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Abstract 
This paper presents a model of metacognitive expectations about the running time of cognitive functions in the metacognitive architecture 
CARINA. A formal and ontological representation is created that establishes the relationship between the process of observing a fact in 
the self-model and a belief stored in the semantic memory of the system. The cognitive ontology evidenced tracing and interchange 
information process among different kind of memories, such as: sensorial memory, semantic memory, procedural memory, prospective 
memory and working memory. The experiment carried out demonstrated the functionality of the model where expectations were generated 
for each observation and could be compared with the observed values in real time. Another type of result was the conceptual advance of 
an expectation, the formal mathematical representation, the design of the ontology and the model as a mechanism of implementation in 
CARINA architecture. 
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Diseño de expectativas metacognitivas de funciones cognitivas a 
través de representaciones ontológicas 

 
Resumen 
Este artículo presenta un modelo de expectativas metacognitivas sobre el tiempo de funcionamiento de las funciones cognitivas en la arquitectura 
metacognitiva CARINA. Se crea una representación formal y ontológica que establece la relación entre el proceso de observar un hecho en el auto-
modelo y una creencia almacenada en la memoria semántica del sistema. La ontología cognitiva evidenció el proceso de búsqueda e intercambio de 
información entre diferentes tipos de recuerdos, tales como: memoria sensorial, memoria semántica, memoria de procedimientos, memoria 
prospectiva y memoria de trabajo. El experimento realizado demostró la funcionalidad del modelo en donde se generó expectativas para cada 
observación y podía compararlas con los valores observados en tiempo real. Otro tipo de resultado fue avance conceptual de una expectativa, la 
representación matemática formal, el diseño de la ontología y el modelo como un mecanismo de implementación en la arquitectura CARINA. 
 
Palabras clave: inteligencia artificial; expectativas; metacognición computacional; arquitectura cognitiva; agente cognitivo. 

 
 
 

1.  Introduction 
 
Humans and other agents are able not only to coordinate 

their actions with their current sensorimotor state, but also 
plan and act in view of the future. They can propose to 
achieve distal goals using anticipatory mechanisms named 
expectations [1]. 

                                                      
How to cite: Madera-Doval, D.P., Caro-Piñeres, M.F., Gómez-Salgado, A.A., Cardozo-Soto, A.M. and Jiménez-Builes, J.A., Design of metacognitive expectations of cognitive 
functions through ontological representations. DYNA, 85(206), pp. 194-201, September, 2018. 

A crucial feature of an Intelligent Agent is being 
proactive and not just reactive, i.e., they have a capacity to 
use anticipatory mechanisms [2]. This ability allows them to 
deal with the future by mental representations or specific 
forms of learning [3]. The use of this anticipation determines 
the purposive character of the behavior of the Intelligent 
Agent for its own internal explicit goal representation and 
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allows self-modification of its own mental representation for 
virtually ‘exploring’ possible actions, events, and results: 
“what will/would happen if…?" [4]. The metacognitive ability 
may be to explain errors in a cognitive task or it may be to select 
between cognitive “algorithms” to perform reasoning. 

An Intelligent System with metacognitive abilities makes 
explicit its components, capabilities, actions, percepts, and 
internal state information in a structure called a self-model. It 
uses this information to declare expectations about how its 
activities will affect perceptual and state information as well 
as monitoring the operation of its actions and its sensory 
feedback against its expectations, waiting for violations to 
occur [5]. The execution time, or running time, is the time of 
continued system operation required in a given environment 
in order to execute a program or algorithm [6]. 

Several authors have addressed the generation of 
expectations regarding the execution time of programs. Duda 
[6] defines the elapsed time t, as the time required to execute 
a program correctly in a given computing system, where the 
expectation of the elapsed time will be derived as functions 
of the execution time t. The expectation depends on: i) 
frequency and duration of failures, (ii) workload of the 
system and (iii) minimum execution time t. Sun and Peterson 
[7] propose a formal model where the estimation of the 
system execution time is calculated from the expectation of 
the maximum execution time of all processors in the 
computing system. 

