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Abstract 
Unsupervised change detection (UCD) is a subject of Remote Sensing whose objective is to detect the differences between two multi-temporal 
images. In some cases, spectral similarity indices have been used as the comparison block in algorithms of UCD. The aim of this paper is to show 
in a quantitative way the performance of four spectral similarity indices in the correct identification of changes.  Comparison is performed in terms 
of precision (overall accuracy and kappa index) over medium and high-resolution images (SPOT-5: Satellite Pour l'Observation de la Terre and 
Quickbird), with a reference obtained through a post-classification method (based on Support Vector Machines, SVM). The results show 
dependence on the automatic thresholding technique, as well as on the classes associated with the change. 
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Evaluación de índices de similitud espectral en esquemas de 
detección de cambios no supervisados 

 
Resumen 
La detección de cambios de forma no-supervisada (UCD) es un área de teledetección, cuyo objetivo consiste en encontrar las diferencias 
entre dos imágenes multi-temporales. En algunos casos, los índices de similitud espectral son utilizados como bloque de comparación de 
UCD. El objetivo de este documento consiste en analizar de forma cuantitativa el desempeño de cuatro índices de similitud espectral en la 
correcta identificación de cambios. La evaluación se realiza en términos de la precisión (mediante la precisión global e índice kappa) 
utilizando imágenes de media y alta resolución (SPOT-5: Satélite Para la Observación de la Tierra y Quickbird), así como una imagen de 
cambio de referencia obtenida a través de un método de post-clasificación (basado en Máquinas de Soporte Vectorial, SVM). Los resultados 
obtenidos presentan dependencia con la técnica automática de umbralización, así como con las clases asociadas con el cambio. 
 
Palabras clave: detección de cambios; índices espectrales; teledetección; evaluación de precisión. 

 
 
 

1.  Introduction 
 
Recently, monitoring change of land surface 

characteristics is a topic of great importance whose objective 
is to detect the differences between two multi-temporal 
images. Research on change detection techniques have 
looked for new procedures to optimize some of the following 
characteristics related to the change analysis and its types: 
area and rate, spatial distribution, trajectories of land cover 
types, and accuracy evaluation of the results [1,2]. 

In a broad sense, a change detection project for remote sensing 
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includes three main phases: pre-processing of the data, application 
of change detection approach, and accuracy assessment of the 
results [3,4].  The pre-processing phase can involve the following 
steps: (a) accurate register of multi-temporal images, (b) precise 
radiometric and atmospheric calibration or normalization between 
multi-temporal images, (c) having similar phenological stages 
between multi-temporal images, and (d) selecting the same spatial 
and spectral resolution [3]. 

Generally, change detection techniques can be classified 
into two groups, those that provide binary information 
(change/non-change) and those that provide information 



Ramos et al / Revista DYNA, 85(204), pp. 117-126, March, 2018. 

118 

transition between land cover changes [3,5]. The goal in the 
first group is to produce a binary change detection map in 
which the change areas are distinguished from unchanged 
areas. This is achieved by a direct comparison of the images; 
it is assumed that pixel values in change areas differ 
substantially between compared images, whereas this is not 
the case in unchanged areas. For this reason, the comparison 
can be performed directly on the spectral data. The result of 
the process is a difference image which can be analyzed to 
extract areas with significant changes. The most 
representative change/non-change methods are Image math 
(e.g. differencing, rationing or normalized indices 
differencing) and Transformations (e.g. Principal 
Components Analysis) [6]. Conversely, the second category 
relates to ''from-to" detection. The aim of these methods is to 
generate a change detection map, where modified and 
transition classes in land use can be identified. In this case, 
the changes are detected and labeled through supervised 
classification schemes; therefore, post-classification 
comparison is a suitable kind of method to implement when 
sufficient training sample data are available [2,5]. 

