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Abstract 
Perovskite-like materials, which include magnetic elements, have relevance because their technological perspectives of applications in the spintronics 
industry. In this work, the magnetic, structural, electronic and thermodynamic properties of the Ba2TiMnO6 of the perovskite-like manganite are 
investigated. Calculations are carried out through the Full-Potential Linear Augmented Plane Wave method (FP-LAPW) within the framework of 
the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient (GGA) and Local Density (LDA) 
approximations, including spin polarization. From the minimization of energy as a function of volume using the Murnaghan’s state equation the 
equilibrium lattice parameter and cohesive properties of this compound were obtained. The study of the electronic structure was based in the analysis 
of the electronic density of states (DOS), and the band structure, showing that this compound evidences an effective magnetic moment of 3.0 µB. The 
pressure and temperature dependence of specific heat, entropy, thermal expansion coefficient, Debye temperature and Grüneisen parameter were 
calculated by DFT from the state equation using the quasi-harmonic model of Debye. A specific heat behavior CV≈CP was found at temperatures 
below T = 400 K, with Dulong-Petit limit values, which are quite higher than those, reported for simple perovskites. 
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Análisis ab-initio de las propiedades magnéticas, estructurales, 
electrónicas y termodinámicas de la manganita Ba2TiMnO6 

 
Resumen 
Los materiales de tipo perovskita que incluyen elementos magnéticos son relevantes debido a sus perspectivas de aplicabilidad tecnológica en la 
industria de la espintrónica. En este trabajo fueron investigadas las propiedades magnéticas, estructurales, electrónicas y termodinámicas de la 
manganita de tipo perovskita Ba2TiMnO6. Los cálculos fueron realizados a través del método del potencial de ondas planas aumentadas y linealizadas 
(FP-LAPW), en el marco de la Teoría del Funcional Densidad (DFT), con efectos de intercambio y correlación en las aproximaciones de gradiente 
generalizado (GGA) y de densidad local (LDA), incluyendo polarización de espín. A partir de la minimización de la energía en función del volumen, 
usando la ecuación de estado de Murnaghan se obtuvieron los parámetros de equilibrio de la red las propiedades de cohesión de este compuesto. El 
estudio de la estructura electrónica se basó en el análisis de la densidad de estados (DOS) y la estructura de bandas, mostrando que este compuesto 
evidencia un momento magnético efectivo de 3.0 µB. la dependencia con la temperatura y la presión del calor específico, la entropía, el coeficiente 
de expansión térmica, la temperatura de Debye y el parámetro de Grüneisen fueron calculados mediante DFT a partir de la ecuación de estado, usando 
el modelo cuasi-armónico de Debye. Se encontró que el calor específico CV≈CP para temperaturas por debajo de T = 400 K, con un límite de Dulong-
Petit relativamente mayor que el reportado para perovskitas simples. 
 
Palabras clave: material tipo perovskita; estructura electrónica; propiedades termodinámicas; DFT. 

 
 
 

1.  Introduction 
 
Physical properties of perovskite-like ceramics are 
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particularly sensible to inhomogeneities like distortions from 
the ideal cubic structure of the ABO3 formula, vacancies and 
chemical substitutions [1]. One of these anomalies, which 
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raises the complex perovskite with A2BB’O6 formula, results 
from the ordering of B and B’ cations on the octahedral site 
of the primitive perovskite unit cell [2]. The importance of 
complex perovskites is in the possibility of creating new 
magnetic materials A2BB’O6, with A being alkaline earth or 
rare earth cations and B, B’ transition metal or rare earth ions.  
Recently, study of these materials has increased due to the 
possibility to apply them in the design and technology of 
magnetic memories, tunnel junctions and other magnetic 
devices in the novel spintronics area [3]. In previous work, 
we have analyzed the magnetic properties of the Sr2TiMnO6 
and Ca2TiMnO6 compounds, finding that these perovskite 
type ceramics show antiferromagnetic characteristics at 
temperatures below 44.8 K and 15.5 K, respectively [4-5]. 
Recently the density functional theory (DFT) has constituted 
in a strong tool to study electronic properties in perovskite-
like material [6-7] and, with the aim of theoretically 
determine the physical effects in the chemical composition of 
the material as a result of the inclusion of magnetic elements, 
in this work we developed an ab initio exhaustive study of a 
double perovskite with A=Ba, B=Ti and B’=Mn. In particular, 
we focus on the cohesive properties, electronics of the 
Bi2TiMnO6 double perovskite, and calculate their single 
crystal elastic constants to analyze their mechanical stability, 
and predict polycrystalline mechanical properties. On the 
other hand, calculations of thermodynamic properties have 
been performed in order to study their dependence on 
temperature, correlating these results with the structural and 
electronic properties of the material. 

 
2.  Theoretical details 

 
2.1.  Ab-initio calculations 

 
The spin polarized Full-Potential Linear Augmented 

Plane Wave method (SP-FP-LAPW) within the framework 
of the Kohn-Sham Density Functional Theory (DFT) [8] was 
applied by adopting the Generalized Gradient (GGA) 
approximation for the exchange-correlation energy by 
Perdew, Burke and Ernzerhof (PBE) [9], and also the Local 
Density (LDA) approximation with the exchange-correlation 
potentials of Perdew and Wang [10]. The numeric package 
Wien2k [11] was used to calculate self-consistently the total 
energy for the constituent elements and alloys. Taking the 
experimental unit cell data as input, all the structures studied 
in this work were fully relaxed with respect to their lattice 
parameters and the internal degrees of freedom compatible 
with the space group symmetry of the crystal structure. The 
resulting energies versus volume functions have been fitted 
to the Murnaghan´s equation of state [12] in order to obtain 
the minimum energy value, the bulk modulus, its pressure 
derivative, and the equilibrium lattice parameters and 
associated volume. The muffin-tin radius of the elements 
were 2.5, 1.93, 1.85 and 1.6 (in au) Ba, Ti, Mn and 
O respectfully, angular momentum up to l =10 inside the 
muffin-tin sphere, a maximum vector in the reciprocal space 
of Gmax =12.0 and RMTKmax= 7.0. A mesh of 1500 k-points in 
the first Brillouin zone was considered, equivalent to a 
maximum of 56 k points in the irreducible Brillouin zone 
depending on the considered structure. Finally, the 

convergence criterion for the self-consistent calculation was 
0.0001 Ry for the total energies, 0.0005 a.u. in the charge and 
1.0 mRy/a.u. in the internal forces. The elastic constants here 
reported for the Ba2TiMnO6, cubic phase were calculated 
using the Wien2k Cubic-elastic package [13] by considering 
the second-order derivative (E(δ)) of a polynomial fit 
(E=E(δ)) of energy vs. strains (δ) at zero strain (δ =0). 

