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Abstract 
This paper presents a methodology for determining the optimal supply chain design with economic, environmental and risk management 
considerations. A multi-objective model based on mixed integer programming is proposed seeking three objectives: First, to minimize the 
total cost of transportation and the costs associated to the use of intermediate nodes. Second, to minimize the risks of product losses in 
transportation. Third, to minimize the environmental impact of CO2 emissions produced by transportation and storage operations. The 
proposed model is solved with two approaches: First, a commercial solver to compute the Pareto-optimal set of solutions. Second, a 
simulation-based optimization approach that allows to obtain statistically different but efficient solutions such that the decision-maker will 
be able to trade-off objectives while considering only Pareto optimal solutions. Experiments on random instances demonstrate the capability 
of the models and methods.  
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Técnicas de simulación-optimización para el diseño de cadenas de 
abastecimiento de ciclo cerrado con múltiples objetivos 

 
Resumen 
El objetivo de este trabajo es determinar el diseño óptimo para una cadena de suministro de tres eslabones de acuerdo a consideraciones 
económicas, ambientales y de gestión de riesgo. Se plantea un modelo de programación entera mixta que busca simultáneamente: Primero, 
minimizar el costo total del transporte y el costo asociado al uso de nodos intermedios; Segundo, minimizar las pérdidas de producto en el 
transporte como factor de riesgo; Tercero, minimizar el impacto ambiental por emisiones de CO2 en cada una de las conexiones y nodos. 
El modelo se resuelve utilizando un método exacto y métodos de optimización vía simulación que permiten obtener distintas soluciones de 
tal manera que el usuario podrá escoger de acuerdo a sus prioridades. Experimentos en instancias aleatorias demuestran la capacidad de 
los modelos y métodos propuestos. 
 
Palabras clave: diseño de cadena de abastecimiento; riesgo; sostenibilidad; simulación. 

 
 
 

1.  Introduction 
 
A firm is considered to be successful when it positions its 

brand on the market with profitable operations. This is 
achieved by an efficient supply chain that allows managing 
the resources strategically. In this manner, accomplishing 
satisfactory service levels and highly attractive margins result 
in a differentiating advantage. 

Configuring a supply chain design requires coordinating 
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the flow of goods, money, and information between 
suppliers, manufacturers, distributors and retailers [1,2]. At 
the design stage of a supply chain, coordination is performed 
considering the decisions of facility location and 
transportation of goods in order to achieve high performance.  

The performance of a supply chain design is often 
measured as the total cost of inventory management, 
transportation, and the fixed cost of using the facilities and 
other resources. Nevertheless, current requirements of the 
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environment force companies to consider other performance 
metrics to evaluate the sustainability of the operations. Thus, 
operational risks, social impacts and environmental aspects 
must be considered in the decision making process of 
designing supply chains.  

This paper proposes to study a non-hierarchical, or non-
tier, supply chain design problem. This means that the 
product is shipped to the customers through different network 
levels, without any hierarchical sequences. E.g.: Products can 
be supplied directly from the production center or through 
intermediate nodes without any specific order.  

Moreover, this work will use as solution method the 
combination of optimization models and Monte Carlo 
simulation. This represents a powerful development, since 
simulation enables to examine impacts while taking into 
account variability of the parameters, which makes the model 
to represent more realistic situations and to gain confidence 
in the solutions.  

Then, the main contribution of the article is to carry out a 
comprehensive study of a supply chain design problem with 
the following features: 1) A supply chain design model with 
a generic structure is analyzed, by assuming a non-
hierarchical closed-loop configuration, which generalizes the 
topology of a hierarchical supply chain. 2) Three objective 
functions are involved in the decision-making process in 
order to tackle the green challenge of supply chain designs 
and the trade-off with profitability. These objectives are 
associated to the economic, environmental, and risk 
dimensions of the considered operations. 3) Variability of the 
performance indicators associated to uncertainty is studied by 
integrating simulation techniques while evaluating the 
performance of the supply chain designs.  

This paper is structured as follows: section 2 presents the 
state of the art, section 3 presents the proposed mathematical 
model, section 4 corresponds to the methodologies of 
developed solutions, and sections 5 and 6 present the results 
and the conclusions, accordingly. 

 
2.  State of the art 

 
The supply chain refers to all activities related to the flow 

and transformation of goods and services from raw materials to 
final consumption [3]. Supply chain management can be 
classified into two broad categories: configuration and 
coordination. First, the configuration relates to the high-level 
design and the basic infrastructure of the supply chain. On the 
other hand, coordination is related to tactical and operational 
decisions [4]. This work is focused on the configuration 
category, which integrates elements of risk management and 
sustainability. For this reason, the literature review is presented 
around these concepts and their relationship. 

Closed-loop supply chains are defined by Guide & Van 
Wassenhove [5] as the design, control and operation of a 
system to maximize the value creation over a product’s life 
cycle. The literature on the topic shows that progressive 
attention is focused on public awareness and laws to make 
the designs less harmful for the environment [6]. A closed-
loop supply chain includes the concept of reverse logistics, in 
which residuals are collected at the customer after 
consumption to be recycled or destroyed.  

Some works in the literature propose different approaches 
and variables to take into account relevant variables such as 
the prices, which affect the demand and thus the flow [7], 
provider’s ratings [8], as well as the extensions to more than 
one distribution channel [9], and even for more than one 
period [10]. Hierarchical models that take into account social 
and environmental impacts are proposed by [11] or diverse 
combinations of the previous ones, adding variables such as 
multi period time horizon [12]. 

Specifically, the design of supply networks that involve 
more than one objective to be optimized, comprises a wide 
variety of works that include objectives of different nature 
such as the minimization of transportation costs based on risk 
neutral criteria [13], economic and environmental 
performance according to life cycle assessment (LCA) 
principles [14], minimization of total daily cost and 
environmental impacts when applied to a hydrogen supply 
chain [15], decision analysis of a supply network integrating 
costs, customer service, and volume of deliveries [16]. 