In the described context, our motivation is to provide a 
model of metacognitive expectations that represents a 
hypothesis or projection of current knowledge about running 
time of a cognitive function that is executed at the object-
level. Expectations enable the reasoner to be prepared for the 
future, the reasoner can thus generate contingency plans to 
avoid anticipated failures [8]. The identified problem is 
related to the modeling of metacognitive expectations based 
on an observation process that uses information obtained 
from the self-model of a cognitive agent when a cognitive 
function is executed at its object-level.  

This paper is organized as follows: Section 2 "Materials 
and Methods" describes the formal representation of 
metacognitive expectation based on observation and presents 
a general panorama about the structure of the CARINA 
cognitive architecture. Section 3 "Model of expectations in 
CARINA" presents the process of triggering a metacognitive 
expectation in the CARINA architecture. Section 4 
"Computational implementation of metacognitive 
expectations" describes the internal representation of a 
metacognitive expectation; and some components of the 
memory system that use the ontology. Section 5 “Validation, 
result and discussion” presents empirical results within a 
metacognitive architecture demonstrating the ability to 
generate metacognitive expectations; and the final section 
presents the conclusions of this research. 

 
2.  Materials and methods  

 
2.1.  Formal definition of expectations 

 
In this section we describe the formal representation of 

metacognitive expectation using elements of denotational 
mathematics proposed by Wang [9].  

An expectation represents a hypothesis or projection of 
current knowledge [10]. A metacognitive expectation with 
respect to the execution time of a cognitive function that is 
executed at the object-level has an observation of a 
metacognitive sensor (𝜊𝜊), an attribute of the observation that 
represents the execution time (𝜚𝜚), the expected value (𝜈𝜈) and 
the set of rules that generates the expectation (𝛲𝛲).  Formally 
a metacognitive expectation (𝜂𝜂) about observation (𝜊𝜊) is a 4-
tuple, i.e.:  

 
𝜂𝜂 ≜< 𝜊𝜊, 𝜚𝜚, 𝜈𝜈, 𝛲𝛲 >  (1) 

 
Where: 
𝜂𝜂 is an expectation about an observation ο. 
𝜊𝜊 represents an observation from a sensor 𝜍𝜍, with 𝑜𝑜 ≜<

𝜓𝜓, 𝜏𝜏, 𝜐𝜐 >, where: 
𝜓𝜓 is the instance of a profile of a cognitive function that 

is running in the object level. 
𝜏𝜏 is the current execution time of cognitive function. 
𝜐𝜐 is the unit in which the execution time is measured in 

milliseconds. 
𝜚𝜚 is an attribute of the observation 𝜊𝜊, with 𝜊𝜊 ≺ 𝜓𝜓 ≜ 𝐴𝐴𝜊𝜊 ⊃

𝐴𝐴𝜓𝜓.  𝐴𝐴𝜊𝜊 represents the set of attributes of the observation 𝜊𝜊 
from the sensor 𝜍𝜍. 𝐴𝐴𝜓𝜓 represents the set of attributes of profile 
𝜓𝜓 of a cognitive function 𝜒𝜒.  

𝜈𝜈 is expected value for the field 𝜌𝜌; the field is retrieved 
from semantic memory. With 𝜊𝜊 = 𝛽𝛽 ≜ 𝐴𝐴𝜊𝜊 = 𝐴𝐴𝛽𝛽, where 𝛽𝛽 is 
a belief in the semantic memory and 𝜚𝜚 is a common field for 
𝑜𝑜 and 𝛽𝛽. 

𝛲𝛲 is a set of rules that retrieve information from different 
types of memory in order to generate an expectation. 

