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Abstract 
The aim of this work was to evaluate the production of hydrogen in a conventional and hybrid Upflow Anaerobic Sludge Blanket (UASB) 
reactors by modifying the hydraulic retention time (HRT). Both reactors operated continuously close to 135 days, with organic loading rate 
(OLR) of 11.26 kgCOD.m-3.d-1  at 12, 8 and 4 h.  In the hybrid reactor, Biopack® rings with polyurethane foam at its center were used. The 
results showed that the UASB hybrid reactor achieved a stable and continuous production of over 60% of hydrogen gas at each HRT, 
related to carbon dioxide reduction until the end of the operation. The ANOVA and TUKEY tests, with a 95% reliability level, showed 
that there was a significant difference between the HRT evaluated, observing that the highest hydrogen production was obtained with 4 h 
of HRT. In the conventional UASB reactor, there was no stability during the operation time. 
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Producción de hidrogeno utilizando una nueva configuración de 
reactor anaerobio UASB bajo diferentes tiempos de retención 

hidráulica 
 

Resumen 
El objetivo de este estudio fue evaluar la producción de hidrógeno en un reactor anaerobio de manto de lodos y flujo ascendente (UASB) 
convencional y otro híbrido, modificando el tiempo de retención hidráulica (TRH). Los dos reactores operaron cerca de 135 días 
continuamente, con una carga orgánica volumétrica de 11.26 kgDQO.m-3.d-1 y valores TRH de 12, 8 y 4 h. En el reactor híbrido se utilizaron 
anillos de marca Biopack, adicionando espuma de poliuretano en su centro. Los resultados mostraron que la producción de hidrógeno en 
el reactor UASB híbrido fue estable y superior al 60% en cada uno de los TRH, relacionada con la reducción de dióxido de carbono hasta 
el final de la operación. Las pruebas de ANOVA y TUKEY mostraron que existen diferencias significativas entre los TRH evaluados, con 
un nivel de confiabilidad del 95%, observando que la mayor producción de hidrógeno fue obtenida con un TRH de 4 h. En el reactor UASB 
convencional no se detectó estabilidad en la producción de hidrógeno durante el tiempo de operación. 
 
Palabras clave: anillos de Biopack; ácidos totales volátiles; reactor UASB. 

 
 
 

1.  Introduction 
 
Depending on fossil fuels as our main energy source will 

cause in the mid-term an energy crisis and several environmental 
contamination problems. Hydrogen gas is one of the most 
promising alternatives to fossil fuels. The H2 gas is considered 
renewable, clean, and produces only water during its combustion. 

                                                      
How to cite: Hernández, D.M., Hurtado, L.A.del P. and Rodríguez-Chaparro, A.T., Hydrogen production in a novel configuration of UASB reactor under different hydraulic 
retention time. DYNA, 85(205), pp. 157-162, June, 2018. 

Among the different ways to produce hydrogen, biological 
production seems to be the most attractive alternative due to 
different products can be used as raw material, most of which are 
cost efficient and easy to find. Moreover, if the process is 
optimized, we can obtain byproducts with added value, for 
instance, organic acids and biopolymers [1]. Nevertheless, on the 
hydrogen production through dark fermentation, there are several 
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factors that influence and limit the process, among which there 
are: pH value, temperature, C/N relation, carbon source, S/X 
relation, configuration of the reactor, fermentation route, the 
dominant microbial community, etc. [2,3].  