 
2.2.  Theoretical model 

 
The vibrational density of states g(w) of a crystal can be 

used to determine some of its thermodynamic properties, 
because this function provides the number of normal modes 
of vibration in an infinitesimal range of frequencies between 
w and w+dw. This concept is applied in the Debye model, 
considering that the crystal can be modeled as a continuous 
medium so with normal vibrations like elastic stationary 
waves. Thus, through the density of states, the wave number 
can be calculated in that infinitesimal frequency range. In the 
Debye model, a harmonic consideration of the potential 
energy is made to evaluate the force constants, whereby the 
temperature of Debye (ΘD) is constant and must be obtained 
from the elastic constants. Meanwhile, this harmonic model 
lacks the thermal expansion, which is one of the most 
important experimental properties that can be measured in 
the crystals. Since the temperature only influences the 
function of Helmholtz through the vibrational term, and this 
in turn depends on the elastic constants, in principle there 
would be no relation between the temperature and the 
geometry of the system. For this reason, it is necessary to 
introduce into the model the interdependence between 
temperature and volume. This circumstance suggests the 
application of the quasi-harmonic approximation, in which 
harmonic vibrations are assumed in positions that are no 
equilibrium. In this way, the vibration frequencies become 
dependent on the volume and can be evaluated from the 
second derivatives of the potential energy surface at those 
off-balance positions. We must note that under static 
conditions, the second derivative produces vibration 
frequencies that occur around a minimum. On the other hand, 
in the presence of generalized forces such as pressure, the 
equilibrium geometry is displaced in such a way that the 
external forces tend to override the gradient of the static 
potential energy surface. Thus, the quasi-harmonic model of 
Debye has harmonic behavior, but anharmonic effects are 
introduced through the dependence of the frequencies in the 
configuration. It is then possible to predict the thermal 
expansion of the crystal by the dependence of volume and 
temperature on equilibrium. 

From the above, it can be established that a non-static 
equilibrium configuration can be achieved through external 
links. Because the stringent treatment of these bonds is quite 
complex, the way to simplify it is by resorting to 
thermodynamic equilibrium conditions. Then, assuming that 
the system is at a given temperature and pressure, the system 
can be thermodynamically described by the non-equilibrium 
Gibbs function, which, in its general form, can be written as 

 
𝐺𝐺∗(𝑇𝑇,𝑃𝑃, �⃗�𝑎) = 𝐸𝐸𝑒𝑒(�⃗�𝑎) + 𝑃𝑃𝑃𝑃(�⃗�𝑎) + 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣[𝑇𝑇,𝑤𝑤𝑗𝑗(�⃗�𝑎)],  (1) 
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which is a function of temperature T, pressure P and the 
lattice parameters �⃗�𝑎. In equation (1), Ee is the total energy of 
the crystal and Avib represents the vibrational Helmholtz free 
energy. The equilibrium situation of the system corresponds 
to the lowest Gibbs energy at a given set of temperature and 
pressure. The dependence of the Ee on the lattice parameters 
�⃗�𝑎 is explicit, while Avib depends implicitly on �⃗�𝑎 through the 
vibration frequencies of the solid. The equilibrium 
configuration of the system will be the minimum of this 
Gibbs function that depends on T and P. Since the volume is 
also dependent on �⃗�𝑎, this gives the desired interdependence 
between temperature and volume. Once the system 
equilibrates the external bonds are eliminated, because their 
strength cancels terms associated with the first derivatives of 
Ee at each point of the potential energy, as this is an 
equilibrium point. Under certain conditions of T and P, the 
equilibrium configuration of the system corresponds to the 
lowest Gibbs energy. Within this scheme, it is possible to 
consider the geometries of quasi-harmonic crystalline 
equilibrium and all the thermodynamic properties of the 
crystal as functions of temperature and pressure. The 
difference between this model and the Debye model is that 
Avib depends on the geometry through ΘD, which in turn can 
be calculated from the elastic constants of the crystal, and 
these are the second derivatives of energy with respect to 
displacements of the lattice parameters. 

A good simplification of the problem to obtain the ΘD can 
be made by the isotropic solid approximation, but it is 
necessary to further reduce the number of properties required 
for the ΘD of the system in any configuration. One-way to do 
this is by assuming that the solid acts as a fluid, which does 
not exhibit resistance to shear deformations (c44=0). For this 
reason, transverse elastic waves are no taken into account. 
For the purposes of the approximation, the average speed for 
the longitudinal velocity of the solid calculated as done in a 
fluid is considered. Thus, the expression 𝑐𝑐̅ = 𝑐𝑐𝑙𝑙 = �𝑐𝑐11 𝜌𝜌�   is 
obtained, which is associated with the static compression 
module of the crystal through 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 𝑃𝑃 �𝜕𝜕

2𝐸𝐸𝑒𝑒
𝜕𝜕𝑉𝑉2

� = �𝜆𝜆 + 2𝜇𝜇
3� �, 

which takes the λ value as in a fluid, with µ the chemical 
potential. This gives the average speed 𝑐𝑐̅ ≈ �𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 𝜌𝜌�  , which 
in turn gives rise to the Debye temperature 

 

Θ𝐷𝐷 = ℎ𝑠𝑠̅
𝑘𝑘𝐵𝐵
� 3𝑛𝑛𝑟𝑟
4𝜋𝜋𝑉𝑉𝑟𝑟

�
1
3 ≈ ℎ

𝑘𝑘𝐵𝐵
� 3𝑛𝑛𝑟𝑟
4𝜋𝜋𝑉𝑉𝑟𝑟

�
1
3 �𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 𝜌𝜌�  ,   (2) 

 
where ρ=Mr/Vr , with Mr the molecular mass and ℏ = ℎ

2𝜋𝜋
. 

Then, the Debye temperature in an isotropic fluid model can 
be written as [14] 

 

Θ𝐷𝐷 = ℏ
𝑘𝑘𝐵𝐵
�6𝜋𝜋2𝑛𝑛𝑟𝑟𝑃𝑃𝑟𝑟

1
2� �

1
3
�𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 𝑀𝑀𝑟𝑟

�  .   (3) 
 
A second approach to reduce the elastic constants consists 

in the consideration of the Poisson ratio value, which is 
defined as the ratio between the transverse deformation and 
the longitudinal deformation for an isotropic crystal under 

axial tension. This coefficient that can be written as 𝜈𝜈 =
𝜆𝜆

2(𝜆𝜆 + 𝜇𝜇)�  usually has a value between 0.2 and 0.5, and 
depends of the particular material [15]. Thus, it is possible to 
determine a parameter that can be chosen between λ, γ, and 
Bstatic. When choosing the parameter Bstatic, the equations for 
the velocity of transverse and longitudinal sound are as 
follows 

 

𝑐𝑐𝑠𝑠 = �3𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2𝜌𝜌

(1−2𝜈𝜈)
(1+𝜈𝜈)  ,   (4) 

𝑐𝑐𝑙𝑙 = �3𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝜌𝜌

(1−𝜈𝜈)
(1+𝜈𝜈) ,    (5) 

 
such that the average velocity can be expressed in the 

form 
 

𝑐𝑐̅ = �𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝜌𝜌

𝑓𝑓(𝜈𝜈) ,    (6) 

 
where 
 

𝑓𝑓(𝜈𝜈) = �3 �2 � 2(1+𝜈𝜈)
3(1−2𝜈𝜈)�

3
2� + � 1+𝜈𝜈

3(1−𝜈𝜈)�
3
2� �
−1

�

1
3�

   (7) 

 
then equation (3) changes and the temperature of Debye 

becomes 
 

Θ𝐷𝐷 = ℏ
𝑘𝑘𝐵𝐵
𝑓𝑓(𝜈𝜈) �6𝜋𝜋2𝑛𝑛𝑟𝑟𝑃𝑃𝑟𝑟

1
2� �

1
3
�𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 𝑀𝑀𝑟𝑟

�    (8) 
 
