
utilizada para eliminar el nivel de ruido presente en las DP como una etapa previa al proceso de clasificación. Diferentes wavelets madre 
fueron probadas a diferentes niveles de descomposición con el objeto de encontrar parámetros wavelet apropiados para obtener una mejor 
relación señal-ruido (SNR) y menos distorsión después del proceso de filtrado. 
 
Palabras clave: Descarga parcial (DP), transformada wavelet discreta, red neuronal artificial, máquina de soporte vectorial. 

 
 
 

1.  Introduction 
 
A Partial Discharge (PD) is a localized electrical pulse 

that occurs in the insulation system of high voltage (HV) 
equipment. Partial discharges appear as short duration pulses 
having a duration much less than 1µs due to electrical stress 
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concentrations in the insulation systems or on the surface of 
the insulation [1]. PD ocurrence may cause damage leading 
to a breakdown of the insulation system.  

Therefore, early detection of insulation defects in high 
voltage equipment is a major concern to be adressed. 
Extensive research related to PD phenomena has been 
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conducted and including: its detection and acquisition 
techniques, chemical and physical processes, denoising 
methods, feature extraction and PD pattern classification 
algorithms [2]. PD denoising is an important task mainly 
in PD online monitoring systems [3]. Several studies have 
reported methods based on the wavelet transform for PD 
denoising of white noise [3-8]. However, the signal to be 
filtered through the wavelet transform may be distorted. 
The distortion of a de-noised signal is closely related to the 
selected mother wavelet and to the threshold selection [9]. 

Among research areas related to PD phenomena, feature 
extraction and PD pattern classification are fundamental 
processes in order to implement an insulation condition 
monitoring system that can automatically identify the type of 
PD sources [10-12]. 

Since 1990, researchers have shown a strong interest in 
performing PD classification using artificial intelligence 
techniques [13-22]. Studies like [2,10,13,19,23-33] have 
reported the use of Multilayer neural networks for PD 
classification, in which high recognition rates have been found 
for different types of PD defects. The advantage in using neural 
networks over other types of classifiers is the possibility they 
offer to learn from examples [34]. But as early as 2004, 
researchers have shown a growing interest in DP classification 
using support vector machines [35-46]. In general, DP 
classification results using support vector machines have 
yielded better classification results compared to other classifiers 
(including neural networks) [2,47]. However, there are still 
important challenges related to apply appropriate AI techniques 
for automatic PD source classification such as: feature 
extraction, application of suitable pattern recognition 
algorithms and recognizing multiple PD sources that may occur 
simultaneously in (HV) equipment. 

In this paper, we propose a multi-layer perceptron (MLP) 
backpropagation neural network and a binary support vector 
machine architecture as artificial intelligence algorithms to 
automatically identify PD patterns using statistical operators 
as input features, and compare their performance based on 
classification results. Additionally, multilevel wavelet 
decomposition was used to denoise PD signals prior to the 
classification process. Different mother wavelets for different 
levels were tested to find better signal to noise ratio (SNR) 
with less distortion after the denoising process. 

This paper is organized as follows: In section 2, the 
practical setup used in this work is presented. A high level 
overview of the developed real-time application is explained 
in section 3. In section 4, we give a brief introduction to 
Discrete wavelet transform (DWT) and results of PD 
denoising are presented. The feature extraction process is 
explained in section 5. The artificial intelligence algorithms 
and the results of PD pattern classification are presented in 
section 6. Finally, conclusions are stated in section 7. 

 
2.  Experimental setup 

 
The practical setup for PD measurement was 

implemented according to IEC60270 recommendations and 
is depicted in Fig. 1.  

A voltage level coming from the secondary of the transformer 
is applied across the test object to generate PD signals. 

 
Figure 1. PD measurement setup.  
Source: The authors 

 
 
A quadrupole which contains the measuring impedance 

includes a high-pass and a low-pass filter in order to separate 
the DP signals from the power cycle, respectively. The data 
acquisition card captures the power cycle and the DP signals 
in different channels to send them to the computer for signal 
processing. 

