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Abstract 
In Colombia, sugarcane represents the second product with a large area of cultivation. It is estimated that from sugar mills about 6 million 
tons of sugarcane bagasse, SCB, are produced, of which 5 million are inefficiently used for burning boilers. SCB is mainly composed of 
cellulose, hemicellulose and lignin, allowing its use as a potential adsorbent. Particularly, the aim of this work was to evaluate the viability 
of using SCB for the adsorption of basic red 46, BR46, in aqueous solution. The effect of factors such as point of zero charge, solution pH, 
particle size, adsorbent dosage, initial dye concentration, contact time and ionic strength was evaluated using a statistical design of 
experiments. A removal of 86.4 % was obtained and the further optimization of the process through a response surface design, allowed to 
achieve a maximum adsorption of 95.0 %. These results suggest SCB is a promising alternative of a non-conventional adsorbent that could 
be applied for treating dyed effluents. 
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Bagazo de caña de azúcar y su potencial aprovechamiento para el 
tratamiento de efluentes textiles 

 
Resumen 
En Colombia, la caña de azúcar representa el segundo cultivo con mayor extensión. Se estima que a partir de los ingenios azucareros se 
producen aproximadamente 6 millones de toneladas de bagazo de caña de azúcar, BCA, de los cuales 5 millones son utilizados 
ineficientemente para la quema de calderas. El BCA está compuesto principalmente por celulosa, hemicelulosa y lignina, posibilitando su 
uso como un potencial adsorbente. En particular, en esta investigación se evaluó la viabilidad del BCA para la remoción del rojo básico 
46, RB46, en solución acuosa. El efecto de factores tales como el punto de carga cero, pH de la solución, tamaño de partícula, dosificación 
del adsorbente, concentración inicial del colorante, tiempo de contacto y fuerza iónica fueron evaluados a través de un diseño estadístico. 
Se obtuvo una remoción del 86.4% y la posterior optimización del proceso, a través un diseño de superficie de respuesta, permitió alcanzar 
una adsorción máxima del 95.0%. Estos resultados sugieren que el BCA representa una alternativa promisoria de un adsorbente no 
convencional que puede ser aprovechado para el tratamiento de efluentes coloreados. 
 
Palabras clave: Residuos agrícolas; colorantes básicos; adsorción; diseño estadístico de experimentos; análisis bromatológico. 

 
 
 
1.  Introduction 
 

Sugarcane, Saccaharum officinarum, is a tropical 
perennial grass with thick and fibrous stems; it grows 
mainly in tropical regions and is characterized by its high 
content of sucrose, which is processed to obtain sugar [1]. 
This crop is one of the most important products in the 
world with approximately 420 million tons of sugarcane 
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harvested per year [2] and it is widespread in the 
American continent because of climatic conditions that 
improve its production [1]. In Colombia, this product 
ranks second in extension, after coffee, with 249,384 
hectares, contributing significantly to the agricultural 
gross domestic product (GDP). About 61.0% of that 
harvested area goes to the production of raw cane sugar; 
32.0 % to the production of sugar and the remaining 7.0 
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% to sugar-cane liquors, honey and forage [3]. 
The sugarcane processing in the above mentioned 

activities generates tons of SCB, which is mainly 
composed of cellulose, hemicellulose and lignin. It is 
estimated that about 54 million dry tons of bagasse are 
annually produced worldwide [4]. According to the 
Association of Sugarcane Growers of Colombia, 
Asocaña, the annual production of SCB amounts to 6 
million tons in sugar mills; approximately 5 million of 
them are used as fuel in the boilers thereof [5], but the 
energy efficiency of this process is lower than the one of 
other fuels for boilers, closed to 30.0 % [6]. SCB has also 
been used for xylitol production, however this process 
generates some toxic compounds, making it more 
expensive due to further purification methods for this 
sugar alcohol obtention [7]. These disadvantages suggest 
the search for an alternative use of this agricultural waste, 
for instance, as an adsorbent for industrial effluent 
treatment. 

