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Abstract 
Lightning electric field (LEF) measurements are aperiodic signals characterized by inherent noise of different sources, i.e., it is not possible 
to register a noise-free signal. In the last decade, the denoising of LEF measurements has been achieved using some time-frequency 
representations such as short-time Fourier transform (STFT), wavelet transform (WT) and fractional Fourier transform (FRFT) without 
definitive results. In this paper, a denoising process applied on LEF measurements using the Local Polynomial Approximation (LPA) is 
proposed. The window size selection is made by combining the LPA with the intersection of confidence intervals (ICI) algorithm. 
Furthermore, a cross-validation criterion is used to select the optimal value of the threshold parameter in the LPA-ICI denoising method. 
It is shown that for different signal-to-noise ratio (SNR) values, the proposed method significantly reduces the noise present in the recorded 
signals. Finally, a discussion about the processed signatures in terms of some lightning electric field temporal features is performed. 
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Aproximación local polinomial e intersección de intervalos de 
confianza para la remoción de ruido en mediciones de campo 

eléctrico generado por rayos 
 

Resumen 
Las mediciones de campo eléctrico producido por rayos (LEF) son señales aperiódicas caracterizadas por ruido inherente de diferentes 
fuentes, es decir, no es posible registrar una señal libre de ruido. En la última década, se ha logrado filtrar mediciones de LEF utilizando 
algunas representaciones tiempo-frecuencia tales como la transformación de Fourier de corto tiempo (STFT), la transformación wavelet 
(WT) y la transformación de Fourier fraccionaria (FRFT) sin resultados definitivos. En este trabajo, se propone un proceso de eliminación 
de ruido aplicado a mediciones de LEF usando la aproximación polinomial local (LPA). La selección del tamaño de la ventana se realiza 
combinando la LPA con el algoritmo de intersección de intervalos de confianza (ICI). Además, un criterio de validación cruzada se utiliza 
para seleccionar el valor óptimo del umbral en el método de reducción de ruido LPA-ICI. Se muestra que para diferentes valores de relación 
señal-a-ruido (SNR), el método propuesto reduce significativamente el ruido presente en las señales registradas. Finalmente, se realiza una 
discusión sobre las señales procesadas en términos de algunas características temporales del campo eléctrico. 
 
Palabras clave: aproximación local polinomial; campo eléctrico; intersección de intervalos de confianza; rayos; reducción de ruido. 

 
 
 

1.  Introduction 
 
The measurement of electromagnetic fields generated by 

lightning has been carried out in the last four decades and 
consequently many features of the phenomenon have been 
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revealed. A major part of these works was conducted using 
sensors to measure the radiated electric or magnetic fields 
generated by cloud-to-ground (CG) lightning flashes [1].   

The knowledge of the electric fields produced by 
lightning (LEF) is important to: (a) identify some parameters 
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of lightning flashes (multiplicity, flash duration, interstroke 
intervals and currents); (b) understand the discharge 
mechanism and physical discharge processes; (c) design 
lightning protection systems; (d) lightning location networks; 
(e) determine the electromagnetic compatibility requirements 
of equipment and systems [1-4]. 

Due its importance, lightning characterization using LEF 
measurements has been developed in several regions of the 
world. In fact, lightning location networks, detection and 
warning systems, lightning flash density estimations and 
indirect determination of lightning current amplitudes are 
successful applications of indirect measurements of LEF. In 
addition, the measurement of these fields allows establishing 
relationships between lightning flash events and transients 
that could help in the classification of electromagnetic 
disturbances [5]. 

To develop and evaluate models of the lightning return 
stroke and determine the lightning current features, it is 
necessary to determine, in a reliable way, various temporal 
features of the electric field waveforms such as: the peak 
value, rise-time, zero-crossing time, slow-front and fast-front 
duration, and peak value of the electric field derivative [6–8] 
[6–8]. However, the extraction of lightning parameters from 
LEF or current measurements is not a simple task due to the 
presence of noise in the recorded signals, mainly caused by 
the measuring system itself and other undesired components 
present in the electromagnetic environment [7-9]. 

In the past, noise removal from LEF signals has been 
achieved using low-pass filters (hardware) and digital filters 
based on the discrete Fourier transform (software), both 
methods with cut-off frequencies ranging from 200 kHz to 30 
MHz [9,10]. However, these methods may affect part of the 
original signal, causing loss of information. To overcome this 
problem, some denoising techniques based on time, 
frequency or hybrid time–frequency domains have been 
proposed in the last two decades.  

The conventional Fourier transform (FT) and the short-
time Fourier transform (STFT) were the first approaches to 
reduce the noise on lightning electric field signatures [11]. 
Because of the limitations of FT and STFT (loss of resolution 
in time or frequency), new signal processing methods have 
been proposed. Wavelet transform (WT) has been used for 
different purposes in the study of lightning activity, including 
noise reduction and frequency anlaysis [3,8,12]. The major 
disadvantages of WT are the complexity of calculations, the 
sensitivity to some noise levels, and the dependence of its 
accuracy on the selected wavelet base (mother) function 
[8,12].  

 Recently, noise reduction methods on LEF signals have 
been extended to the application of the discrete fractional 
Fourier transform (DFRFT) [13,14]. However, it is not 
possible to have a desired signal because, by nature, the LEF 
have a random behavior and the waveforms change with 
respect to the distance from the lightning strike point. This 
disadvantage makes it difficult to minimize the error between 
the filtered and the original signal for any adaptive denoising 
process.  

The local polynomial approximation (LPA) is a method 
proposed and developed in Statistics for processing scalar 
and multidimensional noisy data [15]. However, several 

applications have shown that LPA is a powerful technique to 
deal with linear and non-linear problems [16], reduction of 
leakage errors [17], nonparametric modelling [18] and filter 
design [19]. In this way, this paper presents a method for 
denoising lightning electric field measurements based on the 
LPA application. Furthermore, to solve the problem of 
window size selection, the LPA and the intersection of 
confidence intervals (ICI) algorithm are combined.  