Artificial PD models such as a tip-hemispherical 
electrode; a rod-plane electrode and a stator coil were used to 
simulate corona, surface and internal partial discharges, 
respectively. The data acquisition card used in this work was 
the National Instruments NI-5133, which provides two 
simultaneously sampled channels, a sample frequency up to 
100MSPS, 50MHz bandwidth, 8-bit resolution, etc.  

 
3.  GUI application 

 
In order to process the PD signals, a Labview application 

was developed which consists of several tabs that allow: view 
the acquired signals in scope mode, plot the phase resolved 
partial discharge diagram, display statistical parameters 
associated to PD patterns and classify the corona, surface and 
internal PD patterns using artificial intelligence-based 
algorithms. Fig. 2 shows the application main window where 
the user can interact with the acquired PD signals in real time 
and enter different values depending on the acquisition needs. 
Once the acquisition and processing are finished, all the 
results are available to be consulted in their associated tabs.   

 

 
 
Figure 2. Typical PD patterns 
Source: The authors 
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A 256x256 matrix was designed to record all the 
informationrelated to PD pulses, where rows represent peak 
values and columns represent phase angles, as shown in Fig. 3. 
Each coordinate was associated with a specific PD pulse of a 
certain peak value and phase angle, therefore, a coordinate is 
incremented in one every time its associated PD pulse is detected.  

The 256x256 matrix facilitated the statistical parameters 
computation and allowed to plot the PRPD diagram. 
Fig. 4 shows the three typical PRPD patterns obtained for 
each type of PD. 

 
 

 
Figure 3. 256x256 Matrix 
Source: The authors 

 
 

 
                                                   a) 

 
                                                   b) 

 
                                                   c) 
Figure 4. Typical PD patterns of:  a) Corona discharge,  b) Surface discharge,  
c) Internal discharge. 
Source: The authors 

 
 

4.  Discrete Wavelet Transform (DWT)  
 

4.1.  A brief introduction to discrete wavelet transform 
 
A wavelet is a short duration small wave that has zero 

mean value; it increases in amplitude and then decreases back 
to zero quickly. It satisfies: 

 

� 𝜓𝜓(𝑡𝑡)𝑑𝑑𝑡𝑡
∞

−∞
                                                   (1) 

 

� |𝜓𝜓(𝑡𝑡)|2𝑑𝑑𝑡𝑡
∞

−∞
< ∞                                       (2) 

 
Where 𝜓𝜓(𝑡𝑡) is the mother wavelet. A family of wavelet 

functions associated with 𝜓𝜓(𝑡𝑡) can be denoted as:  
 

𝜓𝜓(𝑎𝑎𝑡𝑡) = 𝑎𝑎−
1
2 𝜓𝜓�

𝑡𝑡 − 𝑏𝑏
𝑎𝑎 �                            (3) 

 
Where 𝑎𝑎 is a scaling factor to determine the amplitude 

and duration of the mother wavelet. The translation factor 𝑏𝑏 
is used to shift the mother wavelet along the time axis. The 
continuous  wavelet transform (CWT) of a signal 𝑓𝑓(𝑡𝑡) is 
defined  as  [48-50]: 

 

𝑊𝑊𝜓𝜓𝑓𝑓(𝑎𝑎, 𝑏𝑏) =∣ 𝑎𝑎 ∣−
1
2 � 𝑓𝑓(𝑡𝑡)𝜓𝜓�

𝑡𝑡 − 𝑏𝑏
𝑎𝑎 �𝑑𝑑𝑡𝑡

∞

−∞
       (4) 

 
The discrete wavelet transform (DWT) of a signal is obtained 

by means of a filtering scheme called quadrature mirror filters 
(QMF) which is a digital filter bank structure. QMF allows for 
signals to be decomposed into several frequency coefficients and 
then reconstruct the original signal by using the inverse discrete 
wavelet transform (IDWT). The original signal is fed through a 
number of complementary low-pass (L) and high-pass (H) filters 
and down-sampled by two. The low and high frequency content, 
also known as “approximation” and “detail” coefficients are 
given by the low-pass and high-pass filters, respectively [51-55]. 
A three-level discrete wavelet transform for a signal 𝑠𝑠(𝑘𝑘) is 
shown in Fig. 5. 
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Figure 5. Three-level discrete wavelet transform for a signal “S”  
Source: The authors 

 
 

4.2.  Wavelet denoising of partial discharges 
 
There is still no universal or precise method regarding to 

wavelet type, threshold or level selection since every 
approach depends on a specific problem [53]. Therefore, the 
selection of the best wavelet parameters has to be made by 
means of a trial and error process. 