 
2.2.  CARINA cognitive architecture  

 
CARINA is a meta-cognitive architecture for artificial 

intelligent agents. CARINA is derived from the MISM 
Metacognitive Metamodel [11]. CARINA integrates self-
regulation and meta-memory with support for the meta-
cognitive mechanisms of introspective monitoring and meta-
level control. In this sense CARINA assumes a functional 
approach to philosophy of mind, according to Piccinini, 
Fodor, and Scheutz [12-14]. According to Machamer, 
Darden, and Craver [15], the term ‘‘mechanism” includes 
entities and activities involving entities (i.e., including both 
static and dynamic aspects).  The entities in CARINA are 
called “cognitive elements”. 

In accordance with MISM, CARINA is composed of three 
types of cognitive elements: structural elements, functional 
elements, and basic elements. Structural elements are containers 
into which the functional and basic elements are embedded. The 
main structural element is the “Cognitive level”. The functional 
elements are tasks that enable reasoning and decision-making. 
Basic elements consist of the set of elements that participate and 
interact in reasoning and meta-reasoning processes. The main 
functional elements in CARINA are reasoning task and meta-
reasoning task. Reasoning tasks (RT) are actions that enable the 
processing (transformation, reduction, elaboration, storage and 
retrieval) of information by applying knowledge and decision 
making in order to meet the objectives of the system. A meta- 
reasoning task (MT) may be used to explain errors in some  
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Figure 1. CARINA: Cognitive architecture for artificial intelligent agents. 
Source: Image Generated by Authors 

 
 

reasoning task or it may be used to select between “cognitive 
algorithms” to perform the reasoning [16]. 

 
CARINA ≜ (OL, ML) 
Where OL ≜ (PS, SAS, RS, IS, PSS, AS, MoW)  
With PS ≜ (perception) 
SAS ≜ (situation assessment, categorization, recognition) 
RS ≜ (reasoning, belief maintenance, decision making) 
IS ≜ (interaction, communication) 
PSS ≜(planning, prediction) 
AS≜ (action) 
MoW 
 
In CARINA, object-level has stages which are sets of 

cognitive functions (CF): Perception Stage (Perception CF), 
Situation Assessment Stage (Situation Assessment CF, 
Categorization CF, and Recognition CF), Reasoning Stage 
(Reasoning CF, Belief Maintenance CF, and Decision 
Making CF), Problem Solving Stage (Planning CF and 
Prediction CF), Interaction Stage (Interaction CF and 
Communication CF) and Action Stage (Action CF) as shown 
in Fig. 1. The meta-level contains a dynamic model of the 
object-level. 

The meta-level includes the components, knowledge and 
mechanisms necessary for a system to monitor and control its 
own learning and reasoning processes. The meta-level of 
CARINA has two types of metacognition:  

ML ≜ (SR, M) 
SR ≜ (M, C) 

M≜(Identification,Detection, Explanation, Goal 
Generation) 
C ≜ (Strategy Selection) 

 MM≜ (MS, MKSS, JS, CS) 
MS ≜ (Identification, Detection) 
MKSS ≜ (Goal Generation, Explanation) 
JS ≜ (Judgment) 
CS ≜ (Strategy Selection) 

i. Self-regulation: this type of metacognition monitors and 
controls the reasoning process that takes place at the 
object-level. Self-regulation contains two stages, which 
are sets of meta-cognitive functions (MCF):  Monitoring 
Stage (Identification MCF, Detection MCF, Explanation 
MCF, and Goal Generation MCF) and Control Stage 
(Strategy Selection MCF).  

ii. Meta-memory: is a component of meta-cognition [17]. 
The meta-memory in CARINA is a mechanism that 
allows adaptation to change in the constraints of a 
memory task [18].This meta-memory mechanism 
contains four stages which are sets of metacognitive 
functions (MCF): Monitoring Stage (Identification MCF 
and Detection MCF), Meta-Knowledge Search Stage 
(Goal Generation MCF and Explanation MCF), 
Judgment Stage (Judgment MCF) and Control Stage 
(Strategy Selection MCF). 