According to the supply chain design supported in 
different models, environmental issues have not always been 
integrated to these models, or have not been evaluated 
explicitly. Nonetheless, based on the review by 
Eskandarpoura, Dejaxa, Miemczykb & Péton [17], it is 
concluded that some models include one measure regarding 
the environment and the social impact, either in the objective 
function or in the model constraints, while optimizing 
decisions related to the supply chain design, including 
location of facilities, means of transportation, design of 
production processes, technological options, among others 
[17]. This dimension has been treated with models such as: 
Life Cycle Assessment, reasoning maps, Analytic Hierarchy 
Process, Analytic Network Process, Data Envelopment 
Analysis, equilibrium models, simulation, and others. The 
main measure to estimate environmental impacts is based on 
carbon emission indicators, wastes, energetic consumption 
and recycled material [18]. Authors like Quariguasi Frota 
Neto, Bloemhof-Ruwaard, van Nunen, & van Heck [19] 
show that advantages of solving problems using multi-
objective programming. 

Additionally, regarding risk management, the literature shows 
that several works have been formulated for supply chain design 
models considering some kind of risk. For example, a multi-
objective stochastic programming for the supply chain design 
considering financial risks is proposed in [20]; a stochastic model 
for risk management in global supply chain networks of multiple-
stage, incorporating demand, exchange rate and the disruption 
risks is presented in [21]; a case-oriented approach to a lead-acid 
battery closed-loop supply chain network design under risk and 
uncertainty is studied in [22]; [23] presents a conceptual model for 
managing supply chain network risk. Tuncel and Alpan [24] 
propose the use of Petri nets to model and analyze a supply chain 
network subject to various risks. Moreover, simulation is a 
powerful tool to evaluate scenarios of the supply chain and to 
generate different options to improve operations. Further, tools for 
measuring and managing risks have been proposed, such as the 
"Supply Chain Resilience Assessment and Management 
(SCRAM™)". This tool focuses on environmental risks only and 
has proven to increase of the recovery capacity and a higher 
performance of the supply chain [25].    
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Table 1. 
Literature review  

Author Sust. Risk Uncert. 
Azarona, Browna, Tarima, & Modarrese 
[20]  X X 

Pan & Nagi[28]   X 
El-Sayed, Afia, & El-Kharbotly [29]  X  
PrasannaVenkatesan & Kumanan [30]  X  
Pishvaee & Razm [31] X  X 
Pishvaee, Razmi, & Torabi [32]  X  X 
Ruiz-Femenia, Guillén-Gosálbez, Jiménez, 
& Caballero [33] X  X 

Hamed & Govindan [34] X X  
Yang, Liu, & Yang [13]  X X 
Nooraie & Mellat Parastb[35]   X  
Jindal & Sangwan [36] X  X 
Mota, Gomes, Carvalho, & Barbosa-
Povoa[37] X   
Montoya-Torres[38] X   

Source: Own elaboration 
 
 
For this work the solution methods are based on 

methodologies that combine simulation with optimization. 
The integration of optimization with simulation, is a process 
whose objective is to minimize the resources spent while 
maximizing the information obtained in a simulation 
experiment [26]. Simulation-optimization techniques have 
been used for a few decades, firstly with a stochastic 
approximation during the 1950s. However, this technique has 
become more powerful in recent years due to the increase in 
computational capacity, that allowed providing alternative 
solutions of high-quality systems and promoting the 
introduction of uncertainty and risks [27]. Some examples of 
this kind of methods include the following: search methods 
based on probability gradients, finite differences and 
perturbation analysis; stochastic optimization; Surface 
response methodology; Heuristic methods such as genetic 
algorithms, evolutionary strategies and statistical methods 
such as classification and selection [27]. 

Table 1 summarizes relevant works of this literature 
review, developed in the last decade, which highlights 
interesting features of the chain design problems: 
sustainability (Sust), the risks (Risk) and other sources of 
uncertainty (Uncert.), as applicable: 

According to the review developed, it is concluded that 
several authors have worked on subjects related to supply 
chain design, risks and sustainability, while including 
uncertainty in order to consider variability of parameters. 
However, it is not common to find works that explicitly 
consider these aspects under uncertainty in an integral 
manner. Furthermore, stochastic programming modeling 
techniques predominate over simulation techniques as a 
solution tool. Nevertheless, it is well known that simulation 
techniques are more flexible and scalable to tackle large scale 
design problems. 

 
3.  Mathematical formulations 

 
We consider a supply chain (SC) composed by 6 levels or 

echelons. Four levels are available to connect the production 
sites with the nodes representing the final customers. Further, 
two additional levels are included: one for recollection sites  

 
Figure 1. Supply network graph. 
Source: Own elaboration 

 
N1: Level 1; N2: Level 2; N3: Level 3; N4: Level 4; N5: 

Level 5; N6: Level 6. 
 

for collecting recyclable materials such as packing boxes, and 
the second one are destruction sites for the non recyclable 
waste. The assumptions made for the proposed model are the 
following: First, to satisfy the final customer’s demand (at 
level 4 of the SC), the product is delivered from the 
production centers (level 1) and distributed through 
warehouses or distribution centers, passing through retailers 
if necessary (levels 2 and 3, accordingly). Each facility is 
characterized for having a limited capacity, with known costs 
associated to CO2 emissions when the node is used.  

Product transportation can be performed by two types of 
vehicles (Type I and Type II) whose characteristics change 
according to load capacity, cost, and the amount of CO2 
emissions. Product may flow within the facilities at the same 
level of at different levels until the consumption nodes.  

Additionally, product flow decisions consider a 
proportion to product loss in the arcs previous to customer 
delivery as a risk measure. After the product fulfils its 
function with the final customer, a proportion of this is picked 
and transported towards recollection centers (level 5). There, 
the selection process to decide whether the product can return 
to the plants to be reused or if it is sent to a destruction level 
is made (level 6). At this stage of the network, the closed-
cycle is implemented. In Fig. 1, the studied network is shown. 

The problem can be formulated using the following 
notation. A directed, completed and weighted graph 
G={N,A} is defined, consisting of a set of nodes N, which 
represents the total number of facilities and customers of the 
supply chain. This set N includes the following subsets: 

N1: Set of production plants 
N2: Set of distribution centers 
N3: Set of retailers 
N4: Set of customers 
N5: Set of collection centers 
N6: Set of destruction centers 
Additionally, the graph consists of a set of directed arcs 

𝐴𝐴 composed of the following arcs:  
𝐴𝐴1 : Arcs connecting production plants (𝑁𝑁1) to 

distribution centers (𝑁𝑁2) 
𝐴𝐴2 : Arcs connecting production plants (𝑁𝑁1) to retailers 



Guerrero et al / Revista DYNA, 85(206), pp. 202-210, September, 2018. 