In order to compare the denoising performance with different 
mother wavelets for different levels of decomposition, the signal 
to noise ratio (SNR), the reduction in noise level and the root 
mean square error (RMSE) were considered. 

 
4.2.1.  Signal to Noise Ratio (SNR) 

 
It is a measure that indicates the ratio of the power of a 

signal to the level of noise, usually expressed in decibels 
(dB). The signal to noise ratio is defined as [53]: 

 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑𝑑𝑑) = 10 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙
∑ 𝑦𝑦(𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ �𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖)�2𝑁𝑁
𝑖𝑖=1

                   (5) 

 
Where, 𝑥𝑥(𝑖𝑖) is the signal of reference,  𝑦𝑦(𝑖𝑖) is the 

denoised signal and 𝑆𝑆 is the number of sample points. A 
positive value of SNR means the power of signal is greater 
than the power of noise and vice versa for a negative value of 
SNR. 

 
4.2.2.  Reduction in noise level  

 
In practical measurements, there is no signal of reference, 

therefore, only the reduction of noise level can be computed, 
which is the amount of suppressed noise. The normalized 
reduction of noise level is computed as [54]: 

 

𝑆𝑆𝑆𝑆𝑅𝑅 (𝑑𝑑𝑑𝑑) = 10 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙�
1
𝑆𝑆

𝑁𝑁

𝑖𝑖=1

(𝑧𝑧(𝑖𝑖) − 𝑦𝑦(𝑖𝑖))2                 (6) 

 
Where 𝑧𝑧(𝑖𝑖) is the noisy signal, 𝑦𝑦(𝑖𝑖) is the denoised signal 

and 𝑆𝑆 is the number of samples. 
 

4.2.3.  Root Mean Square Error (RMSE) 
 
RMSE is an indicator of the signal distortion after the 

filtering process. The smaller the RMSE, the more similar is 
the denoised signal to the signal of reference and less the 
distortion after filtering. The RMSE is defined as [55]: 

 

𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅 = �
1
𝑆𝑆�(𝑦𝑦(𝑖𝑖) − 𝑥𝑥(𝑖𝑖))2

𝑁𝑁

𝑖𝑖=1

                              (7) 

 
Where, 𝑥𝑥(𝑖𝑖) is the original signal,  𝑦𝑦(𝑖𝑖) is the denoised 

signal and 𝑆𝑆 is the number of sample points. 
 

4.3.  Denoising results 
 
Many tests were made to find the most appropiate wavelet 

parameters for better denoising results. It was found that PD 
signal denoising using a soft-threshold function yields a 
greater value of RMSE compared to a hard-threshold 
function. Therefore, all the denoising tests in this work were 
carried out using the latter.  

In order to analyze PD signals with higher level of noise, 
Gaussian white noise was simulated and added to PD signals. 
Fig. 6 shows a typical internal PD signal used as a reference 
signal. Fig. 7 shows the reference signal with simulated white 
noise added such that SNR=-13dB. Results of denoising in 
the form of SNR and RMSE values are shown in Table 1. 

 

 
Figure 6. typical internal PD signal used as a reference signal  
Source: The authors 

 
 

   
Figure 7.  Reference signal with simulated white noise added such that 
SNR=-13dB. 
Source: The authors 
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Table 1.  
Results of denoising  a typical PD signal with white noise added  

  
Source: The authors 

 
 
From Table 1, it is observed that the highest values of 

reduction in noise level and signal to noise ratio are obtained 
for a single level of DWT decomposition. Also, it can be 
noted from Table 1 that the RMSE value is smaller for one 
level compared to higher levels of DWT, which implies that 
the distortion of the signal is less for a single level. Similar 
results are reported in [56, 57]. 