 
3.  Model of expectations in CARINA 

 
Introspective monitoring is a meta-reasoning mechanism 

implemented at the meta-level in CARINA. Using the 
common terms of cognitive science, the notion of 
‘‘mechanism” involves both representations as well as 
cognitive mechanisms and processes operating on them [19]. 
Introspective monitoring includes mechanisms for detecting 
reasoning failures at the object-level. The main purpose of 
monitoring is to provide enough information to make 
effective decisions in the meta-level control [20]. The 
monitoring process is done through information feedback 
that is gathered at the meta-level from the object level, see 
Fig. 2. Thus, each cognitive task executed in the object level 
has a performance profile that is continuously updated in the 
meta-level. The performance profile is used to evaluate the 
results of each reasoning task. 

CARINA is conformed by two cognitive levels called 
object level and meta-level i.e. 

CARINA ≜ (OL, ML) 
The object level (OL) contains the working memory 

where the self-model is located.  
 

 
Figure 2. Process of triggering metacognitive expectations in CARINA. 
Source: Image Generated by Authors 
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According to Caro, Gomez, and Giraldo [20], when the 
cognitive function (χ) is executed at the object level with an 
input (IP), output (OP) and start time (B), a profile is 
automatically generated for the cognitive function in the self-
model with the fields. 

 
𝜓𝜓 ≜ (𝐼𝐼𝐼𝐼, 𝐵𝐵, 𝐸𝐸, 𝑆𝑆, 𝐶𝐶, 𝐼𝐼𝐼𝐼, 𝑂𝑂𝑂𝑂), with: 

𝐼𝐼𝐼𝐼 is the identifier of the cognitive function.  
𝐵𝐵 is the time stamp of when the cognitive   function 
was started. 
𝐸𝐸 is the time stamp of when the cognitive function 
is finished. 
𝑆𝑆 is the state of the cognitive function, s∈S and 
S={active, inactive} 
𝐶𝐶 is the priority level for focus attention c∈C and 
C={low, medium, high}.  
𝐼𝐼𝐼𝐼 is the set of parameters used as input of the 
cognitive function. 
𝑂𝑂𝑂𝑂 is the output of the cognitive function. 

 
The self-model contains the profile (𝜓𝜓) of the cognitive 

function (χ). The meta-level includes the necessary 
mechanisms for a system to monitor its own learning and 
reasoning processes. In the meta-level of CARINA there is a 
metacognitive sensor (ς). A metacognitive sensor is an 
element of the meta-level. The function of metacognitive 
sensor is to monitor the profile of the cognitive function; this 
sensor has a sensory memory that stores the observation (ο), 
taking into account that: 

 
𝜊𝜊 ≺ 𝜓𝜓 ≜ 𝐴𝐴𝑂𝑂 ⊃ 𝐴𝐴_𝜓𝜓                (2) 

 
In formula (2), we can appreciate the fields of profile of 

cognitive function expressed as:  Aψ  ≜ (ΙD, Β) and the fields 
that are observed AO ≜ (ID, B, E, S, C, IP, OP). 

Whereas in semantic memory a field (ρ) is created, which 
consists of the average time of execution of all cognitive 
functions. 

 

𝜚𝜚𝑒𝑒 =
∑ 𝛽𝛽𝑖𝑖 ∙ 𝜚𝜚𝜈𝜈

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 𝑊𝑊𝑊𝑊𝑊𝑊ℎ  𝜊𝜊 = 𝛽𝛽 ≜ 𝐴𝐴𝜊𝜊 = 𝐴𝐴𝛽𝛽          (3) 

 
The formula (3) is based in [10] who affirms that 

expectations may emanate from a mental process such as 
an arithmetic check of a mathematics computation [10], 
For this, formula (3) represents the average of the 
execution time where (β) represents a belief retrieved 
from the semantic memory, (o) is a fact of the observation 
that is generated in the sensorial memory taking into 
account Ao  =  Aβ. In this case, they are equivalent and the 
belief (β) is extracted from the semantic memory and all 
the values of Aβ are compared with the values of Ao. In the 
working memory the expectation is generated with the 
observation field (ρ) The expected value of the semantic 
memory is generated with the average time and the unit of 
time, which causes an expectation. This is based in [21] 
which establishes that specific mental process that forms 
an expectation may be a memory process that retrieves an 
expectation from memory. 