This work continues with the research project launched 
by the authors oriented to develop signal processing tools to 
analyze LEF signals. Considering that the essential features 
of lightning flashes are affected by geographical and 
environmental conditions, Bogotá-Colombia is an interesting 
place due to its tropical location, its high altitude (2550 masl), 
and its high lightning activity, which allows a continuous 
study of lightning [20]. 

 
2.  Local polynomial approximation 

 
2.1.  Local approximation theory 

 
The basic signal model considered in this paper assumes 

that the measured signal 𝑧𝑧(𝑡𝑡), defined in eq. (1), is composed 
by 𝑁𝑁 observations of a noise-free signal 𝑦𝑦(𝑡𝑡) with a sampling 
time 𝑇𝑇𝑆𝑆. 

 
𝑧𝑧(𝑡𝑡𝑘𝑘) = 𝑦𝑦(𝑡𝑡𝑘𝑘) +  𝜂𝜂(𝑡𝑡𝑘𝑘) (1) 
𝑡𝑡𝑘𝑘 = 𝑘𝑘𝑇𝑇𝑆𝑆,      𝑘𝑘 =  1,2, … ,𝑁𝑁 

 
In eq. (1), 𝜂𝜂(𝑡𝑡𝑘𝑘) are independent additive noise 

components with 𝐸𝐸[𝜂𝜂(𝑡𝑡𝑘𝑘)] = 0, 𝐸𝐸[𝜂𝜂2(𝑡𝑡𝑘𝑘)] = 𝜎𝜎2 and 𝐸𝐸[𝜗𝜗] is 
the expected value of 𝜗𝜗.  

From this signal model, the local approximation theory 
involves two general problems. The first of these arises when 
it is necessary to find a polynomial function that can be used 
to determine the approximate values of a function 𝑦𝑦(𝑡𝑡𝑘𝑘). The 
second problem is related to the use of fitting functions on a 
given data sequence and determine the best function to 
represent those data [17,21]. The first problem is associated 
with the parametric estimation, while the second one is linked 
with the non-parametric estimation.  

 
2.3. Filtering in the LPA domain 

 
The LPA is a locally adaptive non-parametric technique, 

which provides estimates of the signal 𝑦𝑦(𝑡𝑡) ≈ 𝑦𝑦(𝑡𝑡𝑘𝑘) defined 
in eq. (1) from the observations of 𝑧𝑧(𝑡𝑡) in a pointwise manner 
and using a polynomial fitting in a sliding window. In this 
estimation, the error should be as small as possible [22].  

In terms of the signal processing, LPA is a flexible tool to 
design linear transforms with respect to polynomial 
components of signals. For this reason, to obtain an 
estimation of 𝑦𝑦(𝑡𝑡), the following criterion must be applied on 
the linear LPA [22,23]: 

 

𝐽𝐽ℎ(𝑡𝑡0,𝐶𝐶) = �𝜌𝜌ℎ(𝑡𝑡𝑘𝑘 − 𝑡𝑡0)
𝑁𝑁

𝑘𝑘=1

�𝑧𝑧(𝑡𝑡𝑘𝑘) − 𝐶𝐶𝑇𝑇𝜙𝜙(𝑡𝑡𝑘𝑘 − 𝑡𝑡0)�2 
(2) 

𝜙𝜙(𝑥𝑥) = [1,𝑥𝑥, 𝑥𝑥2 2⁄ , … , 𝑥𝑥𝑚𝑚−1 (𝑚𝑚 − 1)!⁄ ]𝑇𝑇 
𝐶𝐶 = (𝐶𝐶0,𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑚𝑚−1)𝑇𝑇 
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where 𝑡𝑡0 is the point of interest (center), 𝐶𝐶 is a vector with 
the coefficients of the polynomial used during the estimation 
of 𝑦𝑦(𝑡𝑡) and 𝑚𝑚 is the order of the LPA. The window function 
𝜌𝜌ℎ(𝑥𝑥), which formalizes the location of fitting with respect 
to the center point 𝑥𝑥, is a finite support function and must 
satisfy the conventional properties of the “kernel” used in 
non-parametric estimation, in particular: 𝜌𝜌(𝑥𝑥) ≥ 0,𝜌𝜌(0) =
max𝑥𝑥 𝜌𝜌(𝑥𝑥), 𝜌𝜌(𝑥𝑥) → 0 as |𝑥𝑥| → ∞ and ∫ 𝜌𝜌(𝑢𝑢)𝑑𝑑𝑢𝑢 = 1∞

−∞ .  
Now, if the function 𝐽𝐽ℎ(𝑡𝑡0,𝐶𝐶) (eq. (2)) is minimized with 

respect to 𝐶𝐶:  
 

�̂�𝐶(𝑡𝑡0, ℎ) = arg min
𝐶𝐶 𝜖𝜖 𝑅𝑅𝑚𝑚

𝐽𝐽ℎ(𝑡𝑡0,𝐶𝐶) (3) 

 
the coefficient �̂�𝐶0(𝑡𝑡0, ℎ) = 𝑦𝑦�(𝑡𝑡0, ℎ) is an estimate of 

𝑦𝑦(𝑡𝑡0) with respect to a window function of bandwidth ℎ, 
while �̂�𝐶𝑙𝑙(𝑡𝑡0, ℎ) = 𝑦𝑦�𝑙𝑙(𝑡𝑡0, ℎ) are related with the estimates of 
the derivatives  𝑦𝑦(𝑙𝑙)(𝑡𝑡0) with 𝑙𝑙 = 1,2, … ,𝑚𝑚 − 1. In this way, 
the estimates �̂�𝐶𝑙𝑙(𝑡𝑡0, ℎ) can be represented in the form of a 
linear transform as follows [15,23]: 