 
5.  Feature extraction 

 
Feature extraction is carried out as a prior stage for pattern 

recognition. In this work, the feature extraction process was 
implemented using statistical operators, which can be 
obtained from statistical distributions. The shape of statistical 
distributions provide information related to the type of PD 
signals, therefore, statistical operators can be used as 
discriminatory parameters for classification purposes. The 
statistical distributions for PD signals are defined as [16,34]: 

𝑯𝑯𝑯𝑯±(𝝋𝝋): The number of discharges per each window as 
a function of the angle 𝜑𝜑. 

𝑯𝑯𝑯𝑯𝑯𝑯±(𝝋𝝋):The average pulse amplitude per each window 
as a function of the angle 𝜑𝜑. 

𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯±(𝝋𝝋):The maximum pulse amplitude per each 
window as a function of the angle 𝜑𝜑. 

A set of statistical operators obtained from the 
distributions described above can be also called PD-
figerprints. In this work, PD-fingerprints include: 

Skewness (Sk): Measures the degree of asymmetry of a 
distribution. Sk=0 means the distribution is fully symmetric. 
A positive skewness means the distribution is skewed to the 
left. A negative skewness means the distribution is skewed to 
the right. The skewness is defined as: 

 

𝑺𝑺𝒌𝒌 =
𝑆𝑆

(𝑆𝑆 − 1) ∗ (𝑆𝑆 − 2)�
(𝑥𝑥𝑖𝑖 − µ)3

𝜎𝜎3  
𝑁𝑁

𝑖𝑖=1

                   (8) 

 
Where 𝑥𝑥𝑖𝑖 is the i-th variable, µ is the mean value, 𝜎𝜎 is the 

variance and 𝑆𝑆 is the number of data points. 
Kurtosis: it is an indicator of the sharpness of a 

distribution. Ku=0 means a normal distribution. A  
positive kurtosis means a sharp distribution. A negative 

kurtosis means a flat distribution. Kurtosis is defined as: 

Ku = �
(xi − µ)

Nσ4
4N

i=1

− 3                           (9) 

 
Mean: it is the average for each semi-cycle of each 

distribution. 
Cross-correlation: it describes the difference in 

distribution shape between the positive and negative semi-
cycle of a distribution. c.c=0 means total shape asymmetry. 
c.c=1 means total shape symmetry. Cross-correlation is 
defined as: 

 

c. c =
∑ xi ∗ yi − ∑ xi ∑ yi/N

��∑ xi2 −
(∑ xi)

2

N ��∑ yi2 −
(∑ yi)

2

N �

             (10) 

 
6.  Pattern recognition algorithms 

 
6.1.  Classification using ANN 

 
There are different ANN-based algorithms to solve 

pattern recognition problems [34].  
The neural network implemented in this work is a 

Multilayer Perceptron (MLP) based on the 
backpropagation algorithm [58]. The MLP structure used 
in this work is made up of three layers as illustrated in 
Figure 8: an input layer, a hidden layer and an output layer. 
Layers are made up of a number of neurons in which each 
neuron has a sigmoid activation function; the output layer 
is made up of three neurons, each for one of the three types 
of PD patterns to be classified (internal, corona and 
surface). PD fingerprints were used to train the neural 
network using measurements files so that a new feature 
input vector can be classified into one of the PD patterns. 
The feature set consists of 20 statistical operators as shown 
in Figure 8, including skewness, kurtosis, mean, number of 
peaks and cross-correlation,  which are obtained from the 
statistical distributions𝐻𝐻𝐻𝐻±(𝜑𝜑), 𝐻𝐻𝐻𝐻𝐻𝐻±(𝜑𝜑)   and  
𝐻𝐻𝐻𝐻𝐻𝐻𝑎𝑎𝑥𝑥±(𝜑𝜑).  