In any case, there are four main components that allow to 
describe consistently a change detection technique. The first 
one relates to the input images, that usually involves the use 
of multi-temporal data sets, previously pre-processed [3]. 
The second one implies the definition of a unit of analysis, 
i.e. a kind of framework for the comparison over time; 
examples of analysis units can be image pixels, pixel kernel 
filter (moving window), systematic groups of pixels, image-
objects, vector polygons, etc. [1,3]. As a third component, the 
comparison method allows to determine the presence of the 
change; some examples include image math, statistical 
approaches or post-classification schemes. Finally, a change 
map is obtained, which can be interpreted to obtain 
parameters such as the magnitude of the change (area, 
regions, etc.), or the transitions between land covers.   

Regarding the analysis unit, the pixel is the simplest one, 
being an effective solution when its intensity is highly related 
to the land cover transitions of the multitemporal images 
under study [3]. This is an advantage of the image pixel as 
the unit of analysis, with regard to techniques such as kernel-
based methods, where the computational cost can be an 
inconvenient in some cases [7]. On the other hand, an object 
is a group of pixels which includes context information and 
that typically involves the following steps: image 
segmentation; object extraction and comparison; and 
classification [1]. However, in methods that use image-object 
as the analysis unit, some external variations (e.g. 
illumination, viewing angle, phenology and atmospheric 
conditions) make the obtained object or segment highly 
variable, even with good pre-processing procedures [3]. 

Regarding the comparison method, in layer arithmetic 
operations, the level of change is obtained through the differences 
in image radiance of the input data; in addition, the input 
radiances can be previously converted to a most significant 
content using some indices, such as image ratios [3] or 
normalized differences (e.g. NDVI [8], NDWI [9], NDDI [9], 
etc.). In another context, the comparison is made by means of 
data reduction techniques that emphasize on the data with the 
highest variance, such as in the case of PCA-based (Principal 

Component Analysis) methods; in this case, the comparison 
method needs to be complemented with a framework to obtain 
change labels [1,2,3]. Finally, change detection magnitude and 
direction can be approached by analyzing feature vectors in the 
method known as Change Vector Analysis (CVA), which gives 
an intensity image and a direction image of change from the 
length and direction of the difference vector [10].  

In some cases, the change detection approach is made in 
an unsupervised form. For instance, a clustering algorithm 
based on fuzzy c-means local information is proposed to CD 
in Synthetic aperture radar (SAR) images [11]. A recent 
approach proposes the use of PCA and k-means clustering to 
differentiate constructions in multitemporal images [2].  

In order to make the comparison process and to obtain an 
intensity image of the change between two multitemporal 
images, some similarity metrics have been used, too. For 
instance, in [10], the ERGAS index (in French ‘‘Erreur Relative 
Globale Adimensionnelle de Synthèse”), a metric to evaluate the 
spectral similarity in a fusion process, was proposed as the 
comparison method in an unsupervised change detection 
approach. The Spectral Angle Mapper (SAM) and the Spectral 
Correlation Mapper (SCM) were proposed in [12] to measure the 
similarity between two spectral feature vectors applied to change 
detection. Additionally, in [7], the angle between each 
multitemporal image and a reference vector measured by means 
of SAM metric was proposed as a solution for change detection 
in specific land covers.  

The advantage of the application of similarity metrics lies in 
the reduction of the change detection problem to a 1-D problem 
[13]. Although kernel-based methods try to reduce the problem 
by running a linear algorithm in a higher dimensional feature 
space, its computational cost is higher than the direct comparison 
by means of a similarity metric. The simplicity of methods based 
on similarity metrics leads to ease the application and 
interpretation of the difference image, as with a simple threshold 
is sufficient to obtain the change map [1,13].  