In this regard, polluted effluents from textile industry 
have become a serious environmental problem due to the 
presence of highly toxic organic substances such as 
synthetic dyes. The total annual dye production in the 
world is around 7 × 105 metric tons, from which 5-10 % 
are released in the effluents [8,9]. Synthetic dyes are 
characterized by their low biodegradability as a 
consequence of their recalcitrant nature, standing for a 
real threat to the aquatic environment. 

Their accumulation in ecosystems leads to several 
effects such as acute and chronic toxicity for aquatic biota 
[10]. In addition, there have been reported serious 
damages to human health due to their mutagenic and 
carcinogenic characteristics [11]. 

Among the technologies for treating dye-
contaminated water, adsorption has been classified as an 
inexpensive, efficient, novel and easy methodology to be 
implemented for removing pollutants [12,13]. Activated 
carbon is one of the most used adsorbents given its large 
specific surface area, appropriate pore size distribution, 
and high surface reactivity. However, this support is 
relatively costly and its regeneration is a difficult process 
[14]. The above has led in recent years to explore new 
low cost and efficient materials with the ability to adsorb 
dyes, finding that different industrial and agricultural 
wastes show a high potential to remove this kind of 
pollutants [13,15]. Particularly, we have explored several 
agricultural by-products such as rice husk, corn cob, 
banana peel and flower wastes for the adsorption of 
different dyes [16-18]. 

BR46 is a synthetic dye with extensive use in the 
textile industry, characterized by the presence of the azo 
group, which is often associated with a cancer-causing 
activity. Several reports indicate carcinogenic effects are 
increased by aromatic amines, which are generated after 
the fragmentation of the azo group [19,20]. Therefore, the 
removal of BR46 from wastewater represents a relevant 
research topic. Apparently, there have been no reports to 
date of BR46 adsorption onto SCB, although this 
agricultural waste has been extensively used as adsorbent 

in the removal of these pollutants, including different 
chemical nature such as acidic, basic, anionic and cationic 
dyes, highlighting its adsorptive capacity [21-24]. 
However, most of these studies assessed the chemically 
modified SCB in order to improve the adsorption 
efficiency but increasing the process costs [25,26]. In 
addition to the previously mentioned, only Ong et al., 
optimized the removal of three cationic dyes onto this 
agricultural residue through a statistical design [27], the 
other researches were conducted under a univariate 
method, therefore there is a lack of information about the 
interaction between the main factors and their effect in 
the adsorption process. 

The aim of this work was to establish the feasibility of 
using SCB as an alternative, potential and low-cost 
adsorbent for the removal of BR46. A full 24 factorial and 
a central composite designs of experiments were 
performed in order to optimize the process and obtain the 
correlation between the factors that affect the adsorption 
efficiency. The selected parameters were point of zero 
charge (PZC), solution pH, particle size, adsorbent 
dosage, initial dye concentration, contact time and effect 
of ionic strength. 

 
2.  Materials and methods 

 
2.1.  Adsorbent pre-treatment 

 
The agricultural by-product SCB was acquired in a 

local market of the city of Medellin. The pre-treatment 
included washing with deionized water and 2.0 % (v/v) 
hydrogen peroxide to remove organic materials, then 
drying in an oven at 100 °C for 48 h. After that, the SCB 
was milled and sieved to obtain a particle size between 
0.3-1.0 mm. The adsorbent with these characteristics was 
stored in airtight containers for subsequent assays. 

 
2.2. SCB Bromatological analysis and its PZC 

determination 
 
SCB compositional analysis was performed in the 

Laboratory of Chemical and Bromatological Analysis at 
the Universidad Nacional de Colombia - Sede Medellín. 
In particular, the percentages of neutral detergent fiber 
(NDF), acid detergent fiber (ADF), and lignin were 
determined according to the Van Soest method [28]. 
Native starch, nitrogen and ash were measured by the 
polarimetry, Kjeldahl and direct incineration methods, 
respectively. 