205 

(𝑁𝑁3) 
𝐴𝐴3 : Arcs connecting production plants (𝑁𝑁1) to customers 

(𝑁𝑁4) 
𝐴𝐴4 : Arcs connecting distribution centers (𝑁𝑁2) to retailers 

(𝑁𝑁3) 
𝐴𝐴5 : Arcs connecting distribution centers (𝑁𝑁2) to 

customers (𝑁𝑁4) 
𝐴𝐴6 : Arcs connecting retailers (𝑁𝑁3) to customers (𝑁𝑁4) 
𝐴𝐴7 : Arcs connecting customers (𝑁𝑁4) to collection centers 

(𝑁𝑁5) 
𝐴𝐴8 : Arcs connecting collection centers (𝑁𝑁5) to 

destruction centers (𝑁𝑁6) 
𝐴𝐴9 : Arcs connecting collection centers (𝑁𝑁5) to production 

plants (𝑁𝑁1) 
A set of transport modes 𝑀𝑀 and a set of product types 𝑇𝑇 =
{𝑛𝑛𝑛𝑛𝑛𝑛, 𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑} are considered. Furthermore, the 
following model parameters are considered:  
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 
𝑇𝑇 : Unitary transportation cost in the arc (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 

using transportation mode 𝑚𝑚 ∈ 𝑀𝑀   
𝐶𝐶𝑢𝑢𝐹𝐹:   Financial cost for using the intermediate node 𝑢𝑢 ∈

𝑁𝑁2  ∪ 𝑁𝑁3 
𝐶𝐶𝑡𝑡𝑖𝑖𝑃𝑃:   Unitary production cost of product type 𝑡𝑡 ∈ 𝑇𝑇 at 

production plant 𝑖𝑖 ∈ 𝑁𝑁1  
𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇 : Unitary CO2 emissions for transporting product in 

the arc (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 using transportation mode 𝑚𝑚 ∈ 𝑀𝑀   
𝐸𝐸𝑢𝑢𝐹𝐹: CO2 emissions for using the intermediate node 𝑢𝑢 ∈

𝑁𝑁2  ∪ 𝑁𝑁3 
𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖: Percentage of product loss in the arc (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 with 

transportation mode 𝑚𝑚 ∈ 𝑀𝑀   
𝑄𝑄𝑢𝑢: Reception and processing capacity at node 𝑢𝑢 ∈

𝑁𝑁1 ∪  𝑁𝑁2 ∪ 𝑁𝑁3 ∪ 𝑁𝑁5 ∪ 𝑁𝑁6 
𝐷𝐷𝑖𝑖 : Customer’s product demand in node 𝑗𝑗 ∈ 𝑁𝑁4 
𝛼𝛼𝑖𝑖: Expected proportion of product recovered from 

customers 𝑗𝑗 ∈ 𝑁𝑁4 to be taken to collection centers.  
𝛽𝛽𝑘𝑘: Expected proportion of product recovered from the 

collection center 𝑘𝑘 ∈ 𝑁𝑁5 to be sent back to 
production centers. 

𝐻𝐻: Very large number. 
The proposed decision variables define the product flow 

on the network and activate the corresponding costs.  
𝑃𝑃𝑡𝑡𝑖𝑖 : Amount of product type 𝑡𝑡 ∈ 𝑇𝑇 manufactured in the 

production center 𝑖𝑖 ∈ 𝑁𝑁1  
𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖:  Amount of product to transport in the arc (𝑖𝑖, 𝑗𝑗) ∈

𝐴𝐴1 ∪ 𝐴𝐴2 ∪ 𝐴𝐴3 ∪ 𝐴𝐴4 ∪ 𝐴𝐴5 ∪ 𝐴𝐴6 by transportation 
mode 𝑚𝑚 ∈ 𝑀𝑀.   

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖: Amount of product to transport in the arc (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴7 
by transportation mode 𝑚𝑚 ∈ 𝑀𝑀   

𝑍𝑍𝑘𝑘𝑘𝑘𝑖𝑖: Amount of product to transport in the arc (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴8 
by transportation mode 𝑚𝑚 ∈ 𝑀𝑀   

𝑅𝑅𝑘𝑘𝑖𝑖𝑖𝑖: Amount of product to transport in the arc (𝑖𝑖, 𝑗𝑗) ∈
𝐴𝐴9 by transportation mode 𝑚𝑚 ∈ 𝑀𝑀   

𝐵𝐵𝑢𝑢 =  1 , if the node 𝑢𝑢 ∈ 𝑁𝑁2  ∪ 𝑁𝑁3 is used to transport the 
product. 0, otherwise. 

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 = 1, if the arc (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 is used with the means of 
transport 𝑚𝑚 ∈ 𝑀𝑀. 0, otherwise. 

The proposed model seeks to optimize simultaneously the 
following three objectives: 
1. Minimizing the total transportation cost + fixed cost of 

using nodes (location cost) + production cost. This is 
expressed in eq. (1). 

𝑀𝑀𝑖𝑖𝑛𝑛 𝐴𝐴 =  ∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 
𝑇𝑇 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑖𝑖)∈𝐴𝐴1∪𝐴𝐴2∪𝐴𝐴3∪𝐴𝐴4∪𝐴𝐴5∪𝐴𝐴6𝑖𝑖∈𝑀𝑀 +

 ∑ 𝐶𝐶𝑢𝑢𝐹𝐹𝐵𝐵𝑢𝑢𝑢𝑢∈𝑁𝑁2∪𝑁𝑁3 + ∑ ∑ 𝐶𝐶𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖 +𝑖𝑖∈𝑁𝑁1𝑡𝑡∈𝑇𝑇
 ∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 

𝑇𝑇 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑖𝑖)∈𝐴𝐴7𝑖𝑖∈𝑀𝑀 + ∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 
𝑇𝑇 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑖𝑖)∈𝐴𝐴8𝑖𝑖∈𝑀𝑀 +

 ∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 
𝑇𝑇 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑖𝑖)∈𝐴𝐴9𝑖𝑖∈𝑀𝑀        (1) 

 
2. Minimizing the total amount of CO2 emissions in 

transportation, and the operations at nodes. This is 
expressed by eq. (2). 