The UASB reactor is the most widely used reactor in the 
world for treating domestic and industrial wastewaters. Ever 
since its creation by Gatze Lettinga in the 1980s, it has been 
an economically viable technology, easily used with 
promising results. The feasibility of UASB reactors for the 
production of hydrogen was initially studied by [4], who 
found values of 0.16 L. L-1.h-1 of Hydrogen Production Rate 
(HPR) operating at 2 h of HRT without presence of methane 
in the biogas, using an inoculum of mixed cultures and 
wastewater from the rice processing as substrate. [5] carried 
out similar experiments and observed that the granule 
formation was formed on the 173rd day of operation, and from 
that moment, the hydrogen production was stable for an 8-
month period. [6] Studied the feasibility of producing 
hydrogen by treating cheese whey in UASB reactors and 
noted that the H2 production was of 112 mLH2. L-1.d-1 for an 
organic load of 20 g COD. L-1.d-1 and 2.5 g COD. VSS-1.d-1. 
These authors state that, although these values are low, the 
possibility of using UASB reactors fed with industrial 
wastewaters for the production of hydrogen was proven. [7] 
evaluated the production of hydrogen after the production of 
methane in UASB reactors by treating wastewaters from the 
cassava industry. They used as inoculum active sludge from 
an anaerobic lagoon previously treated with thermal shocks 
for inhibiting methanogenic organism and optimizing the 
production of hydrogen on its first stage. The results were 
promising not only because of the reactor used but also 
because was used real industrial wastewater. The maximum 
hydrogen production reached 37% with a volumetric organic 
load of 25 KgCOD.m-3 d-1. At a high load, the system 
collapsed and the hydrogen production was reduced mainly 
due to the accumulation of fatty organic acids. 

Despite the already known advantages of UASB reactors, 
the practical application of these systems for producing 
hydrogen is still limited, mainly due to long initial times, the 
type of inoculum capable of minimising the biomass drag, 
proper handling of hydraulic detention times, etc. [8] 
mentioned that, by placing supporting structures at the 
suspension, the process could be accelerated; this is known 
as hybrid UASB. [9] used a hybrid UASB reactor to treat 
wastewaters with phenolic compounds. The reactor consisted 
of an acrylic cylinder at a bench scale in which approximately 
54 rings were placed in a 30.48 cm in the middle of the 
reactor. Hence, a larger biomass concentration would be 
retained at shorter hydraulic retention time. The results 
showed that the anaerobic hybrid reactor tolerates 2.5 times 
more the phenolic organic load increase than the 
conventional UASB reactor. [10] also demonstrated that 
having an area with a filtering medium in suspended biomass 
anaerobic reactors improves the contact between the 
substrate and the sludge, minimizing the sludge loss and 
reducing the hydraulic retention time. 

The Hydraulic Retention Time (HRT) is one of the 
operational variables that can be easily manipulated to 
optimize the hydrogen production. [11] compared the 
hydrogen production using glucose as a carbon source in a 

CSTR and UASB reactor with different HRT values (12-2 h). 
They discovered that there was more stability in UASB 
reactors and larger volumetric production values of H2, 19.05 
mmolH2. L-1.h-1 for a 2 h of HRT. Research conducted by [12] 
treating wastewater with starch as a carbon source and 
activated carbon as support in an expanded bed anaerobic 
reactor concluded that the HRT with the highest volumetric 
production values was 4 h. These authors modified the HRT 
to a 24-4 h rate. Recently conducted research by [13] shows 
that unlike what was previously thought, at low HRTs in both 
conventional UASB reactors and packed bed reactors, the 
hydrogen production considerably decreases, being more 
noticeable at UASB reactors than at packed bed reactors. 

In this sense, this research evaluated the effects of three 
different HRT on H2 production at conventional and hybrid 
UASB reactors, using on the top of the reactor a layer of 
polyethylene rings with foam of polyurethane in its center. 
This work could contribute to practical knowledge for the 
hydrogen production at UASB reactors. 

 
2.  Material and methods 

 
2.1.  Experimental design 

 
Two Upflow Anaerobic Sludge Blanket Reactors (UASB) 

were used, a hybrid one (R1) and a conventional one (R2) with an 
internal diameter of 74 mm and a useful volume of 2.94 L and 
3.0 L, respectively (Fig. 1). The Setting of the R1 reactor is 
characterized by the addition of a suspended  bed of 100 mm in 
height composed of high-density polyethylene rings (Ø =19 mm 
and 10 mm in height) that contains a polyurethane foam core, 
with the purpose of avoiding sudden biomass washing and 
improving the biogas production stability [14,15].The specific 
surface area of each ring is 950 m2 .m-3.  

