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Abstract 
A Support Vector Machine Regression (SVMR) algorithm was applied to calculate the epicenter distance using a ten seconds signal, after 
primary waves arrive at a seismological station near to Bogota - Colombia. This algorithm was tested with 863 records of earthquakes, 
where the input parameters were an exponential function of waveform envelope estimated by least squares and maximum value of recorded 
waveforms for each component of the seismic station. Cross validation was applied to normalized polynomial kernel functions, obtaining 
mean absolute error for different exponents and complexity parameters. The epicenter distance was estimated with 10.3 kilometers of 
absolute error, improving the results previously obtained for this hypocentral parameter. The proposed algorithm is easy to implement in 
hardware and can be employed directly in the field, generating fast decisions at seismological control centers increasing the possibilities 
of effective reactions. 
 
Keywords: earthquake early warning; support vector machine regression; earthquake; rapid response; epicenter distance; seismic event; 
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Estimación rápida de la distancia epicentral de un terremoto 
utilizando registros de una sola estación sismológica, mediante 

técnicas de aprendizaje de máquinas 
 
Resumen 
Se aplicó un algoritmo de máquinas de vector de soporte para calcular la distancia epicentral utilizando una señal de diez segundos, después 
del arribo de ondas primarias a una estación sismológica cercana a Bogotá - Colombia. Este algoritmo fue probado con 863 registros de 
terremotos donde los parámetros de entrada fueron una función exponencial de la envolvente estimada para los mínimos cuadrados y el 
valor máximo de las formas de ondas registradas en cada componente de la estación sísmica. Validación cruzada fue aplicada a funciones 
kernel polinomiales normalizadas, obteniendo la media del error absoluto para diferentes exponentes y parámetros de complejidad. La 
distancia epicentral se estimó con 10.3 kilómetros de error absoluto, mejorando los resultados previamente obtenidos para este parámetro 
hipocentral.  El algoritmo propuesto es fácil de implementar y puede ser empleado directamente en campo, generando decisiones rápidas 
en centros de control sismológico incrementado posibilidades de tener reacciones efectivas. 
 
Palabras clave: alerta temprana de terremotos; máquinas de soporte vectorial; terremoto; respuesta rápida; distancia epicentral; evento 
sísmico; sismología; Bogotá - Colombia. 

 
 
 

1.  Introduction 
 
Bogota’s Savannah and surrounding areas are home to 

nearly a third of Colombia’s population and are the country’s 
main economic center with around 40% of the gross domestic 
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product [1]. In case of a destructive seismic event in this area, 
the entire country would face many harmful social and 
economic effects; this is why a seismic early warning system 
around Bogota is important and the epicenter distance 
estimation is one of the main parameters in this system. The 
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epicenter distance represents the length between the 
earthquake epicenter and the seismological station, and 
epicenter is the surface area vertically above the earthquake 
focus [2]. The density of seismological stations around 
Bogota is not high enough, making the time used for the 
localization of seismic events longer than the travel time to 
areas where the early warning is required. In this case, an 
alternative solution may be implemented, by using 
seismological data of previous events recorded at one single 
station in order to calculate earthquake hypocentral 
parameters. A seismic early warning system emits an alert 
from a few seconds to a few tens of seconds before the 
stronger shaking movement arrives; it can be based on one 
three-component station, implementing methods of bio-
inspired computing, natural computation or computational 
intelligence. These methods have been successfully applied 
in multiple areas of knowledge; in seismology, these methods 
allow the estimation of hypocentral parameters using just few 
seconds of a signal registered at a single seismological 
station, achieving acceptable accuracy and generating 
reliable alerts. This approach is very useful in areas with 
sparse seismic networks [3,4]. Automatic computation 
algorithms in a single broadband three-component station 
have been mainly developed for P and S waves onsets 
detection, allowing the estimation of source location using 
the back-azimuth and the apparent surface speed 
measurements [5-7], or seismic moment estimation [8-13]. 
On the other hand, kernel-based methods have become a very 
powerful tool for mathematicians, scientists and engineers, 
providing a very rich and surprising solution in areas such as 
signal processing and pattern recognition [14]. Its 
implementation is quite simple by applying a function that 
combines input variables as a combination of themselves 
using a function of dot products, obtaining an enhanced new 
space with more dimensions, mapping variables in a 
hyperspace where separation of classes (in the case of 
classification) by a linear function or hyperplane can be 
achieved.  