 
𝑀𝑀𝑖𝑖𝑛𝑛 𝐺𝐺 =  ∑ ∑ 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 

𝑇𝑇 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑖𝑖)∈𝐴𝐴𝑖𝑖∈𝑀𝑀  +  ∑ 𝐸𝐸𝑢𝑢𝐹𝐹𝐵𝐵𝑢𝑢𝑢𝑢∈𝑁𝑁2∪𝑁𝑁3   (2) 
 

3. Minimizing the risk of product losses in transportation, 
computed by eq. (3). 
 

𝑀𝑀𝑖𝑖𝑛𝑛 𝑄𝑄 = ∑ ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑖𝑖)∈𝐴𝐴1∪𝐴𝐴2∪𝐴𝐴3∪𝐴𝐴4∪𝐴𝐴5∪𝐴𝐴6𝑖𝑖∈𝑀𝑀 +
 ∑ ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑖𝑖)∈𝐴𝐴7𝑖𝑖∈𝑀𝑀 +  ∑ ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑖𝑖)∈𝐴𝐴9𝑖𝑖∈𝑀𝑀      (3) 
 
The model is subject to the following constraints: 
First, the demand must be completely fulfilled at each 

demand node: 
 

∑ ∑ (1 − 𝑆𝑆𝑖𝑖𝑗𝑗𝑚𝑚)𝑋𝑋𝑖𝑖𝑗𝑗𝑚𝑚𝑖𝑖 | (𝑖𝑖,𝑗𝑗)∈𝐴𝐴1∪𝐴𝐴2∪𝐴𝐴3∪𝐴𝐴4∪𝐴𝐴5∪𝐴𝐴6 ≥ 𝐷𝐷𝑗𝑗  ∀ 𝑗𝑗 ∈𝑚𝑚∈𝑀𝑀

𝑁𝑁4                                (4) 
 
Also, the SC has limited capacities. Thus, eq. (5) limits 

the reception capacity of products at each node.  
 

∑ ∑ 𝑋𝑋𝑖𝑖𝑢𝑢𝑚𝑚𝑖𝑖 | (𝑖𝑖,𝑢𝑢)∈𝐴𝐴1∪𝐴𝐴2∪𝐴𝐴4 ≤ 𝑄𝑄𝑢𝑢𝐵𝐵𝑢𝑢  ∀ 𝑢𝑢 ∈ 𝑁𝑁2  ∪ 𝑁𝑁3𝑚𝑚∈𝑀𝑀   (5) 
 
Eq. (6) limits the production and reception capacity at 

each production center: 
 

∑  𝑃𝑃𝑡𝑡𝑖𝑖𝑡𝑡∈𝑇𝑇 ≤ 𝑄𝑄𝑖𝑖 ∀ 𝑖𝑖 ∈ 𝑁𝑁1               (6) 
 
Eq. (7) limits the amount of products that leave each 

production plant to be equal to the existing products: 
 
∑ ∑ 𝑋𝑋𝑖𝑖𝑗𝑗𝑚𝑚𝑗𝑗 | (𝑖𝑖,𝑗𝑗)∈𝐴𝐴1∪𝐴𝐴2∪𝐴𝐴3  = 𝑚𝑚∈𝑀𝑀  ∑  𝑃𝑃𝑡𝑡𝑖𝑖𝑡𝑡∈𝑇𝑇   ∀𝑖𝑖 ∈ 𝑁𝑁1  (7) 

 
Eq. (8) limits the reception capacity of products going 

from the collection center to each plant: 
 
∑ ∑ 𝑅𝑅𝑘𝑘𝑖𝑖𝑚𝑚(1 −  𝑆𝑆𝑘𝑘𝑖𝑖𝑚𝑚)𝑚𝑚∈𝑀𝑀𝑘𝑘|(𝑘𝑘,𝑖𝑖)∈𝐴𝐴9 ≤ 𝑄𝑄𝑖𝑖 ∀ 𝑖𝑖 ∈ 𝑁𝑁1     (8) 

 
Eq. (9) limits the reception capacity of products at 

collection centers.  
 

∑ ∑ 𝑌𝑌𝑗𝑗𝑘𝑘𝑚𝑚�1−  𝑆𝑆𝑗𝑗𝑘𝑘𝑚𝑚�𝑚𝑚∈𝑀𝑀𝑗𝑗|(𝑗𝑗,𝑘𝑘)∈𝐴𝐴7 ≤ 𝑄𝑄𝑘𝑘   ∀ 𝑘𝑘 ∈ 𝑁𝑁5  (9) 
 
The following constraints coordinate the decision 

variables. Eq. (10) forces that if an arc is used, the associated 
nodes must be used: 

 
� � 𝑊𝑊𝑖𝑖𝑢𝑢𝑚𝑚

𝑚𝑚∈𝑀𝑀𝑖𝑖|(𝑖𝑖,𝑢𝑢)∈𝐴𝐴1∪𝐴𝐴2∪𝐴𝐴3∪𝐴𝐴4

≤ 𝐵𝐵𝑢𝑢𝑄𝑄𝑢𝑢  

∀𝑢𝑢 ∈ 𝑁𝑁2 ∪ 𝑁𝑁3                   (10) 
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Eq. (11)-(15) coordinate the integer and binary decision 
variables associated with transportation decisions: 

 
𝐻𝐻 ⋅ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖   ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴1 ∪ 𝐴𝐴2 ∪ 𝐴𝐴3 ∪ 𝐴𝐴4 ∪

𝐴𝐴5  ∪ 𝐴𝐴6 ,∀ 𝑚𝑚 ∈ 𝑀𝑀                                                       
(11) 

 
     𝐻𝐻 ⋅ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖   ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴7 ,∀ 𝑚𝑚 ∈ 𝑀𝑀              (13) 

 
    𝐻𝐻 ⋅ 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖   ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴8 ,∀ 𝑚𝑚 ∈ 𝑀𝑀              (14) 

 
    𝐻𝐻 ⋅ 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖   ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴9 ,∀ 𝑚𝑚 ∈ 𝑀𝑀               (15) 

 
Eq. (16)-(19) are flow conservation constraints. The 

amount of product arriving at a destination node must be 
equal to the flow minus the proportion of product lost on the 
arc depending on the mode of transportation: 