 
𝑦𝑦�ℎ(𝑡𝑡) = �𝑔𝑔ℎ(𝑡𝑡𝑘𝑘 , 𝑡𝑡0) 𝑧𝑧(𝑡𝑡𝑘𝑘) 

𝑘𝑘

 (4) 

 
where 𝑔𝑔ℎ is the kernel of the estimator defined by [23]: 
 
𝑔𝑔ℎ(𝑡𝑡𝑘𝑘 , 𝑡𝑡0) = 𝜌𝜌ℎ(𝑡𝑡𝑘𝑘 − 𝑡𝑡0) [𝜙𝜙ℎ(𝑡𝑡𝑘𝑘 − 𝑡𝑡0)]𝑇𝑇 Φℎ

−1 𝜙𝜙ℎ(0) 
(5) Φℎ = �𝜌𝜌ℎ(𝑡𝑡𝑘𝑘 − 𝑡𝑡0)[𝜙𝜙ℎ(𝑡𝑡𝑘𝑘 − 𝑡𝑡0)][𝜙𝜙ℎ(𝑡𝑡𝑘𝑘 − 𝑡𝑡0)]𝑇𝑇 

𝑘𝑘

 

 
Here, 𝜙𝜙ℎ is a column vector of polynomials of the LPA 

whose length is equal to 𝑚𝑚 + 1, and Φℎ is a symmetric 
matrix. It is necessary to emphasize that, for a parametric 
estimation, the order of the polynomial model defines the 
type of estimation curve (constant, linear, quadratic, etc.) and 
the coefficients 𝐶𝐶 are fixed. On the other hand, in the non-
parametric process, the estimate of 𝑦𝑦(𝑡𝑡) is not a polynomial 
function and the sliding window estimation makes the 
coefficients �̂�𝐶𝑙𝑙(𝑡𝑡, ℎ) different for each point of interest  𝑡𝑡0. 

 
2.3.  Influence of the window function 

 
Mathematically, the window function used in the LPA is 

expressed by a scale parameter ℎ > 0 that determines the 
window size or bandwidth. For this reason, the window 
function in eq. (2) and eq. (5) must be replaced by: 

 
𝜌𝜌ℎ(𝑥𝑥) = 𝜌𝜌(𝑥𝑥 ℎ⁄ ) ℎ⁄  (6) 

 
Smaller or larger values of ℎ narrow or widen the function 

𝜌𝜌ℎ(𝑥𝑥), respectively. The scale factor (1 ℎ⁄ ) in eq. (6) 
normalizes the window and the property  
∫ [𝜌𝜌(𝑥𝑥 ℎ⁄ ) ℎ⁄ ]𝑑𝑑𝑥𝑥 = 1∞
−∞  is satisfied. Thus, the polynomial 

approximation function 𝜙𝜙ℎ also needs to be scaled by the 
parameter ℎ: 

 
𝜙𝜙ℎ(𝑥𝑥) = 𝜙𝜙ℎ(𝑥𝑥 ℎ⁄ ) (7) 

 
From eq. (4) to eq. (7), it is possible to observe that the 

length of the window function ℎ controls the smoothness of 

the estimate 𝑦𝑦�ℎ(𝑡𝑡) [22,23].  If ℎ is large, the difference 
between parametric and non-parametric approaches 
disappears and the estimation function is constant, linear, 
quadratic, etc., depending on the polynomial degree of the 
LPA. In this case, the smoothing of random noise in 
observations is the maximum.  On the other hand, when ℎ is 
relatively small, the estimate 𝑦𝑦�ℎ(𝑡𝑡) is near (or exactly the 
same) to 𝑧𝑧(𝑡𝑡) and there is no smoothing of the data. For 
intermediate values of the windows size, the resulting curves 
demonstrate different levels of smoothing. 

In eq. (2), if the window is a rectangular function, all 
observations have equal weights. Nonrectangular window 
functions such as Gaussian, Hamming, Welch, Hann, etc., 
usually provide higher weights for observations that are 
closer to the center point 𝑡𝑡0. In addition, there are three types 
of windows (with respect to the center point) that LPA can 
use: central, right and left windows. 

 
3.  Window size selection and the ICI algorithm 

 
3.1.  The ICI algorithm and the bandwidth selection 

 
The intersection of confidence intervals (ICI) is a 

bandwidth selection algorithm that has been proposed and 
substantiated in several publications [19,22,24-26]. This 
approach does not require the bias estimation and presents an 
accuracy approximation better than the quality-of-fit 
statistics [19]. LPA combined with the ICI algorithm 
improves the windows size selection process and enables the 
algorithm to be adaptive. The basic idea of the ICI algorithm 
uses a finite set of bandwidths (𝐻𝐻) expressed by: 

 
𝐻𝐻 = {ℎ1 < ℎ2 < ⋯ < ℎ𝑀𝑀} (8) 

 
Then, for each sample (𝑡𝑡), the LPA-ICI algorithm 

introduces a sequence of 𝑀𝑀 estimates accompanied with the 
following confidence intervals: 

 
𝐷𝐷𝑀𝑀(𝑡𝑡) = [𝐿𝐿𝑀𝑀(𝑡𝑡),𝑈𝑈𝑀𝑀(𝑡𝑡)] (9) 

 
The lower and upper limits of 𝐷𝐷𝑀𝑀(𝑡𝑡) are defined as: 
 

𝐿𝐿𝑀𝑀(𝑡𝑡) = 𝑦𝑦�ℎ_𝑀𝑀(𝑡𝑡) − Γ𝜎𝜎ℎ_𝑀𝑀 (𝑡𝑡) 
(10) 𝑈𝑈𝑀𝑀(𝑡𝑡) = 𝑦𝑦�ℎ_𝑀𝑀(𝑡𝑡) + Γ𝜎𝜎ℎ_𝑀𝑀 (𝑡𝑡) 

 
where Γ is the threshold of the confidence interval and the 

standard deviation of the estimated signal 𝑦𝑦�ℎ_𝑀𝑀(𝑡𝑡) is defined 
by [15]:  