Bagasse PZC was determined using the methodology 
described by Farahani and co-workers [29]. For this, the 
initial pH of 50.0 mL distilled water solutions were 
adjusted by adding drops of 0.1 M HCl and 0.1 M NaOH. 
Then, 0.5 g of SCB were added to each Erlenmeyer flask, 
containing the solution in the pH range between 2.0 to 
11.0. After that, each flask was shaken thoroughly for 48 
h at room temperature and the final pH of the solution was 
measured. PZC of this by-product corresponds to the 
intersection with diagonal of the curve that represents the 
final pH in function of the initial pH. 
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Figure 1. Chemical structure of BR46. 
Source: The authors. 

 
 

2.3.  Preparation of the dye solution 
 
BR46 is a cationic dye that belongs to the azo 

compounds group, with a molecular weight of 357.5 
gmol-1, a maximum adsorption wavelength of 532 nm and 
a Colour Index (CI) 110825. This dye was purchased in 
the local company Colorquimica S.A. and its structure is 
shown in Fig. 1. The respective calibration curve was 
performed with different concentrations in the range of 
1.0 to 40.0 mgL-1, using a spectrophotometer UV-Vis 
Lambda 35, double-beam Perkin Elmer. 

 
2.4.  Adsorption of BR46 dye 

 
Some preliminary assays were carried out to establish 

the influence of the variables pH and particle size in the 
BR46 removal onto SCB. For solution pH, it was 
evaluated the range of 2.0 to 11.0, a greater removal 
between 5.0-7.0 was found. Regarding particle size, the 
intervals 0.3-0.5 mm, 0.5-0.7 mm and 0.7-1.0 mm were 
selected, obtaining better adsorption between 0.3-0.7 
mm; for this reason, this variable remained constant in the 
following assays. 

These initial tests were performed using a stock 
solution of 40.0 mg of dye per liter of deionized and 
distilled water. Subsequently, 40.0 mL volumes were 
taken, their respective pH values were fixed and then they 
were mixed with SCB at 200 rpm for 6 h under batch 
system at room temperature. After that, the percentage of 
BR46 removal was quantified using Eq. (1). All tests 
were performed in triplicate for statistical support with a 
SCB dosage of 3.0 g L-1. In particle size assay, a pH value 
of 6.0 was selected. 

 
%𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐶𝐶𝑜𝑜−𝐶𝐶𝑓𝑓

𝐶𝐶0
× 100   (1) 

 
Where C0 and Cf are the initial and final concentration 

of the dye, respectively. 
 

2.5.  Statistical design of experiments 
 

2.5.1.  24 Full factorial design 
 
The selected factors in the design of experiments were 

adsorbent dosage (D), initial dye concentration (C), 
contact time (T) and solution pH. A randomized 24 full 
factorial design with three replicates was conducted to  

Table 1. 
Values of the levels in the 24 full factorial design. 

Factors C (mgL-1) D (gL-1) T (h) pH 
Low 10.0 1.25 1 5.0 
High 40.0 5.00 4 7.0 

Source: The authors. 
 
 

Table 2. 
Values of the levels in the response surface design. 

Parameter Low Medium High 
C (mgL-1) 10.0 25.0 40.0 
D (gL-1) 0.25 3.75 7.25 

Source: The authors. 
 
 
reduce the number of required experiments for both 
optimizing the process and determining the most 
influential factors of the adsorption and their interactions. 
The factors with their upper and lower limits are shown 
in Table 1. The experimental design was performed and 
analyzed with the software Statgraphics Centurion XV.II 
free version. 

 
2.5.2.  Central composite design (CCD) 

 
The factorial design showed that the most significant 

factors in the BR46 adsorption were C and D, achieving 
a removal level of 86.4 %.  With the purpose of improving 
the efficiency of the process, a randomized response 
surface design with a central point and three replicates 
was carried out. The factor levels are depicted in Table 2. 