 
 ∑ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀 (1 − 𝑖𝑖|(𝑖𝑖,𝑖𝑖)∈𝐴𝐴1∪𝐴𝐴2∪𝐴𝐴3∪𝐴𝐴4 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖) =
∑ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀  𝑖𝑖|(𝑖𝑖,𝑖𝑖)∈𝐴𝐴4∪𝐴𝐴5∪𝐴𝐴6 ∀ 𝑗𝑗 ∈ 𝑁𝑁2 ∪ 𝑁𝑁3                  (16) 

 
∑ ∑ 𝑋𝑋𝑖𝑖𝑗𝑗𝑚𝑚𝑚𝑚∈𝑀𝑀 (1 − 𝑖𝑖|(𝑖𝑖,𝑗𝑗)∈𝐴𝐴3∪𝐴𝐴5∪𝐴𝐴6 𝑆𝑆𝑖𝑖𝑗𝑗𝑚𝑚) =
∑ ∑ 𝑌𝑌𝑗𝑗𝑘𝑘𝑚𝑚  ∀ 𝑗𝑗 ∈ 𝑁𝑁4𝑚𝑚∈𝑀𝑀  𝑘𝑘∈𝑁𝑁5                                            (17) 

 
� � 𝑌𝑌𝑖𝑖𝑘𝑘𝑖𝑖�1−  𝑆𝑆𝑖𝑖𝑘𝑘𝑖𝑖�

𝑖𝑖∈𝑀𝑀

 
𝑖𝑖|(𝑖𝑖,𝑘𝑘)∈𝐴𝐴7

= � � 𝑅𝑅𝑘𝑘𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑀𝑀

+ � � 𝑍𝑍𝑘𝑘𝑘𝑘𝑖𝑖
𝑖𝑖∈𝑀𝑀

 
𝑘𝑘|(𝑘𝑘,𝑘𝑘)∈𝐴𝐴8

∀ 𝑘𝑘 ∈ 𝑁𝑁5
i|(𝑘𝑘,𝑖𝑖)∈𝐴𝐴9

 

………………………………………………………...          (18) 
 
Eq. (19) guarantees that the amount of product arriving at 

the production centers from the collection center must be 
equal to the amount of products recovered, discounting the 
loss factor: 

∑ ∑ 𝑅𝑅𝑘𝑘𝑖𝑖𝑖𝑖  (1 −  𝑆𝑆𝑘𝑘𝑖𝑖𝑖𝑖)𝑖𝑖∈𝑀𝑀𝑘𝑘|(𝑘𝑘,𝑖𝑖)∈𝐴𝐴9 = 𝑃𝑃1𝑖𝑖    ∀𝑖𝑖 ∈ 𝑁𝑁1  (19) 
Eq. (29) guarantees that the expected proportion of 

products is sent from the customers to the collection centers: 
∑ ∑ 𝑌𝑌𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖∈𝑀𝑀 ≥   𝑘𝑘∈𝑁𝑁5 𝛼𝛼𝑖𝑖𝐷𝐷𝑖𝑖    ∀𝑗𝑗 ∈ 𝑁𝑁4                         (20) 
Eq. (21) and (22) guarantee that the products fraction 

must be sent from the collection centers to the nodes of origin 
and to the destruction centers: 

 
� � 𝑅𝑅𝑘𝑘𝑖𝑖𝑖𝑖

𝑖𝑖∈𝑀𝑀

≥ 
𝑖𝑖∈𝑁𝑁1 

𝛽𝛽𝑘𝑘  � � 𝑌𝑌𝑖𝑖𝑘𝑘𝑖𝑖
𝑖𝑖∈𝑀𝑀 

�1− 𝑆𝑆𝑖𝑖𝑘𝑘𝑖𝑖� 
𝑖𝑖∈𝑁𝑁4

∀𝑘𝑘 ∈ 𝑁𝑁5 

 
� � 𝑍𝑍𝑘𝑘𝑘𝑘𝑖𝑖

𝑖𝑖∈𝑀𝑀

≥ 
𝑘𝑘∈𝑁𝑁6

(1− 𝛽𝛽𝑘𝑘) � � 𝑌𝑌𝑖𝑖𝑘𝑘𝑖𝑖
𝑖𝑖∈𝑀𝑀

�1 − 𝑆𝑆𝑖𝑖𝑘𝑘𝑖𝑖�
𝑖𝑖∈ 𝑁𝑁4

 

∀𝑘𝑘 ∈ 𝑁𝑁5              (21) 
 

Eq. 22 guarantees that the customer’s demand is fulfilled 
completely from a single source by using a unique 
transportation mode, where split deliveries are not allowed: 

 
∑ ∑ 𝑊𝑊𝑖𝑖𝑗𝑗𝑚𝑚𝑚𝑚∈𝑀𝑀  𝑖𝑖|(𝑖𝑖,𝑗𝑗)∈𝐴𝐴 = 1 ∀ 𝑗𝑗 ∈ 𝑁𝑁4                     (22) 

 
The following equations define the nature of the decision 

variables:  

𝐵𝐵𝑢𝑢  ∈  {0, 1}        ∀ 𝑢𝑢 ∈ 𝑁𝑁2  ∪ 𝑁𝑁3 
𝑊𝑊𝑖𝑖𝑗𝑗𝑚𝑚  ∈  {0, 1}   ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,∀ 𝑚𝑚 ∈ 𝑀𝑀  
𝑋𝑋𝑖𝑖𝑗𝑗𝑚𝑚 ≥ 0 ,   ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴1 ∪ 𝐴𝐴2 ∪ 𝐴𝐴3 ∪ 𝐴𝐴4 ∪ 𝐴𝐴5 ∪ 𝐴𝐴6,
∀ 𝑚𝑚 ∈ 𝑀𝑀   
𝑌𝑌𝑖𝑖𝑗𝑗𝑚𝑚 ≥ 0 , ∀  (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴7 ,∀ 𝑚𝑚 ∈ 𝑀𝑀 
𝑍𝑍𝑖𝑖𝑗𝑗𝑚𝑚 ≥ 0  ∀  (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴8 ,∀ 𝑚𝑚 ∈ 𝑀𝑀 
𝑅𝑅𝑖𝑖𝑗𝑗𝑚𝑚 ≥ 0  ∀  (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴9 , ∀ 𝑚𝑚 ∈ 𝑀𝑀 

 
4.  Proposed solution methodology 

 
Three methods to solve the proposed problem are 

compared. These methods are classified according to the 
solution technique. The first one is based on mixed integer 
linear programming. The other methods include optimization 
and simulation. Combining optimization with simulation 
allows generating attractive solutions for the different 
objectives exposed, where simulation is a tool to replicate 
scenarios with several values for random variables. 

