
 

 
 
 

 
 

 

© The author; licensee Universidad Nacional de Colombia.  
Revista DYNA, 85(204), pp. 296-301, March, 2018, ISSN 0012-7353 

DOI:  http://dx.doi.org/10.15446/dyna.v85n204.62642 

Direct stockpile scheduling: Mathematical formulation •  
 

Felipe Souza a, Leonardo Soares Chaves b, Hudson Burgarelli b, Alizeibek Nader b, Carlos Arroyo b 

& Luiz Alberto b 

 
a Universidade Federal de Mato Grosso, Cuiabá, Brasil. felipecmc@globomail.com 

b Universidade Federal de Minas Gerais, Belo Horizonte, Brasil leosoaresc@hotmail.com, hburgarelli@gmail.com, beckn@demin.ufmg.br, 
carroyo@demin.ufmg.br  

 
Received: February 14th, 2017. Received in revised form: December 13st, 2017. Accepted: February 15th, 2018. 

 
Abstract 
In a mining context, production scheduling’s main objective is to determine the best mining sequence of blocks to achieve the largest net 
present value and to maximize ore reserve exploitation. Stockpiling and blending procedures may represent very helpful alternatives for 
mine planning to ensure the ore quality and amount required by the processing plant. In order to satisfy industrial requirements of grades 
and tones, reducing stockpile fluctuations may represent a very important tool especially for medium and short term mine planning. 
Classical linear programing has been widely used to model blending problems at the mining industry, however this formulation allows 
only one objective formulation. The current work describes a system based on goal programing able to reach blending constraints desired 
by short/medium term planning. The proposed formulation achieves the best schedule scenario, ensuring cost constrains are respected. 
Hence, this study aims to provide support for both short and long term mine planning. 
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Programación directa de pilas de acopio: Formulación matemática 
 

Resumen 
Según el contexto de industria minera la programación de producción es la mejor metodología para determinar la mejor secuencia de 
explotación y asi obtener el mejor valor presente líquido y explotar la reserva máxima. La construcción de pilas de acopio y de mezcla 
representa una alternativa valiosa para la planificación de minado permitiendo garantizar la calidad del concentrado y las especificaciones 
de la planta de tratamiento. Para satisfacer las especificaciones de leyes y tonelaje, y reducir las variaciones las pilas de acopio y mezcla 
cumplen un papel importante para la planificación de corto y largo plazo. La programación linear clásica viene siendo ampliamente utilizada 
en problemas de mezcla presentes en la industria minera entretanto esta formulación permite apenas trabajar con una sola función objetivo 
en su formulación. El presente trabajo describe un sistema basado en goal programing, capaz de alcanzar las restricciones requeridas en la 
planificación a corto y largo plazo de forma simultánea. La formulación propuesta obtiene el mejor escenario operacional garantizando que 
las restricciones de costos sean respetadas. Esta formulación es útil pues da soporte a la toma de decisiones en las actividades de 
planificación a largo y corto plazo 
 
Palabras clave: pilas de acopio; goal programing; restricciones de mezcla; agendamiento de pilas; mezcla de concetrado. 

 
 
 

1.  Introduction  
 
Usually, mine planning objectives are to develop a 

production scheduling that leads to an ore block selection that 
ensures the delivery of budget tones and grade quality to the 
processing plant according to the desired period [1].  There 
are minimum quality requirements for the ore delivered to the 
plant, and defining a mixture ratio and a technical control 
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methodology is important to reach this quality target [20] 
[17]. The ideal operation should provide a uniform feed, 
since grade and tonnage variations are related to a trend in 
increasing operational costs [12]. The classic proposition, 
developed by Johnson [8], to calculate the net present value 
implies that costs affect the adequate time period to process 
a mining unit, and processing and rehandling costs will vary 
depending on mineralogy and ore type. Traditionally, 
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blending algorithms only target quality and tonnage goals to 
provide results.   

In most cases, the blending objective is the same: to 
ensure constant feed volume and ore quality in order to 
guarantee low operational costs. Each operation applies 
different techniques, but the main objectives are similar. The 
formulation of the blending scheduling problem through the 
classical linear approach is limited, since the objective 
function has only one goal. Linear programing presents 
difficulties on converging results with an increasing amount 
of constraints and variables [6]. An important characteristic 
of goal programing used in this formulation is related to 
deviations of the objective function, which is allowed but 
requires assigning a penalty to it. Loosening the objective 
function may lead to a non-optimal result, but the best 
possible result considering the modeled constraints [11].  