The reactors operated with a constant flow for 134 and 
104 days, respectively. The operation time for R1 was 12 h 
for 39 days and the second stage with an 8h for 48 days; and 
the third stage with a 4 h for 45 days. On the other hand, the 
R2 reactor was operated with a 12 h, 8 h and 4 h HRT for 45, 
40 and 12 days, respectively. The reactors were placed in a 
thermocontolled chamber at a constant temperature of 35 ºC  

 

 
Figure 1. Schematic diagram of the UASB hybrid (R1) and conventional (R2) 
reactors.  
Source: The authors. 
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The reactors were fed with synthetic wastewater using the 
sucrose as a carbon source. Additionally, an inorganic 
nutritional source used by [1] was added that contains 
CH4N2O (20 mg.L-1), NiSO4∙6H2O (0.5 mg. L-1), 
FeSO4∙7H2O (2.5 mg. L-1), FeCl3∙6H2O (0.25 mg. L-1), 
CaCl2∙2H2O (2.06 mg.L-1), CoCl2∙2H2O (0.04 mg. L-1), SeO2 
(0.036 mg. L-1), KH2PO4 (1.3 mg. L-1), KHPO4 (5.36 mg. L-

1) and Na2HPO4∙2H2O (2.76 mg. L-1). The volumetric organic 
load for the three operation stages was kept at 11.26 Kg COD 
m-3 .d-1, which improve a stable hydrogen production at fixed 
biomass reactors using recycled pneumatic as support [16] 
(Mendez et al. 2017). The initial pH of the synthetic 
wastewater was adjusted at 5.5, adding HCL (10 M). 

For both reactors, the inoculum was obtained using the 
natural fermentation mechanism. Some authors like [17-19] 
demonstrated that this fermentation that is caused by the 
combination between the microorganism present in the 
atmosphere and in the tap water is beneficial to maintain the 
acidogenic conditions. 

 
2.2.  Analytical methods 

 
Percentage concentrations of H2, CO2 and CH4 were 

simultaneously measured using the gas chromatography 
equipment Agilent 7890A GC with a thermal conductivity 
detector (TCD) and a capillary column Carboxen 1010 plot, 
with a length of 30 m, 0.32 mm internal diameter and 25 µm 
of the internal stationary layer. The carrier gas was Argon and 
the injection volume was of 0.6 mL. The average values were 
the result of three measurements per sample. 

The physical-chemical parameters of the influent and effluent 
samples were monitored three times per week. The organic 
content (COD), the total volatile acid amount (TVA), volatile 
suspended solids (VSS), and pH were assessed following the 
standard methods guideline [20]. The concentration of total 
carbohydrates on the influent and effluent of the reactor were 
analyzed using the phenol method [21]. 

 
2.3.  Statistical analysis 

 
The OriginPro (Version 8.0) software was used to 

conduct the statistical analysis of variance (ANOVA) of only 
one path to determine the statistically significant differences 
(p<0.05) between the measured and calculated parameter for 
each reactor at the different HRT. In addition, the Tukey test 
was conducted to do multiple comparisons between the 
parameter averages studied with 95% reliability. For each 
parameter, a statistical description was applied. 

 
3.  Results 

 
From Figs. 2 and 3, it is evident that the suspended bed in the 

R1 reactor improves the system performance regarding stability 
in the hydrogen production. Not only the production is stable 
throughout the entire operation process, but the percentage value 
of the hydrogen gas also remains over 50%. This is not the case 
of the total volatile acid behavior, which despite a percentage 
production over 90%, there is no visible difference related to the 
type of reactor, indicating that its production is probably affected 
by the biomass inside the biological reactors. These results are 

confirmed with the ANOVA test, p=0.8203 for R1 and p=0.2194 
for R2, and it shows that there was no significant difference on 
the TVA production for both reactors at the different studied 
HRT values. These observations contradict the stated by authors 
such as [22] Kim et al., (2013) who, from several experiments 
varying the HRT from 0.5 to 2.5 days determined that this 
parameter has a direct influence on the TVA production. 

[23] on a deep revision about the anaerobic digestion 
emphasise that this technology is not only designed to treat 
wastewater with high organic loads and to produce methane, 
but it must also be planned to produce hydrogen separately 
or simultaneously with methane and other byproducts with 
high added value such as volatile fatty acids (VFA). It is 
important to mention that VFAs are considered to be 
probable precursors of the biopolymer production and other 
products such as biofuels, alcohols, aldehyde and ketones. 