This expression is analogous to the fluid model, except 

for the function f(ν), where the bulk modulus and the Poisson 
coefficient are still present. Considering the ions in 
centrosymmetrical positions, the potential energy surface 
could be described as a sum of the potential for central 
interaction. Thus, it is possible to apply the Cauchy relation, 
for which ν=1/4 [16]. Then the function f(ν)=0.85995, and 
the Debye temperature for the considered isotropic Cauchy 
solid is 

 

Θ𝐷𝐷 = 0.85995 ℏ
𝑘𝑘𝐵𝐵
�6𝜋𝜋2𝑛𝑛𝑟𝑟𝑃𝑃𝑟𝑟

1
2� �

1
3
�𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 𝑀𝑀𝑟𝑟

�  .  (9) 
 
With this approach, the Gibbs function of equation (1) can 

now be written as 
 

𝐺𝐺∗(𝑇𝑇,𝑃𝑃, �⃗�𝑎) = 𝐸𝐸𝑒𝑒(�⃗�𝑎) + 𝑃𝑃𝑃𝑃(�⃗�𝑎) + 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣[𝑇𝑇,Θ𝐷𝐷�𝑃𝑃(�⃗�𝑎)�]  (10) 
 
This expression has the advantage that the dependencies 

of the internal parameters �⃗�𝑎 are contained in Ee and V, so that 
in obtaining the internal parameters �⃗�𝑎 that minimize Ee in a 
certain V, the Gibbs function will also be minimal in that 
volume. Therefore, assuming that the minimum energies with 
respect to internal parameters at different volumes are 
known, i.e., Ee(V) is known, the Gibbs non-equilibrium 
function is then 
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𝐺𝐺∗(𝑇𝑇,𝑃𝑃,𝑃𝑃) = 𝐸𝐸𝑒𝑒(𝑃𝑃) + 𝑃𝑃𝑃𝑃 + 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣[𝑇𝑇,Θ𝐷𝐷(𝑃𝑃)] . (11) 
 
As can be seen, internal parameters are a function of 

volume, but this is a function of temperature and pressure, 
a[V(T,P)]. That is, the internal parameters change with the 
temperature in an isotropic form, such that an increase in T 
equals a decrease in P. This isotropic approximation is quite 
reasonable, although it has not been considered that the 
vibrational frequencies depend on all coordinates. With the 
above approximations, equation (11) allows to obtain the 
Gibbs function of the crystal as a function of T, P and V. this 
function must be minimum with respect to any geometric 
parameter, and in particular with respect to the volume. Thus, 
by minimizing this function for values other than T and P, the 
system state equation is obtained and, from this, any 
thermodynamic property can be determined. 

The bulk module is related to the electronic energy by 
means of the expression 

 
𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠(𝑃𝑃𝑟𝑟) = 𝑃𝑃𝑟𝑟 �

𝜕𝜕2𝐸𝐸𝑒𝑒(𝑉𝑉𝑟𝑟)
𝜕𝜕𝑉𝑉𝑟𝑟2

�   (12) 
 
which allows to rewrite the temperature of Debye as well 
 

Θ𝐷𝐷 = 0.85995 ℏ
𝑘𝑘𝐵𝐵
�6𝜋𝜋2𝑛𝑛𝑟𝑟𝑃𝑃𝑟𝑟

1
2� �

1
3 ��

𝜕𝜕2𝐸𝐸𝑒𝑒(𝑉𝑉𝑟𝑟)
𝜕𝜕𝑉𝑉𝑟𝑟2

�
𝑀𝑀𝑟𝑟
�      (13) 

 
Then, ΘD(Vr) can be obtained through the second 

derivative of the curve Ee(Vr). In order to determine the 
vibration function of Helmholtz at different temperatures and 
volumes, it can be inferred that [17] 

 
�̅�𝐴𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇,𝑃𝑃𝑟𝑟) = 𝑈𝑈�𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑇𝑇𝑆𝑆�̅�𝑣𝑣𝑣𝑣𝑣 

=     
9
8𝑛𝑛𝑟𝑟𝑘𝑘𝐵𝐵Θ𝐷𝐷

(𝑃𝑃𝑟𝑟) + 3𝑛𝑛𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑛𝑛�1 − 𝑒𝑒−Θ𝐷𝐷(𝑉𝑉𝑟𝑟) 𝑇𝑇⁄ � − 
𝑛𝑛𝑟𝑟𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇[Θ𝐷𝐷(𝑃𝑃𝑟𝑟) 𝑇𝑇⁄ ],   (14) 

 
where 
 

𝑈𝑈�𝑣𝑣𝑣𝑣𝑣𝑣 = 9
8
𝑛𝑛𝑟𝑟𝑅𝑅Θ𝐷𝐷(𝑃𝑃𝑟𝑟) + 3𝑛𝑛𝑟𝑟𝑅𝑅𝑇𝑇𝑇𝑇[Θ𝐷𝐷(𝑃𝑃𝑟𝑟) 𝑇𝑇⁄ ] ,    (15) 

 
𝑆𝑆�̅�𝑣𝑣𝑣𝑣𝑣 = 4𝑛𝑛𝑟𝑟𝑅𝑅𝑇𝑇𝑇𝑇[Θ𝐷𝐷(𝑃𝑃𝑟𝑟) 𝑇𝑇⁄ ]− 3𝑛𝑛𝑟𝑟𝑅𝑅𝑇𝑇𝑛𝑛�1 − 𝑒𝑒−Θ𝐷𝐷(𝑉𝑉𝑟𝑟) 𝑇𝑇⁄ �,  (16) 

 
where it is known that  
 

𝑇𝑇(𝑥𝑥) = 3
𝑥𝑥3 ∫

𝑥𝑥3𝑑𝑑𝑥𝑥
𝑒𝑒𝑥𝑥−1

  ,   (17) 
 
with 
 

𝑥𝑥 = ℎ𝜈𝜈𝐷𝐷
𝑘𝑘𝐵𝐵𝑇𝑇

= ℎ𝑤𝑤𝐷𝐷
𝑘𝑘𝐵𝐵𝑇𝑇

= Θ𝐷𝐷
𝑇𝑇

  ,  (18) 
 
for which it is necessary to evaluate the function of Debye 

D(x) at arbitrary points. In equation (14) Uvib represents 
vibrational energy and Svib is the entropy. 

To determine the equilibrium situation of the system it is 
necessary to minimize the expression  

 

�̅�𝐺∗(𝑇𝑇,𝑃𝑃,𝑃𝑃𝑟𝑟) = 𝐸𝐸𝑒𝑒(𝑃𝑃𝑟𝑟) + 𝑃𝑃𝑃𝑃𝑟𝑟 + �̅�𝐴𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇,𝑃𝑃𝑟𝑟) , (19) 
 
with respect to Vr; i.e., 
 

�𝜕𝜕�̅�𝐺
∗

𝜕𝜕𝑉𝑉𝑟𝑟
�
𝑇𝑇,𝑃𝑃

= 0 .  (20) 

 
The asterisk symbolizes that the function has been 

evaluated in non-equilibrium states, so that the function has 
three variables, not two as in equilibrium thermodynamics. 