The Direct Stockpile Scheduling is a mathematical 
formulation able to consider quality and mass constraints 
from the processing plant, and also the time impact required 
by mine planning related to costs and to proper discount 
factors. The relaxation of the objective function considers a 
possibility of a non-optimum solution to schedule the best 
feasible solution. 

 
2.  Ore blending and mine production scheduling 

 
Ore blending is the process responsible for combining ore 

with various grades and contaminants in a systematic 
process. The importance of this process is directly related to 
the natural lithotype variability of the deposit [13]. Blending 
must combine different materials along time to reach an ideal 
product, uniform and homogeneous. The blending activity 
shows even more importance in cases of inhomogeneous ore 
deposits and rigorous quality control of the commodity [2]. 
Production mine planning should consider plant design, 
environmental factors and market demand. A brief 
description of these important factors is provided below:   
• Processing plant design:  

The processing plant is planned and built considering 
specific ratios between elements and mineralogy. Blending 
must attempt to estipulate the minimum and maximum limits 
to be accepted by the processing plant during the whole mine 
life [2]. Under or over utilization of material may lead to 
product losses due to this specific range. 
• Environmental factors: 

In some cases, there may be limited areas to be used by 
the stockpiles due to environmental restrictions. Thus, the 
environmental restrictions, mine scheduling, stockpile 
scheduling and plant must be aligned. 
• Market demand: 

Market agreements are developed based on ore quality and 
quantity. In order to ensure the product quality, it is important 
to provide a uniform feed for the processing plant, and this 
requires combining all productive units scheduling [12]. 

There is a kind of gap between the planned stockpile for 
long and short terms. A long term pile is scheduled based on 
interpolations provided by block models with less detailed 
information when compared to a short term one. After being 
mined, generally piles are sampled and apply adequate 
estimation techniques to provide an increase of information 

confidence [16]. Due to this increasing knowledge, the short 
term stockpile planning is more effective and hence more 
acceptable than long term planning.  

A qualified stockpile planning must satisfy material 
quality, mass and operational cost targets. The main aspects 
considered in short term planning are: 
• Predictability: 

The scheduling must consider the current plant 
constraints and others likely to occur in the subsequent 
periods. The planning must attempt to ensure ore quality, the 
targeted mass and costs.  
• Floatability: 

The scheduling of ore piles based on nonlinear 
programing may present fluctuations when the system can’t 
reach a desired target, due to strategies used to provide the 
nearest possible approximated solution [4]. If the deviations 
are foreseen during the mine planning, the plan may be 
analyzed in an attempt to overcome these fluctuations. 
• Regionalization: 

The block model must be the most accurate possible, 
since knowledge of the actual stockpile material and the run 
of mine are directly related to the quality of this information. 
Inaccurate block model estimation may lead to ore feed 
oscillations and thus turning unfeasible the use of stockpiles 
for quality control. 

Stockpile control is an important tool to avoid selective 
mining, since blending different materials may maximize the 
reserve exploitation [18]. The stockpile control aims to 
minimize mining costs and increase ore production. Increase 
of ore reserves are expected as a natural consequence of 
stockpile blending: non-complying material with the quality 
standards, below the cutoff grade or with higher 
concentration of contaminants, which were initially 
considered as waste may be processed with material 
complying with the quality standards to blend and become 
acceptable to the processing plant [13]. 

 
3.  Ideal stockpile formulation 

 
One function of the mining complex is to supply ore 

blending to the plant according to the processing 
requirements. The first stage consists in mining the non-
homogeneous material provided by the deposit. The second 
stage aims to blend different materials considering the 
processing plant requirements and finally process it [16].  For 
a given processing and operation path, it is possible to 
consider multiple alternatives. For example: a block can be 
mined and processed in the initial period or stocked to be 
blended later. Various processing routes may be chosen and 
all of them should result in material complying with the 
processing plant’s ore quality requirements [18].  