To verify the expectation (η) refer a set of rules (P), 
which are in the procedural memory. There are two types 

of rules to trigger and one [10] to validate; the rule we use 
is the process of triggering the expectation.  

Prospective memory is a particular type of short-term 
memory, understood as the anticipatory capacity for the 
future, where it is expected to develop at a given time and the 
expected value (ν). If the field of observation (ο) does not 
match, then a violation of expectation will be determined.. 

 
4.  Computational implementation of metacognitive 

expectations 
 
In this section we describe the internal representation of a 

metacognitive expectation and some components of memory 
system using ontology. Ontology is an explicit specification 
of knowledge level of a conceptualization, which can be 
affected by a particular domain or task, for which it has been 
created [22]. 

According to Gómes, Benjamins [23], Stojanovic, 
Maedche, Motik and Stojanovic [24]. Ontologies are 
comprised of several components: 

• A set of concepts (also known as classes) and a 
hierarchy among concepts. 

• A set of relationships between concepts.  
• A set of properties, which are a special case of 

relationship.  
• A set of axioms, rules that are always valid.  
 
 

Table 1.  
Piece of code: Structure of the cognitive ontology. 

1 ObservationField ⊑ Field 
2 ObservationCFIP ⊑ ObservationField 
3 ObservationCFP ⊑ ObservationField 
4 ObservationTime ⊑ ObservationField 

5 ObservationUnitOfTime ⊑ 
ObservationField 

6 ObservationField ⊑ Field 
7 Field ⊑ Thing 
8 MetacognitiveSensor 

9 MetacognitiveSensor ⊑ Thing 
10 CognitiveFunction ⊑ Belief 

11 CognitiveFunctionInstanceProfile ⊑ 
Belief 

12 CognitiveFunctionProfile ⊑ Belief 
13 ComputationalStrategy ⊑ Belief 
14 Number ⊑ Belief 
15 UnitOfTime ⊑ Belief 
16 CognitiveFunction ⊑ Belief 
17 Belief ⊑ SemanticMemoryUnit 
18 SemanticMeroryUnit ⊑ Thing 
19 Observation ⊑ Fact 
20 Fact ⊑ Thing 

Source: Author's own elaboration 
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4.1.  Metacognitive representation in ontology 
 
Our ontology generates a metacognitive expectation of 

time with respect to the execution of a cognitive function in 
the metacognitive architecture. The implementation of the 
ontology was done using Protégé, version 5.2.0. This tool 
allows good level of details and its interface is user-friendly. 
WOL-DL (Web Ontology Language – Description Logic) 
was the formal language used for representation, World Wide 
Web Consortium (W3C) recommends WOL-DL. In this 
context the metacognitive problem is noted as ρ.  ρ represents 
how to generate a metacognitive expectation with respect to 
the execution time of a cognitive function that is executed at 
the object level. Metacognitive expectation is represented as 
a hierarchical structure in ontology. First, the taxonomy of 
terms was created with the main concepts (classes): 
SemanticMemoryUnit. Creating subclasses Beliefs and Facts 
from derived concepts refined this hierarchy. Next, the fields 
of the Observation were defined. Malviya, Mishra, and Sahu 
define Object Properties as relationships between two 
instances of classes, whereas data properties describe 
relationships between instances and data values [25]. 

According to the structure of the ontology the classes 
depend on a super class Thing, the classes contain individuals 
and the object properties. The structure of the ontology is 
shown in Table 2 which contains an example of object and 
data properties of the cognitive ontology. 

In the object properties, the domain and the range are 
created. 