 
4.1.  Methods based on mixed-integer programming  

 
Solving a multi-objective problem requires to compute a 

number of solutions belonging to the Pareto-optimal set. The 
solution method chosen is the ε-constraint implemented as in 
Mavrotas [39]. It is briefly described next. 

Consider the following multi-objective problem where x 
∈ S, is a decision variable vector in the search space S. Let f1 
(x),.., Fp (x) be objective functions. 

In the ε-constraint method, one of the objective functions is 
optimized by using the other objective functions as constraints. 
Thus, iteratively, each constraint is allowed to deteriorate to 
improve the performance of other objective functions.  

 Max F1(x) 
Subject to: 
F2(x) ≥e2 
F3(x) ≥e3 

… 
Fp(x) ≥ep 
x ∈ S 

As performance measures for multi-objective 
optimization the hyper-volume, spread measure and spacing 
are typically used for multi-objective problems [40]. 

 
4.2.  Methods based on optimization via simulation 

 
Simulation has the advantage of being a tool that 

replicates situations with many relations among variables. A 
simulation engine is developed in VBA running with MS 
Excel and with the optimization model implemented in 
GAMS. This integration allows computing attractive 
solutions to solve the proposed objectives. Two different 
approaches are studied. Each one is explained next: 

 
4.3.  Approach 1: First stage: optimization. Second stage: 

simulation 
 
This approach is developed by using the following 

method: First, the solutions of the Pareto-optimal set for the 
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problem are obtained by using the ε-constraint method. Then, 
by using simulation methods, the solutions that do not show 
statistically significant differences are deleted. The steps for 
this method are the following:  
1. Compute the Pareto optimal set of solutions using the 

method described in [40]. 
2. Each solution in the Pareto-optimal set is simulated in the 

SC simulation engine. This simulation varies the costs, 
CO2 emissions, and the proportion of product losses with 
a known probability distribution. The confidence interval 
is determined for each objective function with a defined 
significance level of 5%. The number of iterations in this 
step must be determined by the decision maker. 

3. Then, the dominance of the solutions is analyzed by comparing 
all of them. The Pareto Set of solutions is said to be set of 
statistically non- dominated solutions. Thus, a solution is said 
to dominate another if there is at least a single objective that is 
statistically better without deteriorating the others. 

4. When the solutions are classified, the total set of 
statistically different solutions is shown. With this input, 
the decision maker may select the one that fits better for 
the specific case.  
 

4.4.  Approach 2: Optimization-simulation cooperation 
 
This model seeks to converge to attractive solutions in 

fewer simulation and optimization runs. This variant is 
explained with the following steps:  
1. Solve the optimization problem with the most important 

objective function without restricting the values of the 
other two objective functions. The ideal value for that 
objective is computed.  

2. Simulate the obtained solution to compute the 
confidence intervals for each one of the objective 
functions. Denote the lower limit of each confidence 
interval as 𝑓𝑓𝑖𝑖′ 

3. Include in the mathematical model a set of constraints to 
the value of the constraints in the right side associated to 
the other two objective functions (secondary functions) 
taking into account the lower levels of the confidence 
intervals. For example:  

4. - Quantity of emissions 
 

� � 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 
𝑇𝑇 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖

(𝑖𝑖,𝑖𝑖)∈𝐴𝐴𝑖𝑖∈𝑀𝑀

 + � 𝐸𝐸𝑢𝑢𝐹𝐹𝐵𝐵𝑢𝑢
𝑢𝑢∈𝑁𝑁2∪𝑁𝑁3

≤ 𝑓𝑓2′ 

 
-Amount of product loss 
 

� � 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑖𝑖)∈𝐴𝐴1∪𝐴𝐴2∪𝐴𝐴3∪𝐴𝐴4∪𝐴𝐴5∪𝐴𝐴6𝑖𝑖∈𝑀𝑀

+ � � 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑖𝑖)∈𝐴𝐴7𝑖𝑖∈𝑀𝑀

+ � � 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 
(𝑖𝑖,𝑖𝑖)∈𝐴𝐴9𝑖𝑖∈𝑀𝑀

≤ 𝑓𝑓3′ 

 
5. These constraints are treated similar to the ε-constraint 

method. 
6. Solve the mathematical programming model once again, 

adjusting the right side of these two constraints.  
7. Solve steps 2 – 5 until the main objective function has 

deteriorated until a tolerable limit or unfeasibility of the 
solution.  

8. Check the dominance of computed solutions. 
9. The number of solutions will depend on the analyst 

criteria, according to the acceptable range of each of the 
objective functions that can operate the supply chain. 
 

5.  Computational results 
 
Results of the developed experimental studies are tested on 48 

randomly generated instances, changing the number of nodes in 
each of the six levels of the supply chain, with three or six nodes 
per level and five or ten customers, which correspond to 24 
different configurations. All the experiment are carried out in a 
computer with an Intel(R) Core(TM) i7-3930k CPU @ 3.20 GHz. 
Processor. 12 GB RAM. Operative system: 64-bit Windows 8. The 
mathematical models are solved using GAMS and CPLEX, and 
the simulation engine is developed in VBA. 

 
5.1.  Parameterization 

 
In the ε-constraint method, the number of grid points 

define discrete limits within the range in which each 
objective function is optimized to search for Pareto-optimal 
solutions. The larger the number of grid points, more 
solutions are likely to be computed since the step size in 
which objective functions are allowed to deteriorate is 
smaller. Our experiments work with 5 and 10 grid points.  

Fig. 2 is an example of the Pareto-optimal set solutions 
for one instance. It shows the location of the different 
solutions with respect to the objective functions and 
highlights those three that have the minimum value cost (C), 
emissions (E) and product losses (P).   

Table 2 details the results of the performance measures 
for the performed experiments using the traditional ε-
constraint method with five and ten grid points. Note that the 
higher the number of grid points, the denser the 
representation of the efficient set, but with a higher 
computation time requirement. The solution distribution 
measuring throughout the Pareto-optimal set (spacing) is 
presented with better performance that those instances run 
with more grid points. The hyper volume is higher when the 
number of grid points increases. 