The classical blending process considers the blend 
opportunity after deciding whether the block should be mined 
or not [10]. Ideally, this decision of whether the block will be 
mined or not should take the blending opportunity into 
account, for example: A high grade block with undesirable 
contaminant rates is likely to not be mined, however, if the 
system is able to consider the blending opportunities, it can 
find an ideal proportion to maximize the utilization of this 
marginal block [12]. 
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4.  Goal programing 
 
Goal programming, as linear programming, is a 

mathematical linear model but with several differences. 
Linear programming aims to solve problems modelled by 
linear one-dimensional equation. Profit maximization and 
cost minimization problem may sometimes be solved by 
linear programming. Real mine operations commonly require 
multiple objectives to reach an operational solution. Joining 
different objectives on a single objective function may be 
impossible. Goal programming solve this demand by 
allowing problem models constituted by multiples objectives 
[9]. 

Linear programming techniques regularly consider the 
constrains as inviolable, named hard constraints. Goal 
programing face this modelling limitation differently, at least 
one constraint is transgressed to reach a possible solution [7]. 
The constrains are named soft constrains. 

Mining operations formulation commonly are correctly 
formulated on decision model by goal programming on a 
huge amount of problems. This operation is maximized or 
minimized by a group of constraints incompatible between 
equations [5]. The algorithm must be able to choose the 
constrain to be violated in order to reach a feasible solution. 

Goal programming can be divided on the following 
components: Decision variables (real variables optimized by 
model), constraints (group of linear restrictions of objective 
functions), deviation variables (positive or negative deviation 
related of objective function) and objective function 
(mathematical relationship of decision variables representing 
the objective of model) [15].   

 
5.  Process description 

 
Generally the ore blending process is executed in 2 steps. 

First, different stockpiles are disposed in the field according 
specific proprieties. In this initial stage, the different 
stockpiles must be homogenized and sampled to determine 
their proprieties [20]. This step is important to split the 
different lithotypes and determine proprieties. Second, a 
bucket-wheel excavator and transport conveyor direct the 
different materials to temporary silos. The silos store the 
materials for the ensuing blending operations. The silos feed 
a transportation system to supply a stacker, by which the 
blended ores are stacked on the blending yard for the 
subsequent process [18]. Each silo discharges the ore at a 
specific flow speed according to the blending ratio 
determined to reach the aimed proprieties. The process 
occurs simultaneously, the two steps working at same time 
[2]. The process starts the ore preparation during stage 1 by 
bucket-wheel and finishes at the stacker. The silos allow the 
creation of a kind of intermediate buffer of pile blending ore, 
due to operational restrictions such as weather, for example, 
that can interrupt the process. Operational problems on main 
equipment can still stop the process. If any silo runs out of 
ore and the bucket-wheel can’t move to a certain pile on time 
to excavate or to refill it, the whole process has to pause [2,9]. 
Fig. 1 shows an example of blending process to build the ore 
stockpiles. 

 

 
Figure 1. Scheme of Ore Blending Process. 
Source: Author 

 
 

6.  Formulation of direct pile scheduling  
 
The classic strategy to solve blending problems is based 

on linear programing, due to the facility of its implementation 
and formulation building. A classical formulation is able to 
mix a number of components according to a specific 
requirement group. There are several variations of the 
blending problem formulation using linear programing as 
reported by [1]. Since [4] published in 1963 one of the main 
books on linear programing, several formulations have been 
raised to solve these formulations. Johnson [8] published a 
formulation to solve the scheduling problem based on linear 
programing, but due to computational restrictions, this 
methodology was abandoned during the 90’s. Nowadays 
these formulations are refined using a relaxing mechanism 
and heuristic techniques. 

In some cases, the ore pile does not have sufficient 
material to fulfill a specific requirement. Then, a technique 
must be used that is able to determine the best scenario 
possible with the present material [20]. Goal programing is 
not a new technique, but a formulation considering 
minimization of the operational costs, quality requirements, 
correct discount factor and opportunity cost in the same 
formulation can be an interesting alternative. 
• Objective Function: Goal programing is a kind of multi 

objective optimization which permits a multi-criteria 
goal decision. Applied in formulations with needs to 
attempt and satisfy more than one objective function [8] 
[19]. The present formulation must attempt a minimal 
operational cost eq. (1) and minimum quality deviation 
eq. (2). 