 

𝜎𝜎ℎ_𝑀𝑀 (𝑡𝑡) = 𝜎𝜎′���𝑔𝑔ℎ_𝑀𝑀(𝑡𝑡𝑘𝑘 , 𝑡𝑡0)�2

𝑘𝑘

 
(11) 

𝜎𝜎′ =
median |𝑧𝑧(𝑡𝑡𝑘𝑘) − 𝑧𝑧(𝑡𝑡𝑘𝑘 − 1)|

√2 ∙ 0.6745
;  𝑘𝑘 = 2, … ,𝑁𝑁 

 
The ICI algorithm tracks the values of the largest lower 

𝑈𝑈 𝑀𝑀 and the smallest upper 𝐿𝐿𝑀𝑀 confidence intervals limits: 
 

𝐿𝐿𝑀𝑀(𝑡𝑡) = max
𝑖𝑖=1,…,𝑀𝑀

𝐿𝐿𝑖𝑖(𝑡𝑡) (12) 
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𝑈𝑈 𝑀𝑀(𝑡𝑡) = min
𝑖𝑖=1,…,𝑀𝑀

𝑈𝑈𝑖𝑖(𝑡𝑡) 

 
The chosen filter support (bandwidth) ℎ+ is the largest 𝑖𝑖 

support for which the following condition is still satisfied: 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) ≤ 𝑈𝑈 𝑖𝑖(𝑡𝑡) (13) 
 
It was shown in [15,22] that ℎ+ is close to the optimal 

support ℎ∗, which results in the optimal trade-off between 
bias �𝜔𝜔ℎ(𝑡𝑡)� and variance �𝜎𝜎2ℎ_𝑀𝑀(𝑡𝑡)�. Besides, this solution 
minimizes the MSE [19].  

The parameter Γ in eq. (10) plays an important role in the 
bandwidth selection. A large value of Γ gives ℎ+ > ℎ∗, 
producing an over-smoothing in the signal. On the other 
hand, smaller values of Γ give ℎ+ < ℎ∗, cause an under 
smoothing on the signal. 

 
3.2.  Threshold parameter Γ 

 
To find the optimal value of the threshold parameter Γ 

from an theoretical analysis presents great difficulties [15]. 
For this reason, to compare the performance of the ICI 
algorithm with respect to Γ, a cross-validation (CV) criteria 
was selected to assess the statistical prediction. This 
validation technique has been used to compare the 
performance of different predictive models [27] and, from the 
experiments presented in [15,19,28], it can be used as a 
reasonable and efficient selector of Γ.  

For the linear filter defined in eq. (4), the CV function 
with an estimator support ℎ+ is represented as a weighted 
sum of the squared residuals [15]: 

 

𝐼𝐼𝐶𝐶𝐶𝐶 = ��
𝑧𝑧(𝑡𝑡𝑘𝑘) − 𝑦𝑦�ℎ+(𝑡𝑡𝑘𝑘)
1 − 𝑔𝑔ℎ+(𝑡𝑡𝑘𝑘 , 𝑡𝑡) �

2

 
𝑘𝑘

 (14) 

 
It is important to mention that the process explained in 

this section must be repeated for every value of  Γ 𝜖𝜖 𝑅𝑅, 𝑅𝑅 =
{Γ1, Γ2, … , Γ𝑅𝑅}. In addition, the value of the threshold 
parameter used in the "best" estimation is defined for the 
following expression: 

 
Γ� = arg min

Γ 𝜖𝜖 𝑅𝑅
𝐼𝐼𝐶𝐶𝐶𝐶  (15) 

 
4.  The LPA-ICI denoising method 

 
The main purpose of denoising LEF signatures is to reduce 

the noise components present in measurements without 
modifying the most important signal features. Although it is 
possible to carry out actions to reduce the emissions produced by 
the measuring system itself, all recorded signals are also distorted 
by undesired signals from the electromagnetic environment, 
whose sources cannot be controlled or eliminated.  

For these reasons, the method based on LPA combined 
with the ICI algorithm for noise reduction on LEF signals 
consists of the following steps: 

 
• Set Γ = Γ𝑅𝑅, for 𝑅𝑅 = {Γ1, Γ2, … , Γ𝑅𝑅} 

• Determine the sampling time (𝑇𝑇𝑆𝑆) from the noisy signal 
observations 𝑧𝑧(𝑡𝑡𝑘𝑘) and select a set of samples 𝑡𝑡𝑘𝑘 = 𝑘𝑘𝑇𝑇𝑆𝑆 
with 𝑘𝑘 =  1,2, … ,𝑁𝑁 

• For 𝐻𝐻 = ℎ𝑖𝑖, with 𝑖𝑖 = 1,2, … ,𝑀𝑀, calculate the estimates 
𝑦𝑦�ℎ(𝑡𝑡) and the confidence intervals defined by eq. (12) 

• Select the largest of those 𝑖𝑖 for which 𝐿𝐿𝑀𝑀(𝑡𝑡) ≤ 𝑈𝑈 𝑀𝑀(𝑡𝑡) gives 
the bandwidth 𝑖𝑖+ = ℎ+. From this result determine the 
adaptive window size ℎ+(𝑡𝑡) and the estimate 𝑦𝑦�ℎ+(𝑡𝑡). 