 

 
Figure 2. Example of a Pareto optimal frontier.  
Source: Own elaboration 
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Table 2.  
Summary of the performance measures for the ε-constraint method 

Grid points=5 
Customers CPU 

(Seg) 
Spread Hypervolume # Solutions 

5 39 471 7.40E+09 13 
10 128 758 3.50E+09 16 

Grid points=10 
Customers CPU 

(Seg) 
Spread Hypervolume # Solutions 

5 151 125 7.50E+09 51 
10 618 333 3.90E+09 49 

Source: Own elaboration 
 
 

Figure 3. Example of Pareto frontier – Sim-Opt approach 1  
Source: Own elaboration 

 
 
For the experimental development of these methods, 10 

instances are randomly chosen. For the first proposed method, 
the simulation engine works with the solutions belonging to the 
Pareto Frontier obtained from the optimization model after 
applying the ε-constraint method. The Tukey test with a 
significance level of 5%, allows identifying which of the 
solutions show statistical differences. On average, about 60% 
of the solutions do not present statistical differences and 
therefore, these are discarded. Fig. 3 presents an example of the 
resulting Pareto frontier with solutions that are statistically 
different between each other.  

In our experiments, the percentage of recovered product that 
may be recycled varies from 40%-60% of the total sold product. 
Also, when minimizing economic costs, the objective function 
is 5,289 in average. When minimizing exclusively one of the 
other two objective functions, the cost may be increased up to 
50%. When minimizing CO2 emissions, the average optimal 
solution is 43,8Kg. This KPI is increased by 81% when the 
objective function is economic cost, and 140% when the 
objective function is minimizing risks. By setting the objective 
function to minimize the operational risks, the amount of lost 
product may be reduced up to 45%. 

In Table 3, the configuration of the 10 studied instances 
is presented, together with the spacing and hyper volume 
values obtained for each developed Sim-Opt approaches. In 
general, the second approach presents a spacing measure of 
approximately 51% higher than the first one, since the search 

of solutions there lacks a reference point to move within the 
Pareto-optimal set, different from the first one. Instances 3 
and 5 present better results since the intention was to move 
within closer values to reduce costs. The second approach 
requires less computational time and is more dedicated to 
finding statistically different solutions with limited 
economical costs. Fig 4. Presents the Pareto frontier 
approximation for this approach. 

 
6.  Conclusions and future work 

 
This work proposes two multi-objective supply chain 

design approaches combining optimization and simulation 
techniques. Further, a generic closed-loop supply chain 
design is considered, in which product flow may happen 
between consecutive and non-consecutive echelons of the 
network, respecting the required steps for production and 
consumption.  

The purpose of the considered approach is to build Pareto 
frontier solutions that are statistically different, and robust, so 
that the decision maker has different options to choose from. 
The traditional exact methods generate good results in 
theoretical terms. The Pareto-optimal set found there for each 
instance allows visualizing a large set of solutions. 

Nevertheless, although multiple options are presented, 
this does not guarantee that these are statistically different, 
since this method does not take into account the variability 
from randomness in parameters. 

Therefore, the cooperation between optimization and 
simulation methods is studied to bound the set of solutions, 
thus allowing the decision maker choose among the most 
convenient configurations. Computational results show that 
the proposed approaches reduce the number of solutions to 
40% for not being statistically different.  

The first solution approach is a two stage approach in which 
all the solutions obtained from a ε-constraint method are 
simulated using our simulation engine, and statistical tests are 
performed to determine statistical differences. If no statistical 
difference is proven, the solution is discarded. The second 
approach simulates each solution that is being evaluated by the 
ε-constraint method to determine confidence intervals of the 
solutions that constitute the bounds in which the objective 
functions must not be explored in subsequent iterations.  

 

Figure 4. Example of Pareto frontier – Sim-Opt approach 2 
Source: Own elaboration 
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Table 3. 
Comparison of indicators of the optimization via simulation methods. 
        Performance indicator 

Method Instance Production 
Plants 

Distribution 
Centers Retailers Customers Collection 

centers 
Destruction 

Centers 
spread 

Measure 
Hyper-
Volume Time [H] 

1° stage: 
Optimization, 
2° stage: 
Simulation 

1 3 3 3 5 3 3 848 1,27E+08 37,26 
2 6 3 3 5 3 3 363 1,22E+08 41,47 
3 3 6 3 5 3 3 433 1,12E+08 41,18 
4 3 3 6 5 3 3 697 1,44E+08 42,19 
5 3 3 3 5 3 3 1025 9,68E+07 39,09 
6 3 3 3 10 3 3 1003 3,40E+07 37,60 
7 3 6 3 10 3 3 1811 8,11E+07 35,81 
8 3 3 6 10 3 3 980 8,56E+07 41,35 
9 3 3 3 10 6 3 1232 1,26E+07 40,57 

10 3 6 3 10 3 6 1429 6,65E+06 39,36 

1° stage: 
Optimization, 
2° stage: 
Simulation,   
3° stage: 
Optimization 

1 3 3 3 5 3 3 1760 3,37E+08 17,11 
2 6 3 3 5 3 3 1742 5,59E+07 14,26 
3 3 6 3 5 3 3 384 8,40E+07 15,81 
4 3 3 6 5 3 3 1466 6,15E+08 15,78 
5 3 3 3 5 3 3 402 2,07E+08 17,76 
6 3 3 3 10 3 3 2287 7,12E+07 16,79 
7 3 6 3 10 3 3 912 4,76E+07 14,63 
8 3 3 6 10 3 3 2167 8,31E+07 16,84 
9 3 3 3 10 6 3 2176 6,59E+07 16,80 

10 3 6 3 10 3 6 1529 6,90E+08 15,61 
Source: Own elaboration 

 
The main advantage of the second proposed approach is 

that the computational time requirements are considerably 
lower than in the first approach since fewer solutions are 
simulated.  

Future works include a finer tuning of the number of 
replications required to compute the confidence intervals. 
Also, to consider a multi-objective supply chains design with 
hierarchical and multi-product settings, considering 
manufacturing operations. Besides that, it can contain 
multiple period decisions and routing decisions as in [41]. 
Moreover, other performance measures may be included, 
such as the financial risks and social sustainability. 
Furthermore, optimization methods based on meta-heuristic 
methods may also be taken into account in future works. 