 
Table 2. 
Piece of code: Object and Data Properties 
1 hasCFIP(CogitiveFunctionInstanceProfile),

(CognitiveFunction) 

2 hasCFIP(CogitiveFunctionInstanceProfile), 
(CognitiveFunctionProfile) 

3 hasCFIP(CogitiveFunctionInstanceProfile), 
(ComputacionalStrategy) 

4 hasCFIPRunningTime(CogitiveFunctionInstan
ceProfile),(Number) 

5 hasCFIPUnitOfTime(CogitiveFunctionInstanc
eProfile), (UnitOfTime) 

6 hasCFP(CogitiveFunctionProfile),(Cogitive
FunctionInstanceProfile) 

7 hasObservation(Observation),(ObservationC
FIP) 

8 hasObservation(Observation),(ObservationC
FP) 

9 hasObservation(Observation),(ObservationT
ime) 

10 hasObservationUnitOfTime(Observation),(Ob
servationUnitOfTime) 

11 triggerRunningTimeExpectation(Observation
),(ObservationTime) 

Source: Author's own elaboration  

Table 3. 
Piece of code: ID Data Properties 
1 DataProperty(hasIDConcept) 

Source: Author's own elaboration  
 
 

Table 4. 
Piece of code: Range and Domain of the data properties 

1 hasIDConcept(SemanticMemoryUnit),(xsd:st
ring) 

Source: Author's own elaboration  
 
 

 
Figure 3. Network of concepts 
Source: Image Generated by Authors 

 
 
The data property has IDConcept which defines the 

identifier of the semantic memory unit. In the same way, the 
properties pertaining to each concept were represented as is 
shown in Table 4. 

Ontology Instantiation is implemented as a simulation of 
the process of triggering expectations in CARINA. The next 
step is the use of the ontology as a simulation of triggering 
expectations at meta-level. This work explores the role of 
different types of memories in the triggering of 
metacognitive expectations in CARINA. We use production 
rules for representing the procedural knowledge needed to 
generate a metacognitive expectation. Table 5 shows a rule 
named R1. R1 gets the current observation from the sensory 
memory and generates an expectation for the field running 
time. 

The sensorial memory contains the observation flow from 
the metacognitive sensor. In the ontology an observation has a 
relation (hasObservationCFP) that points to the profile of 
a cognitive function, and based on the observation, it looks for 
the beliefs (β) in the semantic memory to verify and extract the 
field of cognitive function profile (OCFP). Since the fact field 
of the observation must be equal to the beliefs (β), then the 
fields in the ontology should not be equal. One way to identify 
it is to make a datum of the hasIDConcept property of script 
type when the value is the same. 

As stated by Gordon, Hobbs and Cox the reasoner 
calculates some expected outcome and compares it with the 
actual outcome that constitutes the feedback [26]. The 
observation field (OCFP) and the field (ϱ) in the belief 
(BCFP) are extracted and the two script data are matched to 
obtain the execution time. 

 



Madera-Doval et al / Revista DYNA, 85(206), pp. 194-201, September, 2018. 

199 

Table 5. 
Piece of code: Rule R1. R1 gets the current observation from the sensory 
memory and generate an expectation. 
<Rule1001> 

1 Observation(?O) ∧ 
2 hasObservationCFP(?O, ?OCFP) ∧ 
3 Belief(?B) ∧ 

4 hasCFIPCognitiveFunctionProfile(?B,?BCFP) 
∧ 

5 hasIDConcept(?OCFP, ?IDO) ∧ 
6 hasIDConcept(?BCFP, ?IDB) ∧ 
7 equal(?IDO,  IDB) ∧ 
8 hasCFIPRunningTime(?B, ?RT) 

9 →triggerRunningTimeExpectation(?O,?RT) 
Source: Author's own elaboration  

 
 
hasCFIPRunningTime is the average of the sum of 

i=1 to n of the field (𝜚𝜚) in equation (3), the field (𝜚𝜚) of the 
belief about in formula (3), the field (𝜚𝜚) of the belief is 
automatically extracted in a new relationship called 
triggerRunningTimeExpectation. 