 

𝑚𝑚𝑚𝑚𝑚𝑚 � �

𝑉𝑉𝑉𝑉𝑌𝑌𝑌𝑌 𝑥𝑥 𝜌𝜌𝑌𝑌 𝑥𝑥 𝑂𝑂𝑂𝑂𝑌𝑌𝑌𝑌 𝑥𝑥 𝐶𝐶𝐶𝐶𝑌𝑌𝑌𝑌 + 𝑉𝑉𝑉𝑉𝑌𝑌𝑌𝑌 ∗ 𝛿𝛿𝛿𝛿+ +
 𝑉𝑉𝑉𝑉𝑌𝑌𝑌𝑌 ∗ 𝛿𝛿𝛿𝛿− +  𝑉𝑉𝑉𝑉𝑌𝑌𝑌𝑌 ∗ 𝛿𝛿𝛿𝛿+ +  𝑉𝑉𝑉𝑉𝑌𝑌𝑌𝑌 ∗ 𝛿𝛿𝛿𝛿−

𝐷𝐷𝐷𝐷𝑌𝑌

𝑌𝑌

𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃=1

𝑌𝑌

𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1

(1) 

 

min � � �
 𝑉𝑉𝑉𝑉𝑌𝑌𝑌𝑌𝑌𝑌  𝑥𝑥𝐺𝐺𝑉𝑉𝑌𝑌𝑌𝑌𝑌𝑌 + 𝐺𝐺𝑂𝑂𝑌𝑌𝑌𝑌 ∗ 𝜃𝜃𝛿𝛿+

+𝐺𝐺𝑂𝑂𝑌𝑌𝑌𝑌 ∗ 𝜃𝜃𝛿𝛿−𝐺𝐺𝑂𝑂𝑌𝑌𝑌𝑌 ∗ 𝜃𝜃𝛿𝛿+
+𝐺𝐺𝑂𝑂𝑌𝑌𝑌𝑌 ∗ 𝜃𝜃𝛿𝛿−                                 (2)

𝑌𝑌

𝑌𝑌𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸=1

𝑌𝑌

𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃=1

𝑌𝑌

𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1

 

 
𝑉𝑉𝑉𝑉𝑌𝑌𝑌𝑌  = Material volume recovered of especific year(y) 

related to each feed pile(p); 
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𝜌𝜌𝑌𝑌 = Feed pile density; 
𝑂𝑂𝑂𝑂𝑌𝑌𝑌𝑌= Operational cost of especific year(y) related to each 

feed pile(p); 
𝐶𝐶𝐶𝐶𝑌𝑌𝑌𝑌= Oportunity cost analysis factor represented by a 

binary variable; 
𝐷𝐷𝐷𝐷𝑌𝑌= Economic discount factor for each period(p); 
𝛿𝛿𝛿𝛿−= Lower negative deviation for volume; 
𝛿𝛿𝛿𝛿+= Lower positive deviation for volume; 
𝛿𝛿𝛿𝛿−= Upper negative deviation for volume; 
𝛿𝛿𝛿𝛿+= Upper positive deviation for volume; 

• Maximum Permitted Distance: To obtain an operational 
result, it is important to consider the distance between the 
feed piles. This distances are function of equipment and 
field size. This control is based on linear restriction as 
proposed by Romero [15]. Control distance is an 
alternative to blend closer material and ensure efficiency 
of operational activity. 
 

� �
𝐷𝐷𝑌𝑌𝑌𝑌 

𝑁𝑁𝑁𝑁 ≤  � 𝑁𝑁𝐷𝐷𝑦𝑦 𝐷𝐷𝐶𝐶𝑉𝑉 𝑦𝑦 = 1, 2, 3, …𝑌𝑌𝑌𝑌𝑌𝑌𝑉𝑉;𝑝𝑝
𝑌𝑌

𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1

𝑌𝑌

𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃=1

𝑌𝑌

𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1
= 1, 2, 3, …𝑁𝑁𝑚𝑚𝛿𝛿𝑌𝑌                                            (3) 

 
𝐷𝐷𝑌𝑌𝑌𝑌 = Distance between the piles of the year; 
NP = Number of piles used of the period; 
𝑁𝑁𝐷𝐷𝑦𝑦= Maximum distance permitted in the period(y); 

• Operational and Quality restrictions: Operational 
restrictions are related to operational plant restrictions. 
There are upper and lower boundary restrictions to 
control the capacity. Each period can present different 
restrictions according to the mine planning. 
 