In the post-classification case, changes are identified through 
the comparison of the corresponding multitemporal thematic 
maps, and in consequence, it is a thematically rich technique [2], 
that can obtain changes in specific land covers; as an advantage, a 
radiometric normalization is not necessary, whereas the 
requirement of producing the whole thematic maps can be an 
inconvenient [5]. In complex scenarios for comparison purposes, 
the direct classification of multitemporal images is an alternative 
to get change information. Recently, Deep Learning techniques 
have been adopted in remote sensing to learn abstract 
representations of the input data [1], and applied to solving 
problems related to classification and change detection. Some 
examples include the use of Convolutional Neural Networks 
(CNN) trained with an unsupervised learning method seeking 
sparse feature representations [14], using fine-tuned CNN with 
linear SVM [15], superpixel-based feature extraction and 
difference representation learned by neural networks [1], Image 
classification by means of CNN [16], and building detection [17]. 
In any case, these methods require a considerable amount of 
labeled data [3,15,16]. 

In this sense, the objective of this paper is to make a 
comparison of four similarity indices applied to change detection. 
The selection of the indices has been conducted considering its 
aim, mainly oriented to detect spectral differences. According to 
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the above, the selected metrics are NDVI (Normalized Difference 
Vegetation Index), SAM (Spectral Angle Mapper), SCM 
(Spectral Correlation Mapper), and ERGAS indices, which are 
applied in an unsupervised form. Each method was applied 
between two multitemporal images, giving as result a difference 
image, and a change map after an automatic threshold is applied. 
For comparison purposes, a supervised post-classification method 
was implemented and its result was used to evaluate the overall 
accuracy and the kappa index of the results for the four 
unsupervised methods.  

 
2.  Material and methodology 

 
2.1.  Study area and datasets 

 
Data for the study were obtained from both Community 

of Madrid, in Spain, and Indonesia. The zone in Spain 
includes a region between “San Fernando de Henares” and 
“Mejorada del Campo” at the Community of Madrid (Spain). 
The locator map is shown in Fig. 1(c). We used both SPOT-

5 multispectral (MS) (2005) with SPOT-5 MS (2008) 
datasets related to urban, semi-urban and rural zones. For pre-
processing, these Multi-temporal SPOT images were 
selected in anniversary dates to minimize sun angles and 
seasonal differences and they were registered using ENVI 
software. The images cover an area of 25 km2 (500 × 500 
pixels), and have a spatial resolution of 10 m. In this paper, 
the Green, Red and the Near-Infrared (NIR) bands of the 
SPOT-5 MS images were used for the change detection 
algorithms. The false color composition of the two 
multitemporal images is shown in Fig. 1. The upper left 
corner of the subset is placed at 40°25'24.7"N, 3°31'41.0"W. 

The zone in Sumatra (Indonesia) is located on the 
northwestern tip of Sumatra Island, in the province of Aceh, 
Indonesia. The locator map is shown in Fig. 2(c). We used 
both Quickbird MS (April 2004) with Quickbird MS  
(January 2005) datasets relating to an area that was impacted 
by the December 26, 2004 tsunami, where many vegetation 
areas were washed out by it. For pre-processing, the 
Quickbird images were registered using ENVI software. 

 
 
 

  

(a) 2005 (b) 2008 

 

(c) Location of the study area corresponding to Community of Madrid (Spain). 
Figure 1. Multitemporal SPOT-5 Dataset. 25 km2 (500 x 500 pixels), false color NIR, Red and Green composition. Community of Madrid (Spain). The 
upper left corner is placed at 5°18'14.7"N 95°12'04.4"E. 
Source: The authors. 
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(a) 2004 (b) 2005 
 

 

(c) Location of the study area corresponding to Sumatra (Indonesia). 
Figure 2. Multitemporal Quickbird. ~14 km2 (1500 x 1500 pixels), true color Red, Green and Blue composition. Sumatra (Indonesia). The upper left corner 
is placed at 40°25'24.7"N 3°31'41.0"W. 
Source: The authors. 

 
 
 
Also, the images cover an area of ~14 km2 (1500 × 1500 

pixels), and have a spatial resolution of 2.5 m. In the change 
detection algorithms, the four bands of the MS Quickbird 
images were used. The true color composite of the two 
multitemporal images is shown in Fig. 2. The upper left 
corner of the subset is placed at 5°18'14.7"N 95°12'04.4"E. 