The study area corresponds to the Bogota’s Savannah and 
its surroundings, where some important fault systems are 
present, such as Piedemonte Llanero, La Salina, Bogota 
Savannah and even the Ibague fault system Fig. 1. 

Also, the Bogota city has been built on soft lacustrine soil 
[1], which is a natural seismic wave amplifier producing high 
damage to the infrastructures, similarly to damages occurred 
in Mexico City in the past [15]. This area suffers high 
seismicity that can affect Bogota, the country’s capital and 
most important social and economic populated center.    

 
2.  Data set used and methods applied 

 
The data set used in this research belongs to El Rosal 

seismological station, located toward north-west Bogota as 
shows Fig.2. This station is part of the Colombian Seismic 
Network administrated by The “Servicio Geológico 
Colombiano - SGC” (Colombian Geological Service). 

The Colombian Geological Survey has a main network 
composed by 42 stations transmitting in real time, recording 
seismic activity for the entire country as shows Fig.3, with an 
average distance between stations of 162 kilometers. El Rosal  

Figure 1. Sketch of Bogota’s Savannah and fault systems.  
Source: The authors. 

 
 

 
Figure 2. Distribution of seismic events around Bogota.  
Source: The authors. 

 
 

station employs a brand Guralp CMG - T3E007 sensor in the 
three components and a nanometrics RD3-HRD24 digitizer, 
which provides simultaneous sampling of three channels with a 
24-bit resolution [16]. The data correspond to the three 
component raw waveforms recorded directly in this station and a 
seismic catalogue with 2164 characterized events, selected 
between January 1st 1998 and October 27th 2008; all these events 
were located less than 120 kilometers from the station. 

 
2.1.  Data pre-processing 

 
Before starting the processing related to SVMR, 

waveform files from El Rosal station were converted to the  
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Figure 3. Seismological Colombian Network.  
Source: Modified from Google Earth. 

 
 
American standard code for information interchange 

(ASCII) format, using a Seisan package tool [17]; 
earthquakes with magnitudes lower than 2.0 𝑀𝑀𝐿𝐿 were 
ignored; therefore the followed processes were applied on the 
remaining 1011 events. Since the selected seismic records 
present variable levels of noise, it was necessary to filter them 

out with both high and low frequency filters. Low 
frequencies correspond to instrumental noise that can be 
easily eliminated through the implementation of a high-pass 
filter with a cut-off frequency of 0.075 Hz [18], while high 
frequencies were removed with a low-pass filter with a cut-
off frequency of 150 Hz. 
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Figure 4. Statistical distribution of epicenter distance. 
Source: The authors. 

 
 
The statistical distribution of epicenter distance values is 

presented in Fig.4, where main distribution of whole data set 
is observed. This bar chart shows that the seismicity 
surrounding El Rosal station is presented from 40 kilometers 
and beyond, with great amount of events close to 90 
kilometers. Although this is not a homogeneous distribution, 
it corresponds to local conditions and regular behavior for 
this variable and therefore the model has to work properly 
under this condition.  

 
2.2.  Descriptors – Input data set of SVMR 

 
In this study, some parameters that have been previously 

used for other authors to magnitude estimation were 
calculated; then, they were employed as input variables or 
descriptors for the SVMR algorithm. In the first stage, the 
relationship between maximum amplitude of the wave in a 
short period of time was selected, along with local magnitude 
of the earthquake [19]. Consecutive, maximum peaks were 
highlighted and a linear regression was performed for each of 
the three components, correlating not only the maximum 
peak, but also the way it changes while energy reaches the 
sensors. Three basic parameters were chosen from the linear 
regressions such as, slope (M), independent term (B) and 
correlation coefficient (R), for each of the three components. 
The maximum amplitude values (Mx) obtained for the time 
of each component were used as descriptors as well. Thus, 
each event had 12 descriptors associated with this concept.  

Furthermore, nine descriptors used previously for 
epicenter distance estimation were added. These descriptors 
were performed by adjusting a linear regression of an 
exponential in eq. (1):  

 
𝐵𝐵𝐵𝐵 exp(−𝐴𝐴𝐴𝐴)        (1) 

 
This equation belongs to the envelope of the seismic 

record in a logarithmic scale determined by linear regression 

and its respective correlation coefficient (R) for each 
component [10]. 