 

 
Figure 2. Performance of UASB Hybrid reactor (R1). ( ̶ ○  ̶ , Total volatile 
acids in the effluent as mgHAc/L,  ̶  ◊   ̶  , production of CO2 in %, ̶  □   ̶ , 
production of H2 in %, - Hydraulic retention time). 
Source: The authors. 

 
 

 
 
Figure 3. Performance of UASB Conventional reactor (R2). ( ̶ ○  ̶ , Total 
volatile acids in the effluent as mgHAc/L,  ̶  ◊   ̶ , production of CO2 in %,  ̶ 
□   ̶, production of H2 in %,- Hydraulic retention time). 
Source: The authors. 
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Although the purpose of this research was evaluating the 
influence of HRT on biohydrogen production in two different 
high rate anaerobic reactors, it was noted that the TVA results 
showed methanogenesis inhibition and very low pH values at 
the effluent, on average 3.4±0.2 and 3.3±0.2 for the R1 and 
R2 reactors respectively. This behavior was already 
mentioned by [24,25], who state that, when there is an 
accumulation of volatile organic acids in the system, there is 
also a pH reduction, causing destabilisation in the anaerobic 
process represented by inhibition in the methane production.  

[6,26] show that there is both a minimum value of volatile 
acid where the inhibition of methanogenesis is produced and 
a maximum value where hydrogen-producing organisms are 
inhibited at 400 mgHAc. L-1 for the first and 10,000 
mgHAc.L-1 for the second. On this research in particular, the 
minimum value for R1 was 101.95 mgHAc. L-1 (113th day of 
operation) and the maximum value was 1008.48 mgHAc. L-

1 (74th day of operation). For R2, the values were 138.67 
mgHAc. L-1 (43st day of operation) and 822.42 mgHAc. L-1 
(81st day of operation). With these results, we can observe 
that the minimum values in which there is inhibition of 
methanogenesis are lower than the ones found in the 
literature. 

At reactor R1, in which the hydrogen production was 
more stable, there was no accumulation of organic acids that 
would increase toxicity at hydrogen producers. A possible 
explanation to this observation can be that the pH value in the 
system was always kept at 3.5 units, which creates an 
extremely acid environment that permits that there are not 
associated this contributes to a reduction of toxicity amongst 
microorganisms. 

On the other hand, [27] state that the organic loading rate 
(OLR) does have an influence on the variation and 
accumulation of organic volatile acids, unlike other 
parameters. Amongst the results presented by these authors, 
it is important to highlight the proportional increase in the 
total volatile acid concentration when they vary the organic 
load at molasses synthetic wastewater. The TVAs increased 
their concentration from 2.000 mg. L-1 to 7.000 mg.L-1 with 
values from 5 to 12 Kg COD. m-3.L-1, respectively. 
Furthermore, it is important to highlight that butyric acid 
shows the highest percentage at the total value. 

Particularly, the organic loading rate (OLR) value was 
taken from previous results in reactors similar to ours, whose 
purpose was finding the load that would permit a good 
stability when producing hydrogen. These results can be 
consulted at Show and Tay, (1999)  who found that, with load 
values above 11.26 Kg COD. m-3.d-1, not only was the system 
unstable when producing hydrogen, but there was also a 
percentage reduction of total volatile acids from 90% to 60%. 
The latter one indicates that there is a limit in the organic load 
value that optimises the production of organic acids and that 
it also guarantees stable and concomitant hydrogen 
production. 