 
2.2.  Spectral similarity indices 

 
In order to compare the two multitemporal images, 

similarity metrics were selected. The aim is to evaluate the 
spectral differences between images, and obtain a simple 
difference image that reflects changes over time. The selected 
metrics include a conventionally used index to evaluate 
changes in vegetation: NDVI; this metric is a normalized 
difference of the reflectance in two spectral bands (red and 
NIR), so its application and computational cost is simple. 

The following two proposed metrics correspond to 
indices used to evaluate the spectral quality of a fused image. 
The first is the ERGAS index [19], which was proposed to 
estimate the overall spectral error of a pan-sharpened image. 

This index was modified as a spatial filter to evaluate changes 
[10]. In addition, the SAM index, originally proposed to 
evaluate the quality of a fused product, was recently used as 
a comparison index in a change detection approach [7].  

The last selected metric is SCM. SCM is a spectral angular 
distance, just like SAM. These distances calculate the angle 
between each pixel of the images, considering each pixel as a 
vector in a space whose dimension is the number of bands of the 
image. Both metrics have been used for classification and 
clustering [12,19], as well as for change detection [7,12]. Their 
difference lies in the fact that SCM standardizes the data, 
centralizing it in the mean of the spectra of the two images. The 
mathematical functions behind the four spectral similarity 
indices are listed in Table 1. 

 
2.3.  Change detection methodology 

 
The proposed change detection methodology includes an 

image registration phase, one supervised change detection 
approach, four unsupervised change detection approaches 
and an accuracy assessment stage (Fig. 3). The image 
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registration stage aligns the two MS images geometrically, to 
combine the pixels that represent the same objects. 

The supervised stage includes a post-classification 
scheme, whose outcome will be used as the reference for 
evaluating the results of the unsupervised methods. The 
supervised method consists in classifying separately each MS 
image, defining some training areas for each class by an 
expert. The training areas are the inputs for the SVM 
(Support Vector Machine) classifier and its result is a new 
image including only the thematic classes. Finally, a logic 
comparison of the thematic classes of both images is applied 
and a reference binary image of change is obtained. The 
classification and post-classification change detection 
analysis were done in ENVI Software.  

In the unsupervised change detection cases, each 
similarity metric of Table 1 is applied. This results in a gray 
scale image whose intensity reflects the intensity of change, 
whereby a thresholding algorithm is applied (Otsu’s 
Algorithm). Finally, a binary image of change is obtained per  

 
Table 1. 
Mathematical functions of the used spectral similarity indices. 

Spectral 
similarity 

index 
Mathematical function  

NDVI 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅) 

 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = |𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐷𝐷1 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐷𝐷2| 

(1) 
 

(2) 
 
NIR: Spectral reflectance in near-infrared band, 
Red: Spectral reflectance in red band, 
Ii  denotes Multitemporal image in time i 

Local 
Ergas 

𝐸𝐸𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥, 𝑦𝑦) = 100�
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Where, 

𝑓𝑓𝑘𝑘(𝑥𝑥,𝑦𝑦) = �
1
𝑀𝑀
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(3) 

x, y: denote spatial position (pixel position) 
N denotes the number of spectral bands, 
k denotes the index for each band 
M, m denote window size and index in the spatial filter 
Ii

k denote Multitemporal band k in time i 

SAM 𝐸𝐸𝐸𝐸𝑀𝑀𝐶𝐶𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐸𝐸−1 �
∑ 𝑁𝑁𝑘𝑘1𝑁𝑁𝑘𝑘2𝑁𝑁
𝑘𝑘=1

�∑ (𝑁𝑁𝑘𝑘1)2𝑁𝑁
𝑘𝑘=1 ∑ (𝑁𝑁𝑘𝑘2)2𝑁𝑁

𝑘𝑘=1

� 

 
(4) 