Similarly, some parameters used for previous back-
azimuth determination were used to include information 
about the source location of the seismic event into the model.  
Maximum eigenvalues of the two-dimensional covariance 
matrix were used as input descriptors, calculated as described 
in [5,20]. A windowing scheme with one second time 
windows was performed, obtaining consecutive values for 
which a linear regression was calculated, in a similar way as 
described above, determining the slope (M), the independent 
term (B) and the correlation factor (R) of the regression, as 
well as the arithmetic mean of the eigenvalues (P). Despite 
this parameter involving three components, only four 
descriptors were added to the process. 

In sum, a total of 25 descriptors were used in the SVMR 
model for local epicenter distance determination, 12 of them 
related to previous works on magnitude estimation, 9 were 
associated with previous epicenter distance estimations and 
the last 4 descriptors were used in back-azimuth 
determination. These descriptors were calculated for 5, 10 
and 15 seconds signal windows for 1011 selected events with 
magnitudes greater than 2.0. All extreme or anomalous 
values were eliminated reducing the data set to 863 events. 

 
2.3.  The SVMR model 

 
The model was trained with the refined data set for each 

time window, using the Weka 3.6 software [21]. This 
algorithm has a strong statistical support and is easily 
implemented on the station by electronic processing cards. 
After performing several tests, a standard normalized 
polynomial kernel was selected. In order to choose the kernel 
exponent and the complexity factor, correlation factors and 
minimum absolute error obtained by a 10 fold cross correlation 
process were compared. These processes were carried out 
testing multiple combinations of exponents and complexity 
factor for deferments magnitudes and time signals. The 
correlation coefficient calculated for each partition 
corresponds to the Pearson’s Coefficient, which measure the 
linear relationship between two variables independently of 
their scales. This coefficient takes values between 1 and – 1; a 
value of zero means that a linear relationship between two 
variables could not be found. A positive value of this relation 
means that two variables change in  the same way, i.e. high 
values of one variable correspond to high values of the other 
and vice versa. The closer this value is to one, the greater 
certainty that two variables have a linear relation. 

 
3.  Results 

 
Using the descriptors explained above and real magnitude 

for each considered seismic event, a group of 12 datasets 
were evaluated. Each dataset corresponds to a combination 
of 4 minimum magnitude filters (2.0, 2.5, 3.0 and 3.5) and 3 
signal length filters (5, 10 and 15 s), evaluating combinations 
of 7 values for kernel exponent and 6 values for complexity 
factor, completing a total of 504 tested models of SVMR in 
order to find the combination of parameters with the best 
correlation factor in epicenter distance determination. 
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Figure 5. Correlation coefficients for each combination of Kernel.  
Source: The authors. 

 
 
Fig. 5 shows values of correlation coefficients in each 

combination of cut-off magnitude and time signal where 
kernel exponents and complexity factors were calculated for 
each combination, where values in green squares represent 
better correlation, while those in red squares represent values 
of lower correlation. Afterward, those with the highest value 

of correlation coefficient were chosen. Fig. 5 also shows 
optimal values of correlation coefficients for time signals of 
10 and 15 seconds, the average being of 0.7. 

This value is an acceptable correlation, indicating that the 
model is predicting the epicenter distance with good 
accuracy. For a time signal of 5 seconds, correlation  
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Table 1.  
Summary for the best epicenter distance models in each combination. 
 SUMMARY OF EPICENTER DISTANCE DETERMINATION - RESIDUAL 

 Signal Time = 15 s Signal Time = 10 s Signal Time = 05 s 
Minimum 
Magnitude 2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5 

Mean 0.16 0.13 1.03 -0.46 0.21 0.56 0.45 -1.06 1.05 -0.16 -0.96 -0.39 
Typical Error 0.51 0.63 0.80 1.14 0.51 0.70 0.80 1.74 0.56 0.73 0.95 0.65 
Standard 
Deviation 15.1 12.3 8.9 6.6 15.0 13.6 9.0 10.0 16.6 14.2 10.6 3.7 

Kurtosis  1.34 1.36 5.13 10.85 1.48 0.57 3.30 1.97 0.82 0.92 3.57 18.48 
Asymmetric 
Coefficient 0.18 -0.10 1.51 -2.50 0.10 -0.05 0.14 -1.05 0.35 0.10 0.01 -3.10 

Count 863 379 126 33 863 379 126 33 864 377 126 33 
Level of 
Confidence 
(95%) 

1.009 1.245 1.574 2.323 1.00 1.377 1.578 3.540 1.107 1.437 1.873 1.317 

Source: The authors. 
 

coefficient values are just above 0.5, pointing out that this 
time signal is not long enough to estimate an acceptable 
epicenter distance.  