• Repeat the previous step for all 𝑡𝑡𝑘𝑘 and each Γ𝑅𝑅 
• Find Γ� from eq. (15) and select the final estimation of 

𝑦𝑦�ℎ+(𝑡𝑡𝑘𝑘) corresponding to the Γ�. 
In all cases, the cross-validation presented in eq. (14) and the 

maximum SNR of the signal (before and after noise reduction) 
were selected as appropriate indicators for comparing the 
obtained results. In this paper, the SNR is expressed as the 
relation between the power of the filtered signal �𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙� and the 
power of noise removed from the measured signal (𝑃𝑃𝑠𝑠𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖), so: 

 

𝑆𝑆𝑁𝑁𝑅𝑅𝑑𝑑𝑑𝑑 = 10 ∙ 𝑙𝑙𝑙𝑙𝑔𝑔10 �
𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙
𝑃𝑃𝑠𝑠𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖

� (16) 

 
5.  Instrumentation and data 

 
5.1.  Typical waveforms of LEF signals 

 
CG lightning flashes are transient discharges of high current 

that can be generated in the atmosphere by clouds, storms (rain, 
snow or dust) and volcanic eruptions. A typical CG lightning 
flash is composed by more than one discharge known as return 
stroke. These individual discharges have a duration of tens of 
microseconds and they are usually separated in time from 20 ms 
to 100 ms [29]. The typical waveforms for the electric fields 
produced by the first return stroke (FRS) and the subsequent 
return strokes (SRS) that compose a flash are shown in Fig. 1. 

The most relevant characteristics of these waveforms 
include: (a) an initial peak with an acute shape (due to a high 
rate of growth) that decreases approximately with the inverse 
of the distance; (b) a slow descent ramp after the initial peak 
that may last more than 100 μs in signals recorded in a nearby 
range (few tens of kilometers); (c) a zero crossing point that 
may be several tens of microseconds after the initial peak for 
the fields registered at distances greater than 50 km; and (d) 
an opposite-polarity overshoot typical of the electric fields 
recorded at distances greater than 100 km. 

 
5.2.  Measuring system 

 
The typical system to measure LEF was proposed by 

Cooray and Lundquist in 1982 [30].  In this configuration, an 
electric field sensor is connected to an electronic circuit for 
the acquisition of the signal and it is used an equipment to 
record the data. This arrangement has been used during the 
last three decades in several regions (Sweden, Germany, 
Italy, Japan, Sri Lanka, Malaysia, Singapore, USA, Colombia 
and Brazil), providing valuable information about the 
behavior and characteristics of lightning flashes [10,31,32].  

The scheme of the measuring station used in this work to 
record the LEF signals is shown in Fig. 2, and it is composed 
by the following parts: 
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Figure 1.  Typical waveforms of the electric field signals produced by CG 
lightnings with respect to different distance ranges. First return stroke (solid 
lines), subsequent return stroke (dashed lines). 
Source: Adapted from [29] 

 
 

 

Figure 2.  Lightning electric field measuring system. (A) parallel-plate 
antenna,  (B) electronic circuit, (C) oscilloscope, (D) coaxial cables. 
Source: The authors 

 
 

• The electric field sensor is a 1.5 meters height parallel 
flat-plate antenna, which had two circular metallic plates 
with diameter of 0.45 m supported by insulating elements 
and 0.03 m air gap between them.  

• The electronic circuit is based on the buffer-amplifier 
BUF-602 with 1000 MHz bandwidth and 8 kV/µs slew 
rate. The decaying time constant of the circuit is 38 ms, 
which is large enough to record signatures composed by 
electrostatic (near lightning electric fields) and radiated 
components (far lightning electric fields). 

• Two coaxial cables were used to connect the devices. 
First, a 0.5 m length RG58/U cable was used to connect 
the antenna to the electronic circuit. Second, a 12 m 

length RG58/U coaxial cable was used between the 
electronic circuit and the acquisition equipment. 

• The acquisition equipment was an 8-bits, digital 
oscilloscope Agilent DSO6104A with a sampling rate of 
10 MSa/s (sampling time of 100 ns). 
The arrangement composed by the antenna, the short 

coaxial cable and the electronic circuit works as a passband 
filter with a cut-off frequency of 11.8 MHz, which is enough 
to study lightnings because this range of frequencies covers 
the bandwidth in which most of the spectrum of the return 
strokes is found (some hundreds of kHz) [3,12]. A complete 
description of the measuring system and the electronic 
circuit, including its calibration process, can be reviewed in 
[33].  

During measurements, the digital oscilloscope was 
adjusted using a full observation window of 500 ms. This 
time was selected in order to record a complete CG lightning 
flash signature that includes the electric field waveforms 
produced by the first stroke and the subsequent strokes. The 
vertical trigger level was set at 100 mV to reduce the 
interference caused by the noise inherent to the measuring 
system (92 mV average) and to avoid the oscilloscope drive 
due to pulses caused by intra-cloud lightnings. In order to 
acquire signals before and after the trigger transient pulse, a 
75 ms horizontal pre-trigger was adjusted.  In addition, to 
reduce additional noise that could be produced at the output 
of the buffer-amplifier, the bandwidth of the oscilloscope was 
configured in 25 MHz. 

Finally, during the pre-processing stage, each return 
stroke signal (first and subsequents) was extracted from the 
complete lightning flash signature and it was adjusted for an 
observation window of 400 µs. Under this condition, using a 
sampling time of 100 ns, each return stroke signal analyzed 
in the following sections has 4000 samples. 

 
5.3.  Reference signatures 

 
The measurements presented in this section were 

extracted from the records obtained during August-
November 2016. The measuring system was installed in 
Bogotá, Colombia (4.641° N, 74.091° W) at an altitude of 
2550 m above sea level. All the signatures analyzed belong 
to negative CG lightning flashes. Examples of the recorded 
events are shown in Fig. 3 and Fig. 4. These signals 
correspond to normalized signatures of two return strokes 
(FRS and SRS) and they agree with the waveforms shown in 
Fig. 1 (distance range between 50 and 200 km). The vertical 
axis in each plot represents the electric field magnitude in 
V/m whereas the horizontal axis represents the time in 
microseconds.  