N denotes the number of spectral bands, 
k denotes the index for each band 
Ii

k denote Multitemporal band k in time i 

SCM 

𝐸𝐸𝐶𝐶𝑀𝑀𝐶𝐶𝐷𝐷

= 𝐶𝐶𝐶𝐶𝐸𝐸−1

⎝

⎛ ∑ �𝑁𝑁𝑘𝑘1 − 𝑁𝑁1���𝑁𝑁𝑘𝑘2 − 𝑁𝑁2� �𝑁𝑁
𝑘𝑘=1

�∑ �𝑁𝑁𝑘𝑘1 − 𝑁𝑁1��
2𝑁𝑁

𝑘𝑘=1 ∑ �𝑁𝑁𝑘𝑘2 − 𝑁𝑁2� �
2𝑁𝑁

𝑘𝑘=1 ⎠

⎞ (5) 

 
N denotes the number of spectral bands, 
k denotes the index for each band 
Ii

k denote Multitemporal band k in time i 
Source: The authors. 

each similarity metric. The NDVI method was done in 
ENVI software, whereas the remaining comparison 
metrics were implemented in MATLAB Software. 

For accuracy assessment purposes, each binary image of 
change (the result of each similarity metric) is compared to 
the reference image (the result of the post-classification 
scheme) and an error matrix is obtained. The error matrix 
allows to calculate the overall accuracy and kappa index. 
These metrics were implemented in MATLAB software.  

The flowchart of the study methodology is summarized 
in Fig. 3.  

 
2.4.  Accuracy assessment 

 
The error matrix evaluation method is a valuable tool for 

assessing change detection results, therefore this will be the 
method used here. The error matrices are obtained by means 
of the comparison between the change map resulting from 
each one of the unsupervised methods and a reference, given 
by the change map obtained with the supervised method. The 
accuracy of the change detection methods is measured 
through Overall Accuracy (OA) and Kappa (κ) indices, where 
OA is the ratio between pixels correctly classified and the 
total number of pixels, while κ index measures statistically 
the concordance between the maps cited above [7]. 

According to the number of pixels correctly classified 
(CCp) (i.e. TP: true positives, and TN: true negatives), and to 
the number of pixels categorized erroneously (ICp) (i.e. FP: 
false positives, and FN: false negatives), the OA and the κ 
indices are calculated as indicated in eq. (6)-(8). 

 

𝐶𝐶𝐸𝐸 =
𝐶𝐶𝐶𝐶𝑝𝑝

𝐶𝐶𝐶𝐶𝑝𝑝 + 𝑁𝑁𝐶𝐶𝑝𝑝
 (6) 

 

𝜅𝜅 = 1 −
1 − 𝐶𝐶𝐸𝐸
1 − 𝑃𝑃𝑒𝑒

 (7) 

 
Where,  
 

𝑃𝑃𝑅𝑅 = {𝑃𝑃1𝑃𝑃2} + {(1−𝑃𝑃1)(1−𝑃𝑃2)} (8) 
 

Table 2. 
Land cover classification scheme and training sample size. 

Image Class 
Name Description Training 

samples 

SPOT 

Vegetation Fields where trees or crops grow 2754 
Water Reservoirs, ponds, river, sea 76 
Buildings Residential areas, urban service 

buildings, state highways. 628 

Bare soil 1 Lands where vegetation is 
denuded or where the 

construction is underway 
586 

Bare soil 2 Lands where no vigorous 
vegetation grows 1729 

Quickbird 

Vegetation Fields where trees or crops grow 28186 
Water Reservoirs, ponds, river, sea 105910 
Bare soil 2 Lands where no vigorous 

vegetation grows 12718 

Source: The authors. 
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Figure 3. Flowchart of the study methodology. 
Source: The authors. 

 

  

(a) 2005 (b) 2008 

 

Figure 4. SPOT-5 classified images with the SVM supervised method. 
Source: The authors. 