Through the above-described model it is clear that the 
thermodynamic properties can be obtained from the state 
equation. First, the Gibbs equilibrium function is obtained by 
minimizing equation (19) for given values of P and T, 

 
�̅�𝐺(𝑇𝑇,𝑃𝑃, ) = �̅�𝐺∗�𝑇𝑇,𝑃𝑃;𝑃𝑃𝑟𝑟(𝑇𝑇,𝑃𝑃)� .   (21) 

 
Also, an evaluation of the second derivative of the Gibbs 

function allows checking that it is positive for all points and 
the stationary point is minimum. Thus, from the second 
derivative it is possible to obtain the isothermal volume 
modulus of the system. It is important to remember that  

 
�𝜕𝜕�̅�𝐺

∗

𝜕𝜕𝑉𝑉𝑟𝑟
�
𝑇𝑇,𝑃𝑃

= 𝑓𝑓(𝑇𝑇,𝑃𝑃,𝑃𝑃𝑟𝑟) = 0 .  (22) 
 
so that, at equilibrium, one of the three variables can be 

defined as a function of the other two. By implicitly deriving 
the functions, 

 

�𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉𝑟𝑟
�
𝑇𝑇

= −
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉𝑟𝑟

�
𝑇𝑇,𝑃𝑃

�𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃
�
𝑇𝑇,𝑉𝑉𝑟𝑟

 .   (23) 

 
Replacing the function f by equation (22) 
 

�𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉𝑟𝑟
�
𝑇𝑇

= −
� 𝜕𝜕𝜕𝜕𝜕𝜕𝑉𝑉𝑟𝑟

�
𝑇𝑇,𝑃𝑃

�𝜕𝜕𝜕𝜕𝜕𝜕𝑃𝑃�𝑇𝑇,𝑉𝑉𝑟𝑟

= −
�𝜕𝜕
2𝐺𝐺�∗

𝜕𝜕𝑉𝑉𝑟𝑟2
�
𝑇𝑇,𝑃𝑃

� 𝜕𝜕2𝐺𝐺�∗
𝜕𝜕𝑃𝑃𝜕𝜕𝑉𝑉𝑟𝑟

�
𝑇𝑇,[𝑉𝑉𝑟𝑟,𝑃𝑃]

 . (24) 

 
According to equation (19), �𝜕𝜕�̅�𝐺

∗

𝜕𝜕𝑃𝑃
�
𝑇𝑇,𝑉𝑉𝑟𝑟

= 𝑃𝑃𝑟𝑟, and the second 
derivative of the denominator is equal to unity, such that 

 
𝐵𝐵𝑇𝑇 = −𝑃𝑃𝑟𝑟 �

𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉𝑟𝑟
�
𝑇𝑇

= −𝑃𝑃𝑟𝑟 �
𝜕𝜕2�̅�𝐺∗

𝜕𝜕𝑉𝑉𝑟𝑟2
�
𝑇𝑇,𝑃𝑃

.  (25) 
 
Deriving equation (25) with respect to the pressure, we 

obtain 
𝐵𝐵′𝑇𝑇 = �𝜕𝜕𝐵𝐵𝑇𝑇

𝜕𝜕𝑃𝑃
�
𝑇𝑇

= �𝜕𝜕𝐵𝐵𝑇𝑇
𝜕𝜕𝑉𝑉𝑟𝑟

�
𝑇𝑇
�𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝑃𝑃
�
𝑇𝑇
.  (25) 

 
The heat capacity at constant volume can be obtained as 
 

𝐶𝐶�̅�𝑣 = 3𝑛𝑛𝑟𝑟𝑅𝑅 �4𝑇𝑇[Θ𝐷𝐷 𝑇𝑇⁄ ]− 3Θ𝐷𝐷 𝑇𝑇⁄
𝑒𝑒Θ𝐷𝐷 𝑇𝑇⁄ −1

� . (26) 
 
The Grüneisen parameter, which depends explicitly on 

the volume and implicitly on T and P, is defined as 
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𝛾𝛾 = −𝑑𝑑𝑑𝑑𝑛𝑛[Θ𝐷𝐷(𝑉𝑉𝑟𝑟)]
𝑑𝑑𝑑𝑑𝑛𝑛(𝑉𝑉𝑟𝑟)  .   (27) 

 
On the other hand, it is more accurate to evaluate the 

parameter of Grüneisen from the equation of state of Mie-
Grüneisen, because that is a more general equation than the 
Debye model, since it ensures that all vibrational frequencies 
change in the same way in the volume of the crystal. 

 
𝑃𝑃 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = 𝛾𝛾 𝑈𝑈�𝑣𝑣𝑠𝑠𝑣𝑣

𝑉𝑉𝑟𝑟
,   (28) 

 
where  
 

𝑃𝑃 = −�𝜕𝜕�̅�𝐴
𝜕𝜕𝑉𝑉𝑟𝑟
�
𝑇𝑇
,   (29) 

 
and𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠 = −𝑑𝑑𝐸𝐸𝑒𝑒(𝑉𝑉𝑟𝑟)

𝑑𝑑𝑉𝑉𝑟𝑟
   is the pressure that the crystal volume 

Vr would have on the static model, and therefore represents 
the thermal vibrational contribution to the pressure. 

The coefficient of thermal expansion at constant pressure 
can be found through the expression 

 
𝛼𝛼 = 1

𝑉𝑉𝑟𝑟
�𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝑇𝑇
�
𝑃𝑃

= 1
𝐵𝐵𝑇𝑇
�𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇
�
𝑉𝑉𝑟𝑟

 .  (30) 
 
α can be derived from State Equation-Vr(T,P), but it is 

preferable to get α from γ because the quasi-harmonic Debye 
model necessarily satisfies the Mie-Grüneisen equation. 
Thus, from equations (29) and (30), we obtain 

 
�𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇
�
𝑉𝑉𝑟𝑟

= 𝛾𝛾 𝐶𝐶�̅�𝑣
𝑉𝑉𝑟𝑟

 ,   (31) 
 
thus 
 

𝛼𝛼 = 𝛾𝛾 𝐶𝐶�̅�𝑣
𝐵𝐵𝑇𝑇𝑉𝑉𝑟𝑟

 .   (32) 
 
The isobaric heat capacity is given by 
 

𝐶𝐶�̅�𝑝 = 𝐶𝐶�̅�𝑣 + 𝑇𝑇𝑃𝑃𝑟𝑟𝛼𝛼2𝐵𝐵𝑇𝑇 = 𝐶𝐶�̅�𝑣(1 + 𝛼𝛼𝛾𝛾𝑇𝑇), (33) 
 
and, from the adiabatic bulk modulus 
 

𝐵𝐵𝑆𝑆 = 𝐵𝐵𝑇𝑇
𝐶𝐶�̅�𝑝
𝐶𝐶�̅�𝑣

= 𝐵𝐵𝑇𝑇(1 + 𝛼𝛼𝛾𝛾𝑇𝑇),  (34) 
 
because 𝐵𝐵𝑆𝑆 = −𝑃𝑃𝑟𝑟 �

𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉𝑟𝑟
�
𝑆𝑆
 . 

 
3.  Results and discussion 

 
3.1.  Crystal structure 

 
In order to establish the ideal structure of the material we 

have used the Structure Prediction Diagnostic Software 
SPuDs [18], which is a special program designed for 
perovskite-like materials. From the SPuDs prediction for the 
Fm-3m (#125) space group, we have obtained the lattice 
parameter a=7.8121 Å for the respective Wyckoff positions 
shown in Table 1. 