Although a correlation coefficient is more suited to a time 
signal of 15 seconds, the 10-signal seconds was selected as 
the best model in the shortest period of time; moreover, a cut-
off magnitude must be established for the 10 seconds signal 
allowing accuracy in the final value of epicenter distance. 

The choice of parameters is shown in Fig.6, where 
correlation coefficient and mean absolute error are presented 
for each combination of kernel exponent and complexity 
factor, all of them for the time signal and the cut-off 
magnitude selected.  

 

 
Figure 6. Parameters selection for each dataset.  
Source: The authors. 

Table 1 shows, for a time signal of 10 seconds and 3.0 of 
cut-off magnitude, a mean value of 0.45 kilometers with 
standard deviation of 9 kilometers, this cut-off being the one 
finally implemented in the model. 

These parameters were calculated using SVMR algorithm 
in Weka 3.6 with a standard normalized polynomial kernel 
and 10 fold cross-validations. We can see that quality factors 
enable an accuracy of 10.9 kilometers in epicenter distance, 
considering the cross-validation, and also allowing 
verification of the model at the same time.  

Based on these results, a support vector machine of 
normalized polynomial kernel can be implemented using an 
exponent of 10 and a complexity factor of 0.8. The standard 
deviation was of 10.3 kilometers, which is good enough for 
an early warning generation, considering that most of the 
seismic events are located farther than 40 kilometers from El 
Rosal station. 

Fig. 7 shows the cross-plot with relationship between the 
real epicenter distance (X axis) and the distance calculated by 
the model (Y axis). A normal statistical pattern can be 
observed in the distribution of residuals, also confirming that 
the calculated distance is of around 10.9 kilometers. The 
dashed blue line represents the linear behavior of predicted 
data, corresponding to the locus where prediction is equal to 
real values.  

From these results, we can establish that the model works 
properly, allowing prediction of the distance where 
earthquakes occur with good accuracy, considering that the 
values are obtained with a 10 seconds signal, which is good 
enough for an early warning system. 

 
4.  Conclusions 

 
The SVMR model proposed here is an important step 

towards the implementation of an early warning system of 
earthquakes for the city of Bogota - Colombia, and for other 
populated centers in the world. 

The result showed in this study is an improvement on that 
of [22] and [23], who were as accurate as ±15 and ±16-19 
kilometers respectively. 
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Figure 7. Correlation between real and calculated epicenter distance with 
SVMR.  
Source: The authors. 

 
 
This model is proposed and evaluated for fast epicenter 

distance determination, based on support vector machine 
regression through pattern recognition and characterization 
of earthquake signals recorded on a three components 
seismic station in only ten seconds, anticipating the arrival of 
earthquakes in the city of Bogota. An earthquake travels the 
distance to main seismic alignments in at least 30 seconds, 
allowing an early warning generation, which must be in less 
than 10 seconds. Additionally, this model can be 
implemented directly in the seismological station embedded 
in electronic devices, where the main mathematical process 
corresponds to a simple matrix product involving the given 
kernel for the epicenter distance and a vector which contains 
the calculated descriptors of the current event. 

 
5.  Recommendations 

 
Despite the good results obtained in terms of epicenter 

distance determination, it is important to continue developing 
the model introduced here, in order to calculate other 
hypocentral parameters. 

It is important to find ways to improve the prediction 
accuracy based on further research, supported by 
computational intelligence and geophysics research groups 
as well as the seismological network in Bogota’s Savannah 
and its surroundings managed by the Universidad Nacional 
de Colombia. 

The use of other descriptors such as predominant period, 
Fourier and wavelet frequency spectra should be considered 
to obtain higher correlation factors and better estimation 
values for local magnitude and other hypocentral parameters 
estimations, required to generate a reliable and fast 
earthquake early warning system. 

Datasets should be complemented with recent seismic 
events, specifically from October 27th of 2008 to the present, 
as this period has presented larger set of earthquakes with 
magnitudes greater than 3.0. 
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