 

  

(a) 2004 (b) 2005 

 

Figure 5. Quickbird classified images with the SVM supervised method. 
Source: The authors. 
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Here P1 represents the ratio between the number of 
samples identified as changed, and the total number of 
samples. P2 represents the ratio between changed samples 
correctly identified, and the total number of samples.  

3.  Results 

In this section, the results are shown in two parts:  
supervised method and unsupervised methods. 

3.1.  Supervised Method 

For the supervised classification of the SPOT-5 images shown in 
Fig. 1, five thematic classes were defined in the training stage: 
vegetation, water, buildings, bare soil 1, and bare soil 2. See Table 2. 

The SPOT-5 classified images are shown in Fig. 4. Then, the 
difference in each thematic class was evaluated and a unique 
binary image of change was obtained (Fig 6(a)). This image 
shows in white the areas where the supervised scheme has 
identified changes in all thematic classes, and it will be used as 
the reference image to evaluate unsupervised methods. 

On the other hand, three thematic classes were defined to 
classify Quickbird images: vegetation, water, and bare soil 2 
(Table 2). The classification results in the images shown in Fig. 5, 
and the respective comparison of their classes allows obtaining the 
change mask shown in Fig. 6(b). This binary image will be the 
reference to evaluate the unsupervised methods (Quickbird case). 

 

(a) Spot 

 

(b) Quickbird 
Figure 6. Change Maps obtained using the post-classification approach 
(SVM, supervised case). Change areas in white.  
Source: The Authors. 

3.2.  Unsupervised Methods 
 
In the unsupervised methods, each metric defined in 

Table 1 was applied both for SPOT-5 and Quickbird MT 
images. The application of these metrics results in a 
difference image (grayscale) that was binarized using an 
automatic threshold given by the Otsu’s method [1]. Figure 7 
shows the SPOT-5 change maps obtained from each 
similarity metric. The images corresponding to NDVI, SAM, 
and SCM (Fig. 7(b-d)) show high correlation with Fig. 6(a); 
however, some differences are identified.  

Figure 8 shows the change detection masks for the 
unsupervised case in Quickbird images. Here, the images 
corresponding to ERGAS, NDVI, and SAM (Fig. 8(a-c)) 
show some degree of similarity with Fig. 6(b). 

For the evaluation of accuracy, it is important to bear in 
mind that it is possible to obtain the change mask for each 
class in the supervised method, while the unsupervised 
methods give a single image of change (integrating all the 
classes). For this reason, the results of the supervised method 
are integrated into a single image that is compared with the 
results of each unsupervised method. 

 
3.3.  Accuracy assessment 

 
According to the comparison between the results of Fig. 

6(a) and Fig. 7, and the comparison between the results of 
Fig. 6(b) and Fig. 8, error matrices were constructed. The 
coincidence in the identification of changed and unchanged 
zones in the reference image (supervised method) and in the  

 

  

(a) ERGAS 
 

(b) NDVI 

  

(c) SAM (d) SCM 
Figure 7. SPOT-5 change detection masks obtained through four similarity 
metrics and Otsu’s thresholding algorithm (unsupervised case). Change 
areas in white. 
Source: The authors. 
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(a) ERGAS 
 

(b) NDVI 

 
 

(c) SAM (d) SCM 
Figure 8. Quickbird change detection masks obtained through four similarity metrics 
and Otsu’s thresholding algorithm (unsupervised case). Change areas in white. 
Source: The authors. 

 
 

test images (unsupervised method) gives as a result changed 
pixels (C) and non-changed pixels (NC). TP is the pixels 
identified as C in both reference and test image. FP is the 
pixels identified as NC in the reference image and as C in the 
test image. FN is the pixels identified as C in reference image 
and as NC in the test image. Finally, TN is the pixels 
identified as NC, both in the reference and in the test image. 