Reviewing Fig. 3 and Fig. 4 it can be seen the presence of 
noise components that makes it difficult to analyze and 
characterize the signal features. This is relevant especially in 
the estimation of temporal lightning parameters, such as: 
maximum value, signal rise-time (10–90%), zero-crossing 
time and the maximum electric field derivative, which is an 
important parameter to estimate the maximum variation of 
lightning current. 
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Figure 3.  Electric field signature of a first return stroke (Bog3_st1) 
Source: The authors 

 
 

 

 

Figure 4. Electric field signature of a subsequent return stroke (Bog3_st5) 
Source: The authors 

 
 

6.  Signal processing results 
 
In this section, simulation results of the LPA-ICI 

denoising method over LEF measurements, the role of the 
threshold parameter in the ICI algorithm, and the 
performance of adaptive bandwidths are presented. In 
addition, the effects of different parameters of the LPA-ICI 
algorithm are analyzed. 

 
6.1.  Simulation parameters 

 
To get a comparative idea about the temporal features and 

the magnitude of lightning electric field signatures, a set of 
six return stroke signatures (3 FRS and 3 SRS) were selected. 
These signals were extracted and normalized from different 
lightning flashes. In order to analyze the role of the threshold 
parameter, several values of Γ = {0.01: 0.01: 4} are defined.  

Simulations were performed using a symmetric Gaussian 
window [𝜌𝜌𝐿𝐿(𝑢𝑢) = 𝜌𝜌𝐿𝐿(−𝑢𝑢)]. This function was selected 
because it is well known, from numerical analysis, that 
symmetric windows result in smaller approximation errors 
than asymmetric windows [21,34]. The adaptive bandwidths 
(sample size) for the window function are given by ℎ = {3, 
5, 6, 9, 12, 18, 25, 35, 50, 71, 100, 143, 203, 290}. 

In order to select an adequate polynomial order for LPA, 
a linear algorithm was employed by increasing the order of 
LPA from 𝑚𝑚 = 2  to  𝑚𝑚 = 9 . From simulations, it was 
observed that polynomial orders less than 𝑚𝑚 = 4 provide 
results with ripples and remarkable noise components, while 
high polynomial orders (𝑚𝑚 ≥ 4) present similar results but 
increase the computational costs.  In this way, a polynomial 
order of 𝑚𝑚 = 5 for the LPA-ICI algorithm was selected for 

all the cases. Signal processing results were obtained from 
routines developed in MATLAB® by the authors. 

 
6.2.  High SNR environment – first return strokes 

 
For the example given in Fig. 5(a), the best estimate using 

a symmetric Gaussian window is presented in Fig. 5(b). In 
this case, the graphical results illustrate a substantial 
improvement in the signal features when Γ = 1.23. This 
result is reinforced by the behavior of the threshold parameter 
with respect to the CV criterion shown in Fig. 5(c). 

In addition, the adaptive bandwidths for the adjusted Γ are 
shown in Fig. 5(d). It can be seen from this curve that at the 
peak value of 𝑦𝑦(𝑡𝑡) and at the points where the signal slope 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5. Results for FRS signature (Bog3_st1). (a) measured signal; (b) 
LPA-ICI denoising signal for symmetric Gaussian window with Γ = 1.23; 
(c) CV criterion for LPA-ICI with 𝑚𝑚 = 5; (d) adaptive bandwidth variation. 
Source: The authors 
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changes, the adaptive bandwidths decrease. This means that 
the LPA-ICI method is sensitive with respect to fast 
variations of the signal and the symmetrical window presents 
a good filter response. 

 
6.3.  Low SNR environment – subsequent return strokes 

 
Fig. 6(a) and Fig. 6(b) show the measured signal and the 

filtered signal of a subsequent return stroke using the LPA-
ICI denoising method with polynomial order 𝑚𝑚 = 5. In this 
case, the denoising result is better because the subsequent 
stroke signal has a low SNR.  

The cross-validation criterion as a function of the threshold 
parameter is illustrated in Fig. 6(c). For the subsequent stroke  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 6. Results for SRS signature (Bog3_st5). (a) measured signal; (b) 
LPA-ICI denoising signal for symmetric Gaussian window with Γ = 1.38; 
(c) CV criterion for LPA-ICI with 𝑚𝑚 = 5;  (d) adaptive bandwidth variation. 
Source: The authors 

 

Figure 7.  LPA-ICI estimates for electric field signature of a subsequent 
return stroke (Bog3_st5) to Γ = {0.1: 0.25: 4.1} 
Source: The authors 

 
 

signal, the minimal value of CV is 4.505 × 10−4 for the 
adjusted value Γ = 1.38. Fig. 6(d) shows the adaptive 
varying bandwidths for the symmetric window filter. These 
bandwidths present faster changes in time, which means that 
the LPA approximation is enough for denoising the measured 
signal using the size of windows that are available. 

It is important to note that, in this case, the threshold 
parameter changed from Γ = 1.23 (FRS) to Γ = 1.38 (SRS), 
which demonstrates the adaptive response of the ICI 
algorithm. An advantage of the LPA-ICI denoising method is 
that the best estimate does not present high noise oscillations 
and ripples from the measured signal that certainly represent 
difficulties in the interpretation of lightning parameters. 

From the best estimate obtained for the SRS signal it was 
noticed that the adaptive window size, especially for a small 
value of Γ, could be corrupted by spikes and ripples that 
erroneously isolate small values of the window sizes. Fig. 7 
shows the estimate when the threshold parameter is adjusted 
from the initial conditions (see section 7.1) to Γ =
{0.1: 0.25: 4.1}.  

Note that when the change in the step-size of Γ is made, 
some ripples in the initial stage of the signal rise and the 
spikes on the crossing-to-zero region (between 𝑡𝑡 = 1.2 ×
10−4 𝑠𝑠 and  𝑡𝑡 = 3 × 10−4 𝑠𝑠) are slightly reduced. In addition, 
the threshold parameter of the signal estimate changes from 
1.38 to 1.35 with a larger step-size. 