 
2.6.  Effect of the ionic strength 

 
The effect of the ionic strength was measured under 

the best conditions for BR46 adsorption onto SCB 
obtained through the statistical designs. This effect was 
analyzed with solutions of sodium and calcium chloride 
in the range of 0.0 to 0.2 molL-1 at room temperature. 

 
3.  Results and discussion 

 
3.1.  SCB compositional analysis 

 
The bromatological analysis showed 90.2 % NDF, 

65.9 % ADF, and 6.8 % lignin, therefore, 59.1 % 
cellulose and 24.3 % hemicellulose. It is worth 
mentioning that other authors have obtained 40-50 % 
cellulose and 20-30 % hemicellulose for this agricultural 
waste. Concerning the lignin percentage, the obtained 
value was lower compared to the reported in related 
studies, around 18-25 % [4,30]. This difference can be 
explained mainly as a consequence of the geographical 
location, its respective soil composition and the 
sugarcane variety. 

Due to the low ash content in bagasse, equal to 0.83 
%, this waste provides advantages in terms of microbial 
bioconversion process compared to other agricultural by- 
products, such as banana peel or rice husk with ash 
content of 10.0 % and 17.5 %, respectively [31,32]. 
Regarding native starch and nitrogen content, no values 
were detected with the used techniques. 
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Figure 2. Bagasse PZC. 
Source: The authors. 

 
 

3.2.  Bagasse PZC evaluation 
 
The PZC is defined as the pH value in which the total 

external and internal net charge of the functional groups 
of the adsorbent material surface is neutral and does not 
contribute to the solution pH; thus, the number of positive 
and negative sites is equal [33]. PZC is an important 
property when studying the ability of a specific adsorbent 
to retain certain pollutants, in this case, a dye with an 
ionic charge [34]. Fig. 2 displays the final pH depending 
on the initial pH, where the PZC corresponds to the point 
where the curve intersects the diagonal, leading to a value 
of 4.85. 

In this sense, if the solution is below a pH of 4.85, 
SCB surface becomes positively charged, but if it is 
above this value, its surface charge will be negative. The 
second situation would favor the removal of positively 
charged dyes such as BR46, since a higher ion affinity is 
achieved between the dye and the SCB surface. In this 
respect, it is worth mentioning that the obtained value is 
close to the previous described range, from 5.0 to 6.0, for 
SCB [33,35], this difference could be associated with the 
previously described compositional variations of the 
material surface, in terms of the proportions of its 
constituent polymers. 

 
3.3.  Screening assays of BR46 removal 

 
Preliminary assays showed that pH has a greater effect 

than particle size in the BR46 adsorption process. The 
evaluated pH range was 2.0-11.0.  The removal of this 
dye remained around 90.0 % between 5.0 and 7.0. 
Therefore, this interval was selected for a further analysis 
in a full factorial design.  In addition, it should be noted 
that this pH range is higher than the PZC of SCB, leading 
to a negatively charged surface and improving the dye 
removal. 

The selected particle sizes were: 0.3-0.5 and 0.5-0.7 
mm and given that a similar removal percentage was 
obtained with them, a particle size of 0.3-0.7 mm was 

selected for the factorial design. Particle sizes smaller 
were not evaluated because when carrying out the process 
in continuous system, this parameter could hinder the 
dynamic motion of the fluid, generating a large resistance 
and an increase in the obstruction [36]. 

 
3.4.  24 full factorial design analysis 

 
In Fig. 3, the Pareto chart points out that the most 

important factor in the BR46 removal is the SCB dosage 
with a positive effect. This fact is explained because of a 
greater amount of SCB, a greater surface area to adsorb 
the dye will be available, increasing proportionally the 
removal. After dosage, the second most important factor 
is the BR46 initial concentration, but in contrast to the 
dosage, its effect is negative. Thus, an increase in this 
factor leads to a reduction in the BR46 adsorption, 
because the surface would be saturated with dye and there 
will be no area available for the removal process. On the 
other hand, contact time and pH were statistically 
significant in the removal process with a positive effect, 
however their standardized effects are minor compared to 
the previously described factors, therefore, they can 
remain constant in a further optimization process. 