The error matrices for SPOT-5 results are shown in Table 3. 
For each similarity metric, Table 3 shows the number of pixels 
categorized as TP, FP, FN and TN. In any case, the sum of these 
values gives the total number of pixels in the SPOT-5 image, i.e. 
250000 pixels (500 x 500). From these values, the OA and κ 
index are calculated and given. 

In Quickbird case, Table 4 shows the error matrices for 
each similarity metric. Here, the sum of TP, FP, FN and TN 
is equal to 2250000 pixels, i.e. 1500 x 1500. Again, the OA 
and κ values are calculated and given as percentage values. 

 
Table 3.  
SPOT-5 - Accuracy assessment for ERGAS, NDVI, SAM and SCM, using 
Otsu’s thresholding algorithm. Result: OA and κ. (C) Change (in Pixels) and 
(NC) Non-Change (in Pixels). 

Similarity 
index  C NC Total OA 

(%) 
κ 

(%) 

ERGAS C 
NC 

11407 
20140 

49101 
169352 

60508 
189492 72,30 9,82 

NDVI C 
NC 

20688 
10859 

15715 
202738 

36403 
213597 89,37 54,78 

SAM C 
NC 

19853 
11694 

10646 
207807 

30499 
219501 91,06 58,90 

SCM C 
NC 

24544 
7003 

18985 
199468 

43529 
206471 89,60 59,45 

Total  31547 218453 250000   
Source: The authors. 

Table 4.  
Quickbird - Accuracy Assessment for ERGAS, NDVI, SAM and SCM, 
using Otsu’s thresholding algorithm. Result: OA and κ. (C) Change (in 
Pixels) and (NC) Non-Change (in Pixels). 

Similarity 
index  C NC Total OA 

(%) 
κ 

(%) 

ERGAS C 
NC 

195042 
27977 

158237 
1868744 

353279 
1896721 91,72 63,22 

NDVI C 
NC 

180659 
42360 

113058 
1913923 

293717 
1956283 93,09 66,10 

SAM C 
NC 

189844 
33175 

130458 
1896523 

320302 
1929698 92,73 65,09 

SCM C 
NC 

31274 
191745 

5940 
2021041 

37214 
2212786 91,21 21,82 

Total  223019 2026981 2250000   
Source: The authors. 

 
 
The discussion about the above results will be performed 

in the next section. 
 

4.  Discussion 
 

4.1.  Spot images 
 
The SPOT-5 images shown in Fig. 1 have a spatial 

resolution of 10 m (pixel size). Also, these images have a 
mixture of classes in the full scene, whereby five classes were 
defined in the post-classification method (supervised). 
According to the above, the unsupervised results for SPOT-5 
images are lower than the Quickbird results.  

The OA index shows a similar value (around 90%) for 
three approaches (NDVI, SAM and SCM), and the lowest 
value corresponds to ERGAS index. For kappa index, the 
highest value is obtained with SCM; however, the value for 
SAM is close to it. Again, the lowest value corresponds to 
ERGAS metric. The poorest results for ERGAS metric can 
be given for the high variability of classes in the studied 
SPOT-5 images and the behavior as a spatial filter (low pass) 
of this approach.    

Visually, the change images shown in Fig. 7., highlight 
the main changes between the MT images, particularly for 
NDVI, SAM and SCM approaches. The main areas of change 
in these images are detected, whereas their differences are in 
small zones, whereby their differences can be given by the 
threshold level. The change image for ERGAS index does not 
show the trend in Fig. 6(a) and Fig. 7(b-d). This qualitative 
evaluation (visual inspection) corresponds with the results of 
quantitative evaluation (OA and κ index).  

It is worth noting that the automatic thresholding 
technique can be an important player in the results of these 
approaches. However, these approaches were tested with 
maximum entropy thresholding scheme giving similar 
results. 

 
4.2.  Quickbird images 

 
The Quickbird images shown in Fig. 2. have a spatial 

resolution of 2.5 m, and there are three classes that are easily 
identified. These features can lead to better results in 
Quickbird case than in SPOT-5 case. This is reflected in 
higher OA and κ values for Quickbird images as shown in 
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Table 4. It is worth noting that most of the changes are related 
to vegetation class.  