Once we know the atomic positions and lattice parameter 
expected for the Fm-3m (#125) space group, we have used 
the PowderCell (PCW) code [19] to simulate the respective 
diffraction pattern of the material, as presented in Fig. 1. 

As predicted for Glazer [20], in this ideal cubic perovskite 
the formation of a superstructure with Co-Mo-Co cations 
ordered along the crystallographic axis is expected. This 
effect can be described as shown in Fig. 2. 

Fig. 3 shows the energy as a function of volume. Each one 
of the circle points constitutes an individual calculation and 
the line corresponds to a fitting with the Murnaghan state 
equation, which was carried out by using the concept of the 
least-square fitting method [12]. 
From minimization of energy as a function of volume shown 
in the picture we calculate the lattice parameter from the 
GGA approximation a=15.3370 Bohr (8.1160 Å), which is 
3.9% above the value predicted by the SPuDs, and from the 
LDA approximation a=14.667 Bohr (7.7614 Å), which is 
0.6% below the value predicted by the SPuDs.  The bond 
lengths Ti(4a)-O is 1.9650 Å, Mn(4b)-O is 1.9030 Å and 
Ba(8c)-O is 2.7353 Å, which reveals that O is closer to the 
Mn cation.  

In these ceramic materials the explanation of distortion 
from the ideal cubic perovskite structure is clear because the 
double perovskite have the generic formula A2BB’O6, and for 
this type of material the tolerance factor τ, is calculated by 
the ratio 𝜏𝜏 = 𝑟𝑟𝐴𝐴+𝑟𝑟0

√2�
𝑟𝑟𝐵𝐵+𝑟𝑟𝐵𝐵′

2 +𝑟𝑟0�
, where rA, rB, rB’ and ro are the 

ionic radii of the A, B, B’, and O ions, respectively. If τ is 
 
 
Table 1. 
Atomic positions for the Bi2TiMnO6 double perovskite in the Fm-3m (#225) 
space group as predicted by the SPuDs software [18].  

Atom Wyckoff x y z 
Ba 8c 0.2500 0.2500 0.2500 
Ti 4a 0.0000 0.0000 0.0000 

Mn 4b 0.5000 0.0000 0.0000 
O 24e 0.2540 0.0000 0.0000 

Source: The authors. 
 
 

 
Figure 1. XRD simulated pattern for the Ba2TiMnO6 double cubic perovskite 
obtained from the theoretical lattice parameters. 
Source: The authors. 
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Figure 2. Crystal structure of the Ba2TiMnO6 material for the Fm-3m (#125) 
space group. 
Source: The authors. 

 
 

 
Figure 3. Points represent the calculated data of energy as a function of 
volume for the primitive cell of Ba2TiMnO6.  Line corresponds to the fitting 
with the Murnaghan’s state equation by the least-square method. 
Source: The authors. 

 
 

equal to unity, there is ideal cubic perovskite structure, and if 
τ≠1 the structure is distorted from the cubic symmetry. The 
value of tolerance factor obtained for the Ba2TiMnO6 
complex perovskite was 1.0778, which surely is a 
consequence of the difference between the ionic radii of the 
Ti and Mn cations, which prevent a perfect packing of ions 
in a compact structure. In Table 2 a comparison between the 
atomic positions for the GGA and LDA approximations and 
the SPuDs prediction is showed. 

 
 

Table 2. 
Ba2TiMnO6 unit cell internal coordinates obtained from the ab-initio 
calculations. SPuDs data are included for comparison. 

Atom GGA (x,y,z) LDA (x,y,z) SPuDs (x,y,z) 
Ba 0.250, 0.250, 0.250 0.250, 0.250, 0.250 0.250, 0.250, 0.250 
Ti 0.000, 0.000, 0.000 0.000, 0.000, 0.000 0.000, 0.000, 0.000 

Mn 0.500, 0.000, 0.000  0.500, 0.000, 0.000  0.500, 0.000, 0.000  
O 0.253, 0.000, 0.000 0.253, 0.000, 0.000 0.253, 0.000, 0.000 

Source: The authors. 

3.2.  Elastic properties 
 
The elastic constants for this compound have not been 

previously reported in the literature; knowledge of these 
properties is important since they might be correlated with 
the equation of state (EOS) and thermo physical properties 
such as the specific heat, thermal expansion, Debye 
temperature, melting point, etc. Also, from the elastic 
constants, valuable information about the binding and 
mechanical stability of the solid can be obtained.  

By considering the generalized Hook´s law: σij=cijεj, we 
calculated the elastic constants for the Ba2TiMnO6 compound in 
the cubic structure. There are three independent elastic constants 
for the cubic structure, called C11, C12, C44. The requirement of 
mechanical stability of the crystalline systems for any 
homogeneous lattice deformation places restrictions for the 
elastic constants [21]. The necessary conditions for mechanical 
stability in the cubic crystal are: C11 > 0   and   C11-C12 > 0. 

From the elastic constants of single crystals we calculate 
the elastic moduli, which are of more interest for the 
development of technological materials [22]. The Reuss (R), 
Voigt (V), and Hill (H) polycrystalline average values of the 
Young modulus (E), the shear modulus (G), and the Poisson 
ratio (ν) for the cubic Ba2TiMnO6 calculated by means of the 
expressions given in Ref. [13] are given in Table 3. Also 
indicated in Table 3 is the Zener´s anisotropy factor A = 
2C44/(C11-C12). Since a departure from unity of this factor is 
a measure of anisotropy, the results in Table 3 indicate that 
the Ba2NiMoO6 compound is less anisotropic than pure Ti.  

 
 

Table 3. 
Calculated elastic constants (in GPa) for single-crystal and polycrystalline 
elastic modulii for Ba2TiMnO6. The corresponding experimental data for the 
elastic constants for pure Ti [23] is also included for comparison; the 
polycrystalline elastic moduli are calculated from these values.  

Source: The authors. 
 
 
Materials with high B and G are likely to be hard 

materials. The Young modulus on the other side determines 
the stiffness of the material. From the results shown in Table 
3, we note that the elastic moduli of the Ba2TiMnO6 
compound are close but lower than those of Ti pure. The 
present results predict that the stiffness and hardness of the 
compound are big than of Ti pure [23]. 

 Ti  
Exp. Ba2TiMnO6 

C11 160.0 281.6 
C12 90.0 104.9 
C13 66.0  
C33 181.0  
C44 46.5 121.6 
B 
A 
Gv 
GR 
G 

128.1 
1.5 

40.1 
25.8 
33.0 

163.8 
1.4 

108.3 
105.7 
107.0 

Yv 
YR 
Y 

106.7 
73.3 
90.0 

266.2 
281.8 
274.0 

υV 
υR 
υ 

0.42 
0.33 
0.37 

0.23 
0.33 
0.28 



Deluque-Toro et al / Revista DYNA, 85(205), pp. 27-36, June, 2018. 

33 

The brittle/ductile behavior can be predicted through the 
ratio of B/G as an index of the plastic characteristic of 
materials [24]. The critical threshold value for differentiating 
the physical properties of materials is about 1.75. If the B/G 
ratio is larger than this value, it is predicted that the 
polycrystal behaves like a ductile material; otherwise, it 
would act as a brittle material. The present value of B/G is 
1.53 for the Ba2TiMnO6 compound, indicating that this 
compound will behave as a brittle material. The Poisson’s 
ratio provides more information about the characteristics of 
the bonding forces than any of the other elastic constants. The 
calculated Poisson’s ratio for the studied Ba2TiMnO6 
compound is ~0.3, which falls within the expected range for 
materials of double perovskite type [25]. 