 
7.  Discussion 

 
In this work, the parameters selected to analyze LEF are 

10–90% signal rise-time (Tr), zero crossing time (ZC) and 
maximum electric field (Ep). In addition, it is important to 
know the maximum electric field derivative (𝜕𝜕Ep/dt), which 
is a useful parameter in the estimation of the maximum 
variation of lightning current. Finally, the SNR 
improvements after the denoising process are included. 

Besides the results obtained from a visual comparison, Table 
1 presents the results obtained from characterizing the parameters 
(Tr, ZC, Ep, 𝜕𝜕Ep/dt and SNR) of the signatures before and after 
noise removal. In addition, the right column in Table 1 (% DIF) 
presents the percentage difference (for each parameter) between 
the measured signal and the estimation obtained with the LPA-
ICI (processed signal). The maximum values of the electric field 
and the electric field derivative were normalized taking the 
maximum of the respective flash as the reference value. 

0 50 100 150 200 250 300 350 400-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (µs)

N
or

m
al

iz
ed

 e
le

ct
ric

 fi
el

d 
(V

/m
)

0 50 100 150 200 250 300 350 400-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Symmetric Gaussian, Γ = 1.38

Time (µs)

N
or

m
al

iz
ed

 e
le

ct
ric

 fi
el

d 
(V

/m
)

0 0.5 1 1.5 2 2.5 3 3.5 40

1

2

3

4

5

6

7

8

x 10-4

Threshold Γ

C
ro

ss
 v

al
id

at
io

n 
C

V
(Γ

)

0 50 100 150 200 250 300 350 4000

5

10

15

20

25

Symmetric Gaussian, Γ = 1.38

Time (µs)

Ba
nd

w
id

th
 d

ur
at

io
n 

(µ s
)

0 50 100 150 200 250 300 350 400-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Symmetric Gaussian, Γ = 1.35

Time (µs)

N
or

m
al

iz
ed

 e
le

ct
ric

 fi
el

d 
(V

/m
)



Rojas-Cubides et al / Revista DYNA, 85(205), pp. 264-273, June, 2018. 

271 

Table 1.   
Parameters of the LEF signatures before and after the denoising process. 

Signature Parameter 
Signal 

% DIF 
ME PR 

FRS 

Bog1_st1 

Tr (µs) 8.4 6.4 23.8% 
ZC (µs) 78.2 78.9 0.9% 

Ep (V/m) 1 0.987 1.3% 
 𝜕𝜕Ep/dt (V/m/µs) 1 0.66 34.0% 

SNR (dB) 17.9 30.6 70.9 % * 

Bog3_st1 
(Fig. 5) 

Tr (µs) 11.4 10.4 8.8% 
ZC (µs) 43.2 42.3 2.1% 

Ep (V/m) 1 0.989 1.1% 
 𝜕𝜕Ep/dt (V/m/µs) 1 0.588 41.2 % 

SNR (dB) 15.6 33.8 116.7 % * 

Bog4_st1 

Tr (µs) 12.4 13 4.8% 
ZC (µs) 65.2 66.4 1.8% 

Ep (V/m) 1 0.988 1.2% 
 𝜕𝜕Ep/dt (V/m/µs) 1 0.635 36.5% 

SNR (dB) 20.5 31.1 51.7% * 

SRS 

Bog1_st4 

Tr (µs) 7.8 7.6 2.6% 
ZC (µs) 47.5 51.3 8.0% 

Ep (V/m) 0.5 0.491 1.9% 
 𝜕𝜕Ep/dt (V/m/µs) 1 0.535 46.5% 

SNR (dB) 11.7 23.3 99.1% * 

Bog2_st3 

Tr (µs) 8.6 7.1 17.4% 
ZC (µs) 73.2 79.8 9.0% 

Ep (V/m) 0.375 0.341 9.1% 
 𝜕𝜕Ep/dt (V/m/µs) 1 0.452 54.8% 

SNR (dB) 9.4 22.52 139.6% * 

Bog3_st5 
(Fig. 6) 

Tr (µs) 5.8 4.1 29.3% 
ZC (µs) 40.6 41.6 2.5% 

Ep (V/m) 0.262 0.236 9.9% 
 𝜕𝜕Ep/dt (V/m/µs) 1 0.306 69.4% 

SNR (dB) 6.5 19.8 204.6% * 
 

ME: measured signal   ---   PR: processed signal  ---  % DIF: percentage 
difference between measured signal (ME) and processed signal (PR) 
* Improved 
Source: The authors 

 
 
From the results presented in Table 1, it can be observed 

that the rise-time presents a difference up to 23.8% and 
29.3% in the FRS and SRS cases, respectively. These 
differences may produce inadequate interpretation of 
lightning parameters. For the zero-crossing time, the 
differences were less than 3% for high SNR environments 
(FRS), while for the low SNR signals (SRS) a maximum 
difference of about 9% was found (signature Bog2_st3). 

On the other hand, the maximum normalized electric field 
(Ep) shows a variation up to 2% for the FRS signatures, 
whereas for the SRS cases the variation in this parameter 
reached 10%. These results indicate that the reduction in the 
peak value of the signatures depends on the signal noise level. 
However, it is important to clarify that the removal of noise 
is directly affected by the selected filtering method.  

Regarding the maximum electric field derivative (𝜕𝜕Ep/
𝜕𝜕t), remarkable differences were observed between the 
measured signatures and the filtered ones. The minimum 
difference was 34% for Bog1_st1 signature (FRS case) and 
the maximum difference was 70% for Bog3_st5 signature 

(SRS case). These results show that the estimation of electric 
field derivative from the measured signal could be erroneous 
due to the presence of high frequency noise.  