The results from ANOVA and the TUKEY test for 
reliability levels of 95% showed that there was a significant 
difference on the hydrogen production value for the R1 
reactor (p=0.0033) during the 12 and 4 h; and the 8 and 4 h. 
As for R2, (p =0.4333), the result was different due to its high 
instability during the process. The average hydrogen 

production at reactor R1 was 53±3, 55±8, and 62±7 % for 
12.8 and 4h, respectively. While the hydrogen production 
value for R2 did not exceed the average value of 35±21 % 
presented at the 8 h, previous results indicated that the 
hydrogen production especially depends on the reactor 
setting and on the operation using low HRT values. The latter 
is similar to the stated by authors such as [29-30], who 
showed that the H2 content in biogas is lower when the HRT 
value increases. This behavior is also detailed by [31,12], 
who mentioned that high HRTs allow the consumption of H2 
through methanogenesis and homoacetogenesis at high rate 
continuous stirred tank reactors (CSTR), packed bed reactors 
(PBR), and UASB. Moreover, authors such as [32] indicate 
that low HRT values affect the ability to hydrolyse substrate 
and, therefore, affect the possibility of reaching high H2 
production rates. 

It is evident that the R2 reactor setting is less appropriate 
for the production of hydrogen. [7,33] mention that a biomass 
loss significantly affects both H2 production and the process 
stability. For instance, authors such as [3,34], who used 
hybrid UASB reactors with carbon nanotubes and plastic pall 
rings, respective, obtained H2 production values of 50%, 
similar to our R1 reactor, using a 12h . Whereas  [5] obtained 
a H2 production of 42% using a conventional UASB reactor 
with an 8h HRT. 

According to [25], the H2 content in the produced gas 
increases when the organic load reaches an optimal value of 
68 Kg .m-3.d-1. Then, from that value despite the load increase 
of up to 79 Kg .m-3.d-1, the hydrogen percentage decreases 
about 30% whereas the CO2 content in the gas notably 
increases up to 80%. On our research, a larger concentration 
of hydrogen gas than carbon dioxide was observed. R1 
showed CO2 values close to 0% especially after the 40th day 
of operation, which was the end of the 12 h. In the R2 reactor, 
the behavior was different; not only was it oscillating like 
hydrogen gas, but also 40% values were reached (Figs. 2 and 
3). [35] mentions that low H2 productions are caused by non-
H2 producing bacteria that produce, instead, excessive 
amounts of CO2 from the sucrose conversion. 

 
Table 1.  
Comparison of optimal values for the production of hydrogen at different 
bioreactor settings. 

Source: The authors. 

Parameters [26] Apud by 
[26] [36] 

This study - 
Hybrid 
UASB  

Organic load 
(Kg m-3.d-1) 68.0 30.0 75.0 11.3 

% H2 in the 
Biogas  43.0±0.3 38±0.5 35.0 62.0±7.0 

VSS 
Concentration  
in the reactor 
(mg L-1) 

3200±0.2 13000±0.2 20000 7525.0 

VSS 
Concentration 
in the effluent 
(mg L-1) 

4500±0.42 4000±0.3 30000 60.0±43.0 

TVA (mgHAc 
L-1) 13300±0.3 12600±0.4 6200 1008±229.0 

Removal of 
COD (%) 32.0±0.3 20.0±0.3 40.0 13.0±9.0 

HRT (h) --- ---- 5 day 4.0 
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The latter validates the already explained regarding the 
optimisation of a H2 producing system in the sense that HRT 
variations do not have an influence on the system’s stability, 
which particularly depends on the organic load value, the 
reactor’s setting and the inoculation methodology that, as it 
was observed, have improved the reactor’s performance thus 
allowing it to appropriately maintain the acidogenesis stage. 

From Table 1, there is a comparison amongst the different 
types of reactors and the optimal conditions observed for the 
production of hydrogen. These results were more remarkable 
regarding percentage productions, which were higher than 
the previously mentioned, thus contradicting the stated by 
authors such as [25,36], who claim that thermophilic bacteria 
are more efficient for this kind of process. 

 
4.  Conclusions 

 
This research verifies that placing Biopack® rings with 

polyurethane foam in its core, in UASB-reactors, allows its 
use for producing hydrogen. The maximum reached gas 
percentage was 62±7%, obtained at 4 h of HRT, thus showing 
that the process is favored by low hydraulic retention time. 
Furthermore, it is important to highlight that the support 
media not only allowed minimizing the loss of biomass, but 
also contributes to the stability of the hydrogen production if 
compared with a conventional UASB reactor. Lastly, it was 
observed that the 90% increase of total volatile acids in both 
conventional and hybrid UASB reactors had no effect on the 
hydrogen production.  
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