 
4.1.  Validation, result and discussion 

 
An experiment was conducted to validate the 

performance of the model and its ability to generate 
expectations regarding the execution time of cognitive 
functions that are executed in the object-level of a cognitive 
agent based on CARINA. The syntactic analysis of a 
sentence was the cognitive task of the real world used in the 
experiment. In this experiment a cognitive agent identified 
the different grammatical categories in which the words of 
the language are grouped. These categories include the 
word’s meaning, its grammatical function and the way in 
which it is structured, combined and modified. 

The Left-corner is the algorithm implemented in the 
cognitive agent to decide if the chain of input symbols is a 
sentence in a given language. The algorithm determines the 
syntactic structure of the sentence according to a grammar [27]. 

We collect data from 200 executions of the cognitive task in 
CARINA, varying the available resources such as the size of the 
content of the semantic memory with respect to the domain of the 
cognitive task. Figure 4 shows the results of CARINA in terms of 
the expectations created with respect to the observations of the 
profile of cognitive functions that were executed in each cognitive 
cycle at object-level. The x-axis represents the 12 cognitive 
functions that were executed in CARINA to perform the cognitive 
task. The y-axis represents the execution time in milliseconds. 

The blue bars represent the run-time expectation of 12 
cognitive functions that were executed in CARINA to 
perform the cognitive task. CARINA calculates the run-time 
values using equation (3).  The blue lines represent the 
observed runtime values at a time ti. This is a clear example 
of the functionality of the model, because it generates 
expectations for each observation and is able to compare 
them against the observed values in real time.  

 
Figure 4. Metacognitive Expectations about Running Time of Cognitive 
Functions 
Source: Image Generated by Authors 

 
 

 
Figure 5. New generated relationship 
Source: Image Generated by Authors 

 
 
The scope of this investigation only applies to the 

generation of execution time expectations. In this sense, the 
model tests demonstrate the ability to generate expectations 
and the possibility of detecting anomalies in the expected 
execution times for cognitive functions. An interesting aspect 
for future investigations is to analyze the reasoning trace of 
the function that presents the anomaly, with the goal to 
determine the cause and possible corrective actions. 

Another type of result obtained in this research was in 
terms of the conceptual advance of an expectation, the formal 
mathematical representation, the design of ontology and the 
model as an implementation mechanism. The cognitive 
ontology for reasoning about expectations in CARINA 
architecture facilitates the visualization of the expectations 
generated from the observations of the profiles of cognitive 
functions, as shown in Figure 5.  

In Figure 5, the new relationship in ontology represents 
an expectation generated by the CARINA meta-level in the 
process of introspective monitoring. This result is promising 
because it will serve as a basis for the implementation of 
predictive capabilities of introspective monitoring in Carina's 
meta-level. 

 
5.  Conclusions 

 
In this paper we have proposed an ontology based on an 

approach to automatically generate Metacognitive 
expectation about observations of the self-model. The 
ontology is based on [28], In this way, formal model 
represents the average of the execution time of a cognitive 
function executed at the object-level, using elements of the 
denotational mathematics proposed by Wang [9]. In this 
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formal model, the beliefs (β) (stored in semantic memory), 
and the observation process of facts (o) (stored in sensorial 
memory), are compared, expecting that Ao =  Aβ. In the 
working memory, the expectation is generated with the 
observation field (ρ), the expected value of the semantic 
memory (average running time of cognitive function) and the 
unit of time of execution. 

Cognitive Ontology allowed us to develop a reasoning 
test according to a specific cognitive task in the CARINA 
Metacognitive Architecture. In this test, we applied rules that 
represent the necessary procedural knowledge to trigger the 
metacognitive expectations. 

Also, the cognitive ontology resulted in the tracing and 
interchange of information process among different kind of 
memories, such as: sensorial memory, semantic memory, 
procedural memory, prospective memory and working 
memory. The above reaffirms what is proposed by Cox “a 
specific mental process that forms an expectation may be a 
memory process that retrieves an expectation from memory” 
[29]. This work provides advances in the implementation of 
metacognitive mechanisms such as introspective monitoring 
in CARINA architecture. 
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