 

     Decomposition Levels   
Mother 
wavelet 

1 2 3 4 5 

 SNR(dB) RMSE(%) SNR(dB) RMSE(%) SNR(dB) RMSE(%) SNR(dB) RMSE(%) SNR(dB) RMSE(%) 
Db02 18.7804 0.192354 16.9436 0.228477 15.9350 0.249433 15.0973 0.267487 14.7070 0.275679 
Db03 
Db04 

18.5311 0.196676 16.8399 0.230734 15.3854 0.261317 14.569 0.278867 14.1272 0.288442 
18.4446 0.198342 16.6296 0.235006 15.0816 0.267047 14.1055 0.288071 13.6588 0.297163 

Db05 
Db06 

18.5987 0.195602 16.2031 0.243501 14.7930 0.272898 13.7681 0.294066 13.2726 0.303759 
18.5027 0.197734 15.7586 0.252825 14.3080 0.283637 13.4371 0.301464 13.104 0.307934 

Db07 18.2584 0.202324 15.6372 0.255444 14.0520 0.288419 13.1259 0.307225 12.7664 0.314648 
Db08 18.1173 0.204887 15.3415 0.262257 13.7274 0.295796 12.7466 0.316293 12.2738 0.325291 
Db09 18.0710 0.205806 15.1400 0.266005 13.4883 0.300856 12.5192 0.320433 12.1925 0.329654 
Db10 18.0612 0.206055 14.9801 0.268408 13.0349 0.309614 12.1240 0.327537 12.5418 0.335091 
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Figure 8. MLP structure 
Source: The authors 

 
 

6.2.  Classification using SVM 
 
A support vector machine (SVM) is a binary classifier 

and a supervised learning model that takes the data points 
belonging to a spatial domain into another spatial domain of 
a major dimension which is defined by a kernel function that 
separates the two classes by means of an hyperplane (also 
called support vector). This facilitates the classification of the 
input data into one of the two classes. A support vector 
machine always looks for the hyperplane that maximizes the 
margin between the two spaces of points.  

Mathematically, an SVM is a linear classifier according 
to equation 11, which maximizes the margins of 
classification. The margin of classification is the distance 
between the classification boundary and the closest point to 
each class. Equation 12 describes the separation hyperplane. 
Margin maximization (which minimizes the risk of errors in 
classifying data) gives the SVM an excellent generalization 
capability. 

 
𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑙𝑙𝐻𝐻(𝑤𝑤𝑇𝑇 • 𝑥𝑥 + 𝑏𝑏)                           (11) 

 
𝑤𝑤𝑇𝑇 • 𝑥𝑥 + 𝑏𝑏 = 0                                  (12) 

 
Where 𝑤𝑤𝑇𝑇  is a vector orthogonal to the hyperplane and 

“•” is a dot product. 
For non-linear separable data, a kernel function is 

introduced in order to allow the data to be brought into a 
larger space called a feature space, so that equation 11 can be 
rewritten as in equation 13 [35]: 

 
𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑙𝑙𝐻𝐻(𝑤𝑤𝑇𝑇 .𝛷𝛷(𝑥𝑥) + 𝑏𝑏)                         (13)  

 
Where 𝛷𝛷(𝑥𝑥) is the kernel function. 
A polynomial Kernel was used in this work and is defined 

as: 
 

𝐾𝐾(𝑥𝑥,𝑦𝑦) = (𝑥𝑥𝑇𝑇𝑦𝑦 + 𝐶𝐶)𝑛𝑛                              (14) 
 
Where 𝑥𝑥 and 𝑦𝑦 are vectors in the input space, 𝐻𝐻 is the 

degree of the polynomial. The degree of the polynomial 
Kernel used in this work was quadratic (𝐻𝐻 = 2). 

Support vector machines are binary classifiers, that is, they 
can only classify two classes. However, it is possible to classify 
more than two classes using several units in parallel, where the 
number of units to be used is calculated by equation 15. 

 
𝑆𝑆 =

𝐽𝐽(𝐽𝐽 − 1)
2                                         (15) 

 
Where  𝐽𝐽 is the number of classes to be classified. 
A “voting process” must be held where each class can 

obtain up to 𝐽𝐽 − 1 possible votes. The entry pattern will be 
assigned to the most voted class [36]. 