� � 𝑉𝑉𝑉𝑉𝑌𝑌𝑌𝑌𝑥𝑥 𝜌𝜌𝑝𝑝𝑥𝑥 𝐶𝐶𝐶𝐶𝑌𝑌𝑌𝑌  ≤  � 𝑀𝑀𝑚𝑚𝑌𝑌𝑥𝑥𝑌𝑌

𝑌𝑌

𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1

𝑌𝑌

𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃=1

𝑌𝑌

𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1

 𝐷𝐷𝐶𝐶𝑉𝑉 𝑦𝑦

= 1, 2, 3, …𝑌𝑌𝑌𝑌𝑌𝑌𝑉𝑉; 𝑝𝑝 = 1, 2, 3, …𝑁𝑁𝑚𝑚𝛿𝛿𝑌𝑌   (4) 
 

� � 𝑉𝑉𝑉𝑉𝑌𝑌𝑌𝑌𝑥𝑥 𝜌𝜌𝑝𝑝𝑥𝑥 𝐶𝐶𝐶𝐶𝑌𝑌𝑌𝑌 ≥  � 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑌𝑌

𝑌𝑌

𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1

𝑌𝑌

𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃=1

𝑌𝑌

𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1

 𝐷𝐷𝐶𝐶𝑉𝑉 𝑦𝑦

= 1, 2, 3, …𝑌𝑌𝑌𝑌𝑌𝑌𝑉𝑉;𝑝𝑝 = 1, 2, 3, …𝑁𝑁𝑚𝑚𝛿𝛿𝑌𝑌  (5) 
 
𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒀𝒀 = Minimum mass in year; 
𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒀𝒀= Maximum mass in year; 
Mass must be limited by upper limit manly due a 

difficulty in keeping a huge, uniform pile; the lower limit is 
related to operational cost [11].There is an opportunity cost 
analyzed by the 𝐶𝐶𝐶𝐶𝑌𝑌𝑌𝑌 binary variable. This variable permits 
the algorithm to determine if recovery of the pile is important 
to reach the quality and minimize the costs [20]. The 
algorithm can decide not to recover the pile due to blend 
options for obtaining the objectives. 

 

� � 𝑉𝑉𝑉𝑉𝑌𝑌𝑌𝑌𝑥𝑥 𝜌𝜌𝑝𝑝𝑥𝑥 𝐶𝐶𝐶𝐶𝑌𝑌𝑌𝑌  ≤  � 𝑀𝑀𝑚𝑚𝑌𝑌𝑥𝑥𝑌𝑌

𝑌𝑌

𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1

𝑌𝑌

𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃=1

𝑌𝑌

𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1

 𝐷𝐷𝐶𝐶𝑉𝑉 𝑦𝑦

= 1, 2, 3, …𝑌𝑌𝑌𝑌𝑌𝑌𝑉𝑉; 𝑝𝑝 = 1, 2, 3, …𝑁𝑁𝑚𝑚𝛿𝛿𝑌𝑌             (6) 
 

∑ ∑ ∑ 𝑉𝑉𝑉𝑉𝑝𝑝𝑦𝑦 𝑥𝑥 𝜌𝜌𝑝𝑝 𝑥𝑥 𝜔𝜔 𝜔𝜔
𝑌𝑌𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸=1

𝑌𝑌
𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃=1

𝑌𝑌
𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1

∑ ∑ 𝐴𝐴𝑂𝑂𝑀𝑀𝑌𝑌𝑃𝑃𝑃𝑃𝑌𝑌
𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃=1

𝑌𝑌
𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1

 

=  � � 𝜏𝜏𝑌𝑌𝜔𝜔                                              (7)
𝜔𝜔

𝑌𝑌𝑃𝑃𝑃𝑃=1

𝑌𝑌

𝑌𝑌𝑃𝑃𝑌𝑌𝑌𝑌=1

 

 
7.  Method 

 
To implement the theory described in items 3, 4, 5 and 6 

was used the concepts of "Goal programing" applied the 
Python language. Was developed an algorithm based on 
linear optimization able to access Optimization Gurobi tools 
to solve the problem. The algorithm is able to access a 
database that represents a block model to determine the best 
mixture of ores in order to reach the demand of the plant. First 
the algorithm was tested on experimental database. After 
math and technical validation of the results was implemented 
in a real project. The operation has 10 waste supplies that 
should be adjusted to feed the plant. Operational constraints 
and characteristics of the processing plant was supplied to set 
the algorithm constrains. The results of this test are presented 
in the following items. 