Regarding the number of classes, we must consider that 
having a smaller number of classes, their separability can be 
more precise in the post-classification method. This makes it 
possible to minimize the uncertainty in the results of the post-
classification change detection method, which can finally 
affect the evaluation of unsupervised methods. 

The Table 4 shows OA values higher than 90% for the 
four similarity metrics, and a κ index higher than 60% for 
three cases.  Here the best results are obtained with ERGAS, 
NDVI and SAM approaches, being NDVI the best. The good 
performance in NDVI is based on the kind of changes shown 
in the Quickbird images, where some vegetation zones are 
changed to bare soil zones. Although SCM approach has a 
high OA value, its kappa index is very low, so the worst case 
is obtained with SCM. The main difference between SCM 
results and the other results is the number of true positive 
pixels, while the number of false negatives in SCM is high.  

In the visual inspection, the ERGAS, NDVI and SAM 
image of change is similar to the reference image. In these 
three images, the main zone washed out by the tsunami 
(central zone) is bigger than the identified for the supervised 
approach. This leads to a high value of false negatives. Also, 
the ERGAS and SAM images show false positive pixels 
around all the peninsula. In SCM case, the zone identified as 
changed is very small, therefore its TP is lower ad its FN is 
higher than in other schemes. This behavior can be a 
consequence of a low threshold value given by the Otsu’s 
method.  

 
4.3.  Recommendations 

 
According to the above, for the application of similarity 

indexes in the detection of changes in remote sensing, the 
following recommendations and future work can be 
followed: 

I. The selection of the similarity metric depends on the 
spatial resolution of the images. In low spatial resolution 
images, avoid the use of metrics that use spatial filtering 
(e.g. ERGAS). 

II. The selection of similarity metrics depends on the type of 
classes present in the image. Some similarity indices are 
specifically geared to specific classes (e.g. NDVI). As 
future work it is possible to evaluate the performance of 
this type of metrics only in the class to which they are 
oriented. 

III. When the area to be evaluated has a great variability of 
classes, together with a low spatial resolution (e.g. 
SPOT), the recommended methods are those based on 
spectral distances (e.g. SAM and SCM). On the contrary, 
in images with high spectral resolution and with low class 
variability, the use of spatial filtering-based metrics 
provided good results (e.g. ERGAS). 

IV. Evaluate the impact of the thresholding method for each 
metric. Some thresholding methods may work better than 
others. As future work, it can be considered here to 
replace the thresholding by clustering (for example with 
the k-means algorithm). 

 

5.  Conclusion 
 
This paper shows a comparison of four spectral similarity 

metrics applied to unsupervised change detection. The 
evaluation is done in terms of accuracy (OA and κ indices) 
and the results are obtained through the comparison against 
the results of a post-classification scheme based on SVM. 
The results have shown good performance for spectral 
angular distances, especially for SAM metric, whereas the 
SCM results can be dependent on the thresholding technique. 
The ERGAS index shows better results for high spatial 
resolution images (compared to medium resolution), since its 
behavior is like a spatial filter. Regarding NDVI, its results 
depend strongly on the percentage of vegetation changes in 
the multitemporal images evaluated. Another aspect to 
consider here is the variability of the classes in the image, 
where the precision in the image registration is a key factor, 
whereby the results in Quickbird image are better with regard 
to the results in SPOT-5 image. 

According to the evaluation presented here, for images of 
low spectral resolution, the use of spectral distance based 
metrics is recommended, and the use of spatial filtering based 
metrics is recommended to avoid. For high-resolution 
images, both the distance-based and spectrum-based metrics 
showed good results. However, when the variability of 
classes is high, the spectral distance-based methods can have 
better results. As future work, it is recommended to consider 
clustering algorithms as an alternative to the thresholding 
phase and perform evaluation by classes in some similarity 
indexes. 
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