The SVM architecture implemented in this work is shown 
in Figure 9. According to equation 15, three units in parallel 
were required to classify the three types of PD patterns 
(internal, corona and surface).  

Each unit consists of a learning and testing stage, therefore, 
each unit has to be trained with the corresponding dataset in order 
to process new input patterns. A new input pattern is going to be 
classified into one of two PD patterns at the outputs of a testing 
stage; afterwards, the voting class algorithm receives the 
classification results of each testing unit in order to perform a 
count and classify the input pattern into one of the three PD 
patterns. 

 
6.3.  Classification results 

 
To construct the training dataset, a preprocessing stage was 
carried out in order to acquire all the set of statistical operators 
explained in section 5 for each type of PD. After the training 
process was finished, the classifiers were tested with new input 
patterns and they could achieve high recognition rates. Tables 2 
and 3 show the results of MLP and SVM of four tests for each 
type of PD, in order to obtain recognition rates for input features 
not included in the training dataset, respectively. From Table 2, it 
can be observed that the highest average recognition rate is for 
corona discharge with a 99.9% rate, 98.31% for internal 
discharge and 95.31% for surface discharge. Given that a SVM 
is a binary classifier, it can be noted from Table 3 that recognition 
rates provided by the SVM are 0% or 100%, where 100% means 
an identified pattern. Therefore, input PD patterns are well 
identified by the SVM as well. 
 

 
Figure 9. SVM architecture  
Source: The authors 
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Table 2.  
Recognition rates of  MLP 

Recognition rate 
Type of 

PD 
Internal 

(%) 
Corona 

(%) 
Surface 

(%) 
Average 

(%) 
Accuracy 

(%) 
 
 
Internal 

99.99 0.005 0.005 

98.31 100 
98.5549 0.7225 0.72256 

98.0844 1.4366 0.47889 

96.6435 1.6782 1.67823 

      

 
 
Corona 

0.05 99.99 0.05 

99.99 100 
0.05 99.99 0.05 

0.05 99.99 0.05 

0.05 99.99 0.05 

      

 
Surface 

0.05 0.05 99.99 

95.42 

 

100 

 

1.791 1.9422 96.2668 

4.06089 1.1489 94.7902 

7.91322 1.4481 90.6386 

Source: The authors 
 
 

7.  Conclusions 
 
Implementation and results related to PD denoising using 

the Discrete wavelet transform (DWT) and PD pattern 
classification using artificial intelligence-based algorithms 
have been presented in this paper. 

According to the results of filtering PD signals through 
the Discrete Wavelet Transform, first level of decomposition 
was enough to remove white noise with greater signal to 
noise ratio (SNR) than to higher levels of decomposition. 
Also, it was noted that as the number of levels increases, the 
distortion of the signal increases as well and, therefore, the 
SNR decreases. 

The multilayer perceptron (MLP) neural network and the 
support vector machine (SVM) implemented in this work 
were trained and tested using PD-fingerprints as input 
features and both achieved high recognition rates. Since the 
SVM is a binary classifier, recognition rates at its outputs 
were provided as 0% and 100%, where 100% means an 
identified PD pattern. Recognition rates of more than 90% 
were achieved by the MLP neural network. Both algorithms 
were executed simultaneously in the Labview real-time 
application developed in this work. 

Future research will consider multiple PD source 
classification. 

 
 

Table 3. 
Recognition rates of  SVM 

Recognition rate 
Type of 

PD 
Internal 

(%) 
Corona 

(%) 
Surface 

(%) 
Average 

(%) 
Accuracy 

(%) 
 
 
Internal 

100 0 0 

100 100 
100 0 0 

100 0 0 

100 0 0 

      

 
 
Corona 

0 100 0 

100 100 
0 100 0 

0 100 0 

0 100 0 

      

 
Surface 

0 0 100 

100 

 

100 

 

0 0 100 

0 0 100 

0 0 100 

Source: The authors 
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