By comparing the SNR of the measured signal with the 
best result obtained with the LPA-ICI method, it is possible 
to notice that for the signal Bog3_st1 (shown in Fig. 3 and 
Fig. 5) the change in SNR ranged from 15.6 dB to 33.8 dB 
after noise removal. For the signal Bog3_st5 (shown in Fig. 
4 and Fig. 6), the SNR exhibits a change from 6.5 dB to 19.8 
dB. In general terms, for the whole group of signatures, the 
improvement in the SNR varied from 51% up to 117% for 
the FRS cases, while for the SRS cases this parameter was 
improved between 99% and 205%. 

In order to verify the usefulness of LPA-ICI denoising 
method, a comparison with an alternative method using 
adaptive filters in the discrete fractional Fourier domain 
(DFRFd) was conducted. This filtering process is described 
with detail in [14]. In this work, the adaptive filter in DFRFd 
is configured with the following parameters: fractional order 
𝑎𝑎 = 0.25; normalized leakage LMS adaptive (NL-LMS) 
algorithm; normalized step-size 𝜇𝜇𝑁𝑁𝐿𝐿−𝐿𝐿𝑀𝑀𝑆𝑆 = 0.95; leakage 
factor 𝛾𝛾 = 0.997; stabilization factor 𝛽𝛽 = 2 ∗ 10−14; 
number of coefficients is 6. Fig. 8 shows the comparison 
between the signatures filtered with the LPA-ICI method 
(black dotted line) and using adaptive filters in DFRFd (red 
continuous line).  

In this case, it is possible to observed that the LPA-ICI 
provides similar results than those obtained with the 
technique based on DFRFT. However, a slight reduction is 
observed in the peak value of the FRS signature filtered with 
LPA-ICI algorithm (see Fig. 8a). In addition, adaptive filters 
in DFRFd introduce oscillations, especially in the SRS 
signature (see Fig. 8b). These oscillations are typical of 
Fourier rotated methods, which produce difficulties in the 
interpretation of some temporal parameters. 

 

(a) 

 

(b) 

 

Figure 8.  Comparison between LPA-ICI and adaptive filters in DFRFd.  
(a) FRS signature (Bog3_st1); (b) SRS signature (Bog3_st5) 
Source: The authors 
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Table 2.  
Parameters comparison of LEF signatures (Bog3_st1 and Bog3_st5) filtered 
with LPA-ICI method and adaptive filters in DFRFd 

Signature 
Tr  
(µs) 

CZ  
(µs) 

Ep  
(V/m) 

  𝝏𝝏Ep/dt 
(V/m/µs) 

SNR  
(dB) 

Bog3_st1 
(Fig. 8a) 

Measured 11.4 43.2 1 1 15.6 
LPA-ICI 10.4 42.3 0.989 0.59 33.8 
FRFT 10.3 42.1 0.991 0.60 31.4 

Bog3_st5 
(Fig. 8b) 

Measured 5.8 40.6 0.262 1 6.5 
LPA-ICI 4.1 41.3 0.236 0.31 19.8 
FRFT 3.7 42 0.253 0.33 22.1 

Source: The authors 
 
 
Table 2 presents the comparison of parameters for signals 

presented in Fig. 8, which were obtained using both 
denoising methods. With respect to rise-time, the differences 
between denoising methods are less than 2% for the FRS 
signature (shown in Fig. 8a), while for the SRS signature 
(show in Fig. 8b) the difference reaches 10%. This result in 
the SRS case is also produced because of the oscillations 
present in the filtered signal using DFRFT, which do not 
allow to clearly identify the initial zero-crossing point of the 
processed signal. 

For zero-crossing time and maximum electric field, the 
differences for both examples were less than 2% and 7%, 
respectively. The main difference (up to 9%) is presented in 
the estimation of the maximum value of the electric field 
derivative for SRS signature (Fig. 8b). This is due to the 
difference between the maximum value of the filtered signal 
using LPA-ICI and the output signal obtained with the 
method based on DFRFT. 

 
8.  Conclusions 

 
In this paper, the local polynomial approximation (LPA) 

combined with the adaptive size window algorithm (ICI) is 
applied to achieve a successful noise removal process on 
lightning electric field (LEF) signatures. The advantage of 
the proposed method compared to other filter methods, as 
adaptive filters, is that the LPA-ICI does not require a 
preliminary desired signal that represents the phenomenon. 

The proposed method for denoising LEF signals is simple 
to implement and requires only the calculation of the 
estimates and their standard deviations for a set of bandwidth 
values. It is important to note that the LPA-ICI algorithm 
does not require the estimation of the bias. In addition, the 
proposed algorithm could be considered an adaptive method 
because its performance depends on an adequate selection of 
the window size (bandwidths). 

The obtained results show that the LPA-ICI method is 
efficient to work with non-stationary signals that have jumps, 
ripples and fast slope changes, such as LEF signatures. In 
fact, the use of adaptive bandwidths provides better estimates 
because the most suitable bandwidth controls the smoothness 
of the filtered signal. In the particular case of LEF signals, 
the results provided by the LPA-ICI algorithm were found 
using symmetric Gaussian windows. However, other kinds of 
symmetric window functions can be tested to analyze the 
response of the algorithm.    

Simulation results, including the effect of window 

bandwidth ℎ and threshold parameter Γ, were analyzed for 
both high and low SNR environments. From the tests, it was 
observed that the change in the step-size of Γ improved the 
performance of LPA-ICI algorithm. In the low SNR cases, 
the use of a larger Γ reduces ripples and spikes on several 
zones of the output signal which are presented when the step-
size of  Γ is small. 

The performance of the proposed method was evaluated 
in terms of a temporal parameter comparison and the SNR 
improvement factor for electric field signals produced by first 
return strokes (FRS) and subsequent return strokes (SRS). 
Remarkable differences between the measured signal and the 
filtered signal were found in terms of the rise-time (up to 
29.3%) and the maximum electric field derivative (up to 
70%). The maximum improvement achieved with respect to 
SNR was 118% in the FRS cases and 205% in the SRS cases. 
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