In Fig. 4, the estimated response surface at a fixed pH 
value of 6.0 and a contact of 2.5 h is showed. Dark gray 
to black areas delimit removal percentages greater than 
80.0 %, which corresponds to initial dye concentrations 
below 15 mgL-1. 

 

 
 
Figure 3. Standardized Pareto chart for the 24 full  factorial design at p 
= 0.05. 
Source: The authors. 

 
 

 
Figure 4. Estimated response surface plot at pH = 6.0 and 2.5 h for BR46 
adsorption onto SCB. 
Source: The authors. 
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In the 24 full factorial design a mathematical model 
was obtained, which is described in Eq. (2): 

 
%𝑅𝑅𝑅𝑅𝑅𝑅 = 67.5929 +  0.119544 × 𝐴𝐴 –  1.63006 × 𝐵𝐵 +

 4.10485 × 𝐶𝐶 +  4.02035 × 𝐷𝐷 +  0.00616092 × 𝐴𝐴 × 𝐵𝐵 −
  0.0129298 × 𝐴𝐴 × 𝐶𝐶 –  0.0163211 × 𝐴𝐴 × 𝐷𝐷 +  0.0502861 × 𝐵𝐵 ×
𝐶𝐶 +  0.0360705 × 𝐵𝐵 × 𝐷𝐷 –  0.376979 × 𝐶𝐶 × 𝐷𝐷  

  (2) 
 
This equation allows reaching a maximum BR46 

removal of 86.4 % under an initial concentration of 10.0 
mgL-1, a dosage of 3.3 gL-1, a contact time of 4.0 h and 
pH = 6.0. The adjusted correlation coefficient was 98.7 
%, value that represents a satisfactory fit of the proposed 
model. 

Even though the obtained results offer a fairly good 
removal of this pollutant, a CCD was carried out in order 
to optimize the adsorption process of BR46 from aqueous 
solution onto SCB. 

 
3.5.  Central Composite Design (CCD) 

 
Particularly, the dosage interval was wider ranging 

from 0.25 to 7.25 gL-1 while the interval of BR46 initial 
concentration was maintained between 10-40 mgL-1.  
Contact time and pH factors were fixed at 2.0 h and 6.0 
units, respectively. Despite the contact time was a 
significant factor, its low standardized effect makes 
possible to diminish it for reducing the process length 
(Fig. 3). For this fact, the contact time was fixed at the 
minor value selected in the initial factorial design. It is 
worth mentioning that dosage factor was expressed in 
mass units since the volume for all assays was kept at 40.0 
mL. 

Fig. 5 shows that the factors of quantity, A, and its 
interaction with itself, AA, are those that most affect the 
percentage of BR46 removal. However, the former effect 
was positive pointing out that the removal exhibits a 
growing tendency with the increasing of the available 
surface area, whereas the latter was negative due to the 
presence of a concave curvature, which allows 
determining a maximum removal point for this factor in 
the experimental space. 

The initial dye concentration, B, has a negative effect 
on the BR46 removal process. Nevertheless, it is smaller 
than the exhibited by the previous factors. The above is 
explained because of, unlike the A factor, the B factor 
interval was not modified due to the negative effect found 
in the 24 full factorial design. 

 
 

 
Figure 5. Standardized Pareto chart for the CCD at p = 0.05. 
Source: The authors. 

 
Figure 6. Estimated response surface plot at pH = 6.0 and 2 h for BR46 
removal onto SCB. 
Source: The authors. 

 
 
Fig. 6 shows that the surface is concave with a 

maximum removal percentage of 95.0 % for this azo dye 
under the following conditions: 40 mg L-1 initial 
concentration and 6.7 g L-1 dosage. The adsorption 
efficiency increased significantly, suggesting that an 
expansion in the dosage interval was suitable for this 
central composite response surface model. 

Eq. (3) describes a mathematical model, with an 
adjusted correlation coefficient of 98.8%, for the central 
composite surface design. 