 
3.3.  Electronic structure 

 
Fig. 4 exemplifies the band structure and total Density of 

States (DOS) calculated for the Ba2TiMnO6 in the Fm-3m 
(#125) space group. The Fermi level is the reference for 
energy. The first observation is that the material exhibits 
semiconductor-like behavior with gap energy 1.0 eV. 

Fig. 5 shows the partial DOS calculated for the Ti, Mn, 
Ba and O individual cations. The non-symmetry observed for 
both up and down spin contributions close to the Fermi level 
suggests the occurrence of an effective magnetic moment, 
which was calculated to be 3.0 µB and attributed to the 
contribution of the Mn-d-t2g orbitals. In the energy range 
from -2.0 eV to 0 eV it is observed that the density of states 
due to Mn-d-t2g orbitals for spin up orientation is the 
dominant.   

About the conductivity is important to note that the 
material behaves as a semiconductor (Eg=1.0 eV) for the spin 
up channel and insulator (Eg=3.9 eV) for the other. Above the 
Fermi level, in the conduction band, spin up and down 
contributions of the Mn-d-eg 

 
 

 
Figure 4. Band structure and total DOS calculated for the Ba2TiMnO6 
complex perovskite. 
Source: The authors. 

 
Figure 5. Spin polarized partial DOS of the Mn, Ti, Ba and O separated 
cations. 
Source: The authors. 

 
 

and spin down Mn-d-t2g levels are observed.  On the other 
hand, it we notice that the comparison of spin up and down 
contributions for both Mn-d-eg and Mn-d-t2g evidence split 
characteristics. Spin up and down contributions of the Ti-d-
eg and Ti-d-t2g are no relevant close to the Fermi level. Those 
appear superposed between 2.8 eV and 3.2 eV in the 
conduction band. 

 
3.4.  Thermodynamic properties 

 
The effects of temperature and pressure on the 

thermodynamic properties of the Ba2TiMnO6 material from 
the state equation, under the considerations of the quasi-
harmonic approximation of the Debye model described in 
section 2.2, were analyzed as presented below. Fig. 6 shows 
the results of specific heat at constant volume, CV (a), and at 
constant pressures, CP (b), as functions of temperature. As 
can be seen in the figures, the temperature was varied 
between 0 K and 1500 K for eight applied pressure values, 
from 0 to 20 GPa. It is observed in Fig. 6 that below T=400 
K, for all applied pressure values, CV≈CP. This result occurs 
because α2BTVr is a very small number in equation (33).  

Fig. 6(a) shows more clearly than in 6(b) the trend of 
specific heat towards the Dulong-Petit limit, which is the 
specific heat value independent of temperature. From this 
limit value of Dulong-Petit, as the temperature increases, 
each of the atoms in the material absorbs the same amount of 
energy proportional to this temperature increase. In the case 
of CV, this value corresponds to 241.11 J/mol.K for all applied 
pressure values, while for CP this limit is between 226.13 
J/mol.K and 239.06 J/mol.K for pressures between 10 and 20 
GPa. These values of the Dulong-Petit specific heat limit are 
high, since they practically duplicate other results reported 
for simple perovskites [26]. At high temperatures (T>700 K) 
a specific heat divergence is observed, which can be due to 
that for very high temperatures the model is not reliable. At 
very low temperatures it should be possible to determine a 
behavior dominated by the purely electronic response, while 
at medium and high temperatures the predominance of the 
phononic response should be expected. When the material is 
heated, contributions to specific heat are mostly results of the 
movement of the atoms and ions around their equilibrium 
positions as a result of the absorption of heat. In the real 
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Ba2TiMnO6 this result may vary because this material is 
polycrystalline and the specific heat depends on the porosity, 
since the thermal energy needed to increase the temperature 
of the material is lower in the less porous materials and higher 
in the denser ones. However, it is important to note that Mn-
d-t2g orbitals for the spin-up polarization, in the state density 
and in the band structure there are enough electronic states 
close to the Fermi level to give a reasonable electronic 
contribution to specific heat. In addition, there is a small 
contribution of up and down electrons corresponding to the p 
orbitals of oxygen. Fig. 6(c) exemplifies the temperature 
dependence of the entropy calculated from equations (14) 
and (16). As expected, the increase in temperature creates an 
increase in the randomness of some physical properties of the 
system, allowing inferring effects of intra and intermolecular 
vibrations, structural distortions, structural transitions and 
thermal expansion (as we shall see below), and adopting a 
rapid growth character in the regime of temperature studied 
and with an asymptotic tendency to very high temperatures, 
according to the predicted by the equation (16). 

In Fig. 7 results of calculations of the Debye temperature 
(a), thermal expansion (b) coefficient and Grüneisen 
coefficient (c) as functions of temperature are presented. We 
have calculated the dependence of ΘD(T) (as a function of 
temperature), plotting isobar curves as shown in Fig. 7a. The 
result of Fig. 7a shows that the temperature of Debye is 
increased substantially with increasing pressure, from 550.28 
K for P = 0 GPa to 677.12 K for P=20 GPa (at T=0 K). This 
occurs because as the pressure increases, all the velocities of 
the elastic waves increase gradually and their increase 
directly affects the temperature of Debye. Likewise, a mild 
nonlinear decreasing behavior of ΘD(T) can be observed with 
increasing temperature for applied pressures. This decrease 
in temperature of Debye as a function of temperature is 
characteristic of perovskite type materials [27]. Interpreting 
the Debye temperature as the highest temperature that can be 
achieved as a result of a single normal vibration, it can be 
argued that the effect of pressure is the increase of cation-
anion vibration frequencies while the effect of temperature is 
the expansive distortion of the structure, increasing the 
wavelength of the vibrations, decreasing the frequency and, 
consequently, the temperature of Debye. 

Fig. 7(b) shows the dependence of thermal expansion 
coefficient, α, with temperature and pressure. It can be 
established from the figure that α(T) decreases drastically with 
increasing pressure. On the other hand, it can be seen that at low 
temperatures (between 0 K and 300 K), α(T) grows rapidly with 
temperature, and above 300 K it grows smoothly, following an 
approximately linear behavior. In spite of considering that the 
Ba2TiMnO6 has a cubic structure, its character of perovskite type 
confers an anisometric structure to it and, therefore, very great 
differences of the thermal expansion must be presented along the 
different crystallographic directions. This behavior can be 
associated to the structural distortions to which the perovskite-
type materials are sensitive, because both temperature and 
pressure can give rise to inclinations and/or rotations of the TiO6 
and MnO6 octahedrons, elongation of the structure in certain 
crystallographic directions and eventual contractions in other 
directions. Thus, the type of response in α(T) is associated with 

the type of distortion or transition that is occurring because of 
the application of temperature and pressure to the material. This 
circumstance could slightly divert any experimental results with 
respect to the theoretical result of Fig. 9(b). On the other hand, 
the relatively low value of α(T) is characteristic of ceramic 
materials [28]. One aspect not considered in the calculations that 
we have made is that as the temperature increases, structural 
phase transitions can occur and the material could no longer 
have a cubic structure. Finally, the Grüneisen parameter, shown 
in Fig. 7(c), shows a gradual decrease with the increase in 
applied pressure (for example, from 2.23 for P=0 GPa to 2.00 
for P=20 GPa, at T=0 K). This behavior is observed for all the 
temperatures considered in the calculations. On the other hand, 
the Grüneisen coefficient presents a smooth and non-linear 
increase with the increase in temperature. These characteristics 
observed in the Grüneisen parameter as a function of pressure 
and temperature are related to the alteration in the vibration 
frequency of a crystalline lattice, according to the discussion 
presented above in relation to the coefficient of thermal 
expansion [29]. 