 
8.  Tests and results 

 
The proposed formulation must be tested on a real system 

to verify the target attempt ability of the algorithm. The 
database used corresponds to an iron ore deposit formed on 
Pre-Cambrian inside the "Quadrilátero Ferrífero". This 
formation is a typical amount of the greenstone belt, formed 
by Meta volcanic rocks and Meta sediment [3]. 

Cost was composed by base cost and an increment cost, 
due to a distance between the sources feeds. Figure 2 shows 
the proprieties of source with will compound the desired 
solution and targets shown in Table 1. 

 
Table 1. 
Feed material proprieties.  

  Base Cost Fe Grade Si Grade Mass (Kt) 
Source 1 1.9 33.53 46.46 88.51 
Source 2 1.4 20.88 59.13 53.30 
Source 3 1.8 29.56 50.35 61.64 
Source 4 1.2 23.95 56,00 66.6 
Source 5 1.7 17.3 62.70 62.34 
Source 6 1.3 21.10 58.90 74.13 
Source 7 1.5 21.45 58.55 67.77 
Source 8 1.4 15.13 64.90 64.88 
Source 9 1.7 28.60 51.40 63.50 

Source 10 1.2 14.75 65.30 62.34 
Source: Author 

 
 

Table 2. 
Objective targets.  

Fe(%) 22.65 
SiO2(%) 57.35 
Mass(Kt) 66.20 

Source: Author 
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Figure 2. Stockpile Movement and Fe Grade. 
Source: Author 

 
 
The movement of mass attempting to fulfill the restrictions is 

a problem of hard convergence as expected, due to a double 
objective function and the input restrictions. The solution strategy 
does not forbid a result for the objectives, due to the formulation 
construction applying a penalty in order to converge to desired 
solution, if it cannot converge exactly [6].   

Table 1 shows the quality of all ore sources, there are 6 
sources with quality below the plant feed requirements. 
According to plant restrictions these 6 sources cannot feed 
the process. It is possible to observe the results of stockpile 
optimization on Figure 2 and Figure 3. All the ore with 
quality below the limits was adjusted, because the overall 
quality in all years is greater than 22.5% Fe and smaller than 
57.35% of Si. The resource was increased due to the ability 
to choose the restriction to be violated [9]. The ore movement 
restriction is out of parameter, less than 66.20 Kt on the first 
year one and greater than 66.20 Kt on year 12. 

Initial reserves able to feed the plant was 280.25 Kt, and 
after goal programing optimization it increased to 665.01 Kt. 
This represents an increase of 237 percent of material that 
initially was conducted to waste dump. After the optimization 
the mine cut-off was decreased turning a huge amount of 
material profitable. 

 
9.  Conclusion 

 
Blending is an important issue in mine planning because 

the quality is important to produce adequate products. 
Correct targets related to quality and mass can make a project 
to become feasible. Adequate use of information about the 
stock is important to keep the plant working as planned and 
increase the feasible reserve. The proposed formulation aims 
to use the feed piles to create stockpiles to be used on plant 
considering the targets and restrictions. The results point to 
violate the mass restriction because respecting the grade 
constraint ensures the possibility of processing this material. 
Material below quality requirements is taken as waste, which 
is a huge impact. Violating stockpile grade means the 
material cannot be processed, and violating the production 
mass constrain reflects on an opportunity cost problem 
related to profit. Therefore, the production mass target 
problem doesn’t affect the reserve, and it is better to keep the 
grade restrictions rather than the production mass ones. 

 
Figure 3. Stockpile Movement and SiO2 Grade.  
Source: Author 

 
 
The small amount of ore on the first year is related to cost, 

the formulation set an objective to minimize the operational 
costs. On initial years the best alternative is to use the low 
cost and lower quality stock piles, but respecting the ore 
quality. Results show ability to create a feasible blending 
scenario when the targets cannot be reached exactly. 
Relaxing the problem allows the system to obtain a feasible 
solution to the problem. According Rendu [14] the lack or 
surplus of ore mass can generate an opportunity cost. A lack 
of ore causes equipment otiosity, a surplus of material can 
force the system to process the low grade ore fist. Process 
low grade ore first causes a an income decrease for the 
company. The linear programing largely used cannot find a 
scenario from the objective constraints. The present scenario 
reached the targets for a majority of the periods, 
demonstrating a feasible result with low cost. The algorithm 
was able to determine a viable solution in a difficult solution. 
In the future you can apply heuristic mechanisms, in order to 
incorporate more operational restrictions. 
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