 
%𝑅𝑅𝑅𝑅𝑅𝑅 = 34.1417 +  0.551142 × 𝐴𝐴 –  0.680429 ××
𝐵𝐵 –  0.00124804 × 𝐴𝐴2  +  0.00281607 × 𝐴𝐴 × 𝐵𝐵 –  0.000107407 ×
𝐵𝐵2      (3) 

 
Thus, under the best previously mentioned conditions, 

in this research it was possible to remove a maximum 
quantity of 5.7 mg of BR46 per gram of SCB. In this 
regard, it is important to mention that a similar amount of 
this dye, 5.8 mg of BR46, was removed with the 
agricultural waste rice husk, using an adsorbent dosage of 
2.75 gL-1 in a contact time of 6.5 h [37], suggesting that 
the SCB offers a similar adsorptive capacity with a more 
than three times faster kinetic rate than the exhibited by 
this agricultural by-product of recognized adsorptive 
properties. 

 
3.6.  Effect of ionic strength 

 
Dye-contaminated effluents from the textile industry 

usually contain several types of salts. Their presence 
leads to a high ionic strength that can affect the 
performance of the adsorption process [38-40]. Fig. 7 
shows that by increasing NaCl concentration, the BR46 
removal percentage was reduced. This behavior can be 
attributed to the competition between BR46 cations and 
the positive ions of the monovalent salt (Na+) for the 
adsorption active sites. However, it was observed a slight 
increase of adsorption capacity of this dye at 0.1 M NaCl, 
which could be interpreted according to the reported by 
Alberghina et al., who found that the addition of salts to 
the dye solution promote intermolecular forces, like Van 
der Waals, ion- dipole and dipole-dipole, that mediate the 
dimerization process of this compounds [41]. 

A similar tendency is described by the divalent salt, 
CaCl2, until a concentration of 0.15 M. After this point,  
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Figure 7. Effect of salt concentration in the removal of BR46 (pH: 6.0, 
BR46 initial concentration: 40 mgL-1, SCB dosage: 6.7 gL-1, particle 
size: 0.3-0.7 mm and contact time: 2.0 h). 
Source: The authors. 

 
 

an increase of 1.37 % for the BR46 removal is registered. 
A high salt concentration leads to a reduction in 
electrostatic interactions, this phenomena could be 
associated to the screening effect caused by the high 
amount of dissolved ions that favors the interactions 
between the adsorbent surface and the dye molecule [40]. 

Finally, it is worth noting that a general reduction of dye 
adsorption using NaCl and CaCl2 was observed by Han and 
co-workers, who evaluated the ionic strength in the removal 
of the cationic dye methylene blue onto natural zeolite [39]. 
Besides, the effect of NaCl addition in the adsorption 
process of BR46 onto pine tree leaves was evaluated, 
finding a decrease of the removal percentage [42]. 

 
4.  Conclusion 

 
The results of the bromatological analysis of SCB are 

similar to those reported by other authors, with values of 
59.1 % cellulose and 24.3 % hemicellulose. In the case of 
lignin, a percentage of 6.8 % was obtained, that is, three 
times less than the reported in the literature, probably due to 
the geographical location where this product is grown and 
its respective soil composition. On the other hand, its low 
ash content, less than 1.0 %, suggests its possible 
application as substrate in cultures of microorganisms. The 
24 full factorial design permitted to establish that dosage and 
initial dye concentration were the most significant factors in 
the BR46 adsorption onto SCB. The subsequent 
optimization of the process through a central composite 
design, allowed reaching a maximum dye removal of 95.0 
% under 40 mgL-1 initial concentration, 6.7 gL-1 dosage, 6.0 
pH value and 2.0 h contact time. The results suggest that the 
agro industrial by-product SCB represents a non-
conventional adsorbent for an efficient BR46 removal from 
aqueous solution. This aspect points out a novel approach 
of SCB in the decontamination processes of dye effluents 
focused on an environmental improvement.  
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