 

 
Figure 6. Specific heat Cv (a), Cp (b) and entropy (c) calculated through the 
quasi-harmonic Debye model for the Ba2TiMnO6 material from the 
Murnaghan state equation. 
Source: The authors. 
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Figure 7. Debye temperature (a), thermal expansion coefficient (b) and 
Grüneisen coefficient (c) for the Ba2TiMnO6 calculated by the application of 
the quasi-harmonic Debye model. 
Source: The authors. 

 
4.  Conclusions 

 
We have performed several ab initio calculations over the 

Ba2TiMnO6 double perovskite. Our results show that it has a 
semiconductor behavior for the spin up orientation and 
insulator for the other one.  Analysis of electronic structure 
of the material by means calculations of density of states for 
both spin orientations, based on the DFT-LAPW method 
permitted to infer that the t2g spin up states are responsible by 
the conductivity feature for the Mn-3d states. On the other 
hand, the insulate behavior of the spin down configuration 
can be attributed to the Mn-d-eg states in the valence band 
and to the Mn-d-t2g in the conduction band.  The effective 
magnetic moment determined from the asymmetry of the 
spin up and down contributions close to the Fermi level is 3.0 
µB. We also have calculated the cell dimensions that 
minimize the total energy for each configuration using the 
Murnaghan equation state. The calculated zero-temperature 
elastic constants satisfy the criteria for mechanical stability, 
indicating that the bulk form of this phase is experimentally 
accessible. From the calculated polycrystalline average 
values of the Young modulus, shear modulus, the Poisson 
ratio and the Zener´s anisotropic factor for the cubic 
Ba2TiMnO6, it is predicted that the stiffness and hardness of 

the compound are big than of Ti pure. Moreover, the 
compound is expected to be anisotropic and brittle. The 
calculations of the thermodynamic properties from the state 
equation, by means of the quasi-harmonic approximation of 
the Debye model, show that the effects of the interatomic 
vibrations give rise to a specific heat that decreases with the 
applied pressure and evidences a Dulong-Petit limit relatively 
high (241.11 J/mol.K), compared to other results reported for 
simple perovskite type materials. Likewise, we conclude that 
CV≈CP as a consequence of the low value of the coefficient 
of thermal expansion. As expected, entropy increased 
dramatically with increasing temperature, as a result of 
molecular vibrations and structural distortions. The Debye 
temperature shows an increasing dependence on the pressure 
and decreasing with the temperature. By contrast, both the 
coefficient of thermal expansion and the Grüneisen 
parameter decrease with the pressure and increase slightly as 
a function of temperature. In general, except for the high 
specific heat value of Dulong-Petit, the behavior observed in 
the thermodynamic properties is characteristic of the 
perovskite-like ceramic materials. We emphasize that the 
thermodynamic properties depend fundamentally on the 
value of the parameter Grüneisen. Since the γ is derived from 
a third derivative of the Ee function, it is very sensitive both 
to the numerical errors in the derivation and to the 
smoothness of the Ee(Vr) curves. For this reason, it would be 
highly advisable to obtain experimental results of the 
thermodynamic properties in order to more objectively 
establish the microscopic mechanisms that originate them. 

 
Acknowledgments 

 
This work was partially supported by División de 

Investigaciones Sede Bogotá (DIB) of Universidad Nacional 
de Colombia and FONCIENCIAS of Universidad del 
Magdalena. 

 
References 

 
[1] Triana, C.A., Corredor, L.T., Landínez-Téllez, D.A. and Roa-Rojas, 

J., High temperature-induced phase transitions in Sr2GdRuO6 
complex perovskite, Materials Research Bulletin, 46, pp. 2478-2483, 
2011, DOI: 10.1016/j.materresbull.2011.08.024. 

[2] Howard, C.H., Kennedy, B.J. and Woodward, P.M., Ordered double 
perovskites – a group-theoretical analysis, Acta Crystallographica B 
59, pp. 463-471, 2003, DOI: 10.1107/S0108768103010073. 

[3] Jin, S., Teifel, T.H., McCormack, M., Fastacht, R.A., Ramesh, R. and 
Chen, L.H., Thousandfold change in resistivity in magnetoresistive 
la-ca-mn-o films, Science 254, pp. 413-415, 1994, DOI: 
10.1126/science.264.5157.413. 

[4] Roa-Rojas, J. Salazar Mejía, C., Llamosa Pérez, D., León-Vanegas, 
A.A., Landínez Téllez, D.A., Pureur, P., Dias, F.T. and Vieira, V.N., 
Magnetoelectric response of new Sr2TiMnO6 manganite-like 
material, Journal of Magnetism and Magnetic Materials 320, pp. 
e104-e106, 2008, DOI: 10.1016/j.jmmm.2008.02.023.  

[5] Ochoa-Burgos, R., Martínez, D., Parra-Vargas, C.A., Landínez-
Téllez, D.A., Vera-López, E., Sarmiento, A. and Roa-Rojas, J., 
Magnetic and ferroelectric response of Ca2TiMnO6 manganite-like 
perovskite, Revista Mexicana de Física [online]. S58, pp. 45-47, 
2012. Available at: https://rmf.smf.mx/pdf/rmf-s/58/2/58_2_44.pdf. 

[6] Moreno, L.C., Valencia, J.S., Landínez-Téllez, D.A., Martínez, M.L. 
and Roa-Rojas, J., Preparation and structural study of LaMnO3 
magnetic material, Journal of Magnetism and Magnetic Materials 
320, pp. e19-e21, 2008, DOI: 10.1016/j.jmmm.2008.02.052. 



Deluque-Toro et al / Revista DYNA, 85(205), pp. 27-36, June, 2018. 

36 

[7] Landínez-Téllez, D.A., Llamosa-Pérez, D., Deluque-Toro, C.E., Gil-
Rebaza, A.V. and Roa-Rojas, J., Structural, magnetic, multiferroic 
and electronic properties of Sr2ZrMnO6 double perovskite, Journal of 
Molecular Structure, 1034, pp. 233-237, 2013, DOI: 
10.1016/j.molstruc.2012.10.023. 

[8] Hohenberg, P. and Kohn, W., Inhomogeneous electron gas, Physical 
Review, 136, pp. B864-B871, 1964, DOI: 
10.1103/PhysRev.136.B864. 

[9] Perdew, J.P., Burke S. and Ernzerhof, M., Generalized gradient 
approximation made simple, Physical Review Letters, 77, pp. 3865-
3868, 1996, DOI: 10.1103/PhysRevLett.77.3865. 

[10] Bonilla, M., Landínez-Téllez, D.A., Rodríguez, J.A., Aguiar, J.A. and 
Roa-Rojas, J., Study of half-metallic behavior in Sr2CoWO6 
perovskite by ab initio DFT calculations, Journal of Magnetism and 
Magnetic Materials, 320, pp. e397-e399, 2008, DOI: 
10.1016/j.jmmm.2008.02.179. 

[11] Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D. and Luitz J., 
WIEN2k, An Aug-mented plane wave + local orbitals program for 
calculating crystal properties, Karlheinz Schwarz, Techn. 
UniversitÄat Wien, Austria, 2001, ISBN 3-9501031-1-2. 

[12] Murnaghan, F.D., The compressibility of media under extreme 
pressures, Proceedings of National Academy of Sciences, USA. 
[online]. 30, pp. 244-247, 1944. Available at: 
http://www.pnas.org/content/30/9/244. 

[13] Jamal, M., Jalali-Asadabadi, S., Ahmad, I. and Rahnamaye-Aliabad, 
H.A., Elastic constants of cubic crystals, Computational Materials 
Science, 95, pp. 592-599, 2014, DOI: 10.1016/j.commat-
sci.2014.08.027. 

[14] Marzari, N., Vanderbilt, D., de Vita, A. and Payne, M.C., Thermal 
contraction and disordering of the Al(110) surface, Physical Review 
Letters 82, pp. 3296-3299, 1999, DOI: 
10.1103/PhysRevLett.82.3296. 

[15] Brillouin, L., Tensors in mechanics and elasticity. Academic, New 
York, 1964. 

[16] Maradudin, A.A., Montroll, E.W., Weiss, G.H. and Ipatova, I.P., 
Theory of lattice dynamics in the harmonic approximation. Academic 
Press, New York, 2nd edition, 1971. 

[17] Blanco, M.A., Francisco, E. and Luaña, V., GIBBS: isothermal-
isobaric thermodynamics of solids from energy curves using a quasi-
harmonic Debye model, Computer Physics Communications, 158, pp. 
57-72, 2004, DOI: 10.1016/j.comphy.2003.12.001. 

[18] Cuervo-Farfán, J.A., Arbey-Rodríguez, J., Fajardo, F., Vera-López, 
E., Landínez-Téllez, D.A. and Roa-Rojas, J., Structural properties, 
electric response and electronic feature of BaSnO3 perovskite, 
Physica, B 404, pp. 2720-2722, 2009, DOI: 
10.1016/j.physb.2009.06.126. 

[19] Kraus, W. and Nolze, G., POWDER CELL - A program for the 
representation and manipulation of crystal structures and calculation 
of the resulting X-ray powder patterns, Journal of Applied 
Crystallographic, 29, pp. 301-303, 1996, DOI: 
10.1107/S0021889895014920. 

[20] Glazer, A.M., Simple ways of determining perovskite structures, Acta 
Crystallographica A 31, pp. 756-762, 1975, DOI: 
10.1107/S0567739475001635. 

[21] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., 
Numerical Recipes in Fortran, 2nd. Ed., Cambridge University Press, 
1992. 

[22] Born, M. and Huang, K., Dynamical theory of crystal lattices, 
Clarendon, Oxford, 1954. 

[23] Tromans, D., Elastic anisotropy of hcp metal crystals and 
polycrystals, International Journal of Recent Research and Applied 
Studies, [online]. 6, pp. 462-483, 2011. Available at: 
www.arpapress.com/Volumes/Vol-6Issue4/IJRRAS_6_4_14.pdf. 

[24] Pugh, S.F., XCII. Relations between the elastic moduli and the plastic 
properties of polycrystalline pure metals, The London, Edinburgh, 
and Dublin Philosophical Magazine and Journal of Science 45, pp. 
823-843, 1954, DOI: 10.1080/14786440808520496.  

[25] Faizan, M., Murtaza, G., Khan, S.H. Khan, A., Mehmood, A., 
Khenata, R. and Hussain, S., First-principles study of the double 
perovskites Sr2XOsO6 (X = Li, Na, Ca) for spintronics applications, 
Bulletin of Materials Science, [online]. 39(6), pp. 1419-1425, 2016. 

Available at: http://www.ias.ac.in/article/fulltext/boms/039/06/-
1419-1425. 

[26] Li, X., Zhang, W. and Du, J., Effect of composition and 
microstructure of Pd-Cu-Si metallic glassy alloy thin films on 
hydrogen absorbing properties, Materials Transactions 52, pp. 1717-
1806, 2011, DOI: 10.2320/matertrans.M2011105. 

[27] Tsuchiya, J., Tsuchiya, T. and Wentzcovitch, R.M., Vibrational and 
thermodynamic properties of MgSiO3 postperovskite, Journal of 
Geophysical Research, 110, B02204, 2005, DOI: 
10.1029/2004JB003409. 

[28] Dedova, E.S., Shadrin, V.S., Petrushina, M.Y. and Kulkov, S.N., The 
study on thermal expansion of ceramic composites with addition of 
ZrW2O8, IOP Conf. Series: Materials Science and Engineering, 116, 
012030, 2016, DOI: 10.1088/1757-899X/116/1/012030. 

[29] Qiang, L., Duo-Hui, H., Qi-Long, C. and Fan-Hou, W., Phase 
transition and thermodynamic properties of BiFeO3 from first-
principles calculations, Chinese Physics, B 22, 037101, 2013, DOI: 
10.1088/1674-1056/22/3/037101. 

 
 

C.E. Deluque-Toro, received the BSc.as Physicist (2004) from University 
of Magdalena, Santa Marta (Colombia), MSc degree in physics (2007) from 
Universidad Nacional de Colombia, Bogotá (Colombia) and PhD degree in 
physics (2015) from the Instituto Jorge Sabato (Argentina). Is associated 
professor in the Faculty of Engineering, University of Magdalena, Santa 
Marta, Colombia. Research issues: electronic structure, perovskite materials, 
semiconductors, superconductors.  
ORCID: 0000-0002-4003-9116. 
 
D.A. Landínez-Téllez, received the BSc. as Physicist in 1991 (Universidad 
Industrial de Santander, Bucaramanga, Colombia, MSc. degree in physics in 
1994 (Universidade de Brasília, Brasília, Brasil), PhD degree in physics in 
1999 (Universidade Federal de Pernambuco, Recife, Brasil). Is titular 
professor in Physics Department, Universidad Nacional de Colombia, 
Bogotá. Research issues: electronic structure, perovskite materials, 
crystallography, superconductivity, magnetism, synthesis of ceramic 
materials, ferroelectricity, multiferroics materials and devices.  
ORCID: 0000-0001-7108-617X. 
 
J. Roa-Rojas, received the BSc. as Physicist in 1991 (Universidad Industrial 
de Santander, Bucaramanga, Colombia, MSc. degree in physics in 1994 
(Universidade de Brasília, Brasília, Brasil), PhD degree in physics in 1999 
(Universidade Federal do Rio Grande do Sul, Brasil). Is titular professor in 
Physics Department, Universidad Nacional de Colombia, Bogotá. Research 
issues: electronic structure, perovskite materials, crystallography, 
superconductivity, magnetism, synthesis of ceramic materials, 
ferroelectricity, multiferroics materials and devices.  
ORCID: 0000-0002-5080-8492. 


	1.  Introduction
	2.  Theoretical details
	2.1.  Ab-initio calculations
	2.2.  Theoretical model

	3.  Results and discussion
	3.1.  Crystal structure
	3.2.  Elastic properties
	3.3.  Electronic structure
	3.4.  Thermodynamic properties

	4.  Conclusions
	Acknowledgments
	References