 
References 

 
[1] Sahin, F. and Robinson, E., Flow coordination and information sharing 

in supply chains: review, implications and directions for future 
research. Decision Science, 33(4), pp. 505-536, 2002. DOI: 
10.1111/j.1540-5915.2002.tb01654.x 

[2] Chopra, S. and Meindl, P., Supply chain management, 2° Edición: 
Pretince-Hall, 2004.  

[3] Ballou, R.H., Logística: administración de la cadena de suministro, 
Mexico: Pearson Education, 2004.  

[4] Xiaoyuan, L. and Swaminathan, J.M., Supply chain management. 
International Encyclopedia of the Social & Behavioral Sciences 
(Second Edition), 2015, pp. 709-713. 

[5] Guide, D. and Van Wassenhove, L., The Evolution of Closed-Loop 
Supply Chain Research. Operations Research, 57(1), pp. 10-18, 2009.  

[6] Govindan, K., Soleimani, H. and Kannan, D., Reverse logistics and 
closed-loop supply chain: a comprehensive review to explore the 
future. European Journal of Operational Research, 240(3), pp. 603-
626, 2015. DOI: 10.1016/j.ejor.2014.07.012  

[7] Rezapour, S., Zanjirani, R., Fahimnia, B., Govindan, K. and Mansouri, 
Y., Competitive closed-loop supply chain network design with price-
dependent demands. Journal of Cleaner Production, 93, pp. 251-272, 
2015. DOI: 10.1016/j.jclepro.2014.12.095 

[8] Amin, S.H. and Zhang, G.Z., An integrated model for closed-loop 
supply chain configuration and supplier selection: multi-objective 

approach. Expert Systems with Applications, 39, pp. 6782-6791, 2012. 
DOI: 10.1016/j.eswa.2011.12.056 

[9] Easwaran, G. and Üster, H., A closed-loop supply chain network 
design problem with integrated forward and reverse channel decisions. 
IIE Transactions, 42(11), pp. 779-792, 2010. DOI: 
10.1080/0740817X.2010.504689 

[10] Kannan, G., Sasikumar, P. and Devika, K., A genetic algorithm 
approach for solving a closed loop supply chain model: A case of 
battery recycling. Applied Mathematical Modelling, 34(3), p. 655-670, 
2012. DOI: 10.1016/j.apm.2009.06.021 

[11] Metta, H. and Badurdeen, F., Optimized closed-loop supply chain 
configuration selection for sustainable product designs. In: 2011 IEEE 
International Conference on Automation Science and Engineering, 
Trieste, 2011, pp. 438-443, DOI: 10.1109/CASE.2011.6042416 

[12] Ramezani, M., Ali, K., Karimi, B. and Hejazi, T., Closed-loop supply 
chain network design under a fuzzy environment. Knowledge-Based 
Systems, 59, pp. 108-120, 2014. DOI: 10.1016/j.knosys.2014.01.016 

[13] Yang, G., Liu, Y. and Yang, K., Multi-objective biogeography-based 
optimization for supply chain network design under uncertainty. 
Computers & Industrial Engineering, 85, pp. 145-156, 2015. DOI: 
10.1016/j.cie.2015.03.008  

[14] Ruiz-Femenia, R., Guillén-Gosálbez, G., Jiménez, L. and Caballero, J., 
Multi-objective optimization of environmentally conscious chemical 
supply chains under demand uncertainty. Chemical Engineering 
Science, 95, pp. 1-11, 2013. DOI: 10.1016/j.ces.2013.02.054 

[15] De-León-Almaraz, S., Azzaro-Pantel, C., Montastruc, L. and Baez-
Senties, O., Design of an hydrogen supply chain using multiobjective 
optimization. Computer Aided Chemical Engineering, 30, pp. 292-
296, 2012. DOI: 10.1016/B978-0-444-59519-5.50059-9 

[16] Sabri, E.H. and Beamon, B.M., A multi-objective approach to simultaneous 
strategic and operational planning in supply chain design. Omega, 28, pp. 
581-598, 2000. DOI: 10.1016/S0305-0483(99)00080-8 

[17] Eskandarpour, M., Dejax, P., Miemczyk, J. and Péton, O., Sustainable 
supply chain network design: an optimization-oriented review. Omega, 
54, pp. 11-32, 2015. DOI: 10.1016/j.omega.2015.01.006 

[18] Brandenburg, M., Govindan, K. and Sarkis, J.S., Quantitative models 
for sustainable supply chain management: developments and 
directions. European Journal of Operational Research, 233(2), pp. 299-
312, 2014. DOI: 10.1016/j.ejor.2013.09.032 

[19] Quariguasi-Frota-Neto, J., Bloemhof-Ruwaard, J., van Nunen, J. and 
van Heck, E., Designing and evaluating sustainable logistics networks. 
Int. J. Production Economics, 111(1), pp. 195-208, 2006. DOI: 
10.1016/j.ijpe.2006.10.014 



Guerrero et al / Revista DYNA, 85(206), pp. 202-210, September, 2018. 

210 

[20] Azaron, A., Brown, K., Tarim, S. and Modarres, M., A multi-objective 
stochastic programming approach for supply chain design considering 
risk. International Journal of Production Economics, 116(1), pp. 129-
138, 2008.  

[21] Goh, M., Lim, J. and Meng, J., A stochastic model for risk management 
in global supply chain networks. European Journal of Operational 
Research, 182(1), pp. 164-173, 2007. DOI: 10.1016/j.ijpe.2008.08.002 

[22] Subulan, K., Baykasoğlu, A., Özsoydan, F.B., Tasan, A.S. and Selim, 
H., A case-oriented approach to a lead/acid battery closed-loop supply 
chain network design under risk and uncertainty. Journal of 
Manufacturing Systems, 37, 2014. DOI: 10.1016/j.jmsy.2014.07.013  

[23] Trkman, P. and McCormack, K., Supply chain risk in turbulent 
environments—A conceptual model for managing supply chain 
network risk. International Journal of Production Economics, 119(2), 
pp. 247-258, 2009. DOI: 10.1016/j.ijpe.2009.03.002 

[24] Tuncel, G. and Alpan, G., Risk assessment and management for supply 
chain networks: a case study, Computers in Industry, 61(3), pp. 250-
259, 2010. DOI: 10.1016/j.compind.2009.09.008 

[25] Pettit, T.J., Croxton, K.L. and Fiksel, J., Ensuring supply chain resilience: 
development and implementation of an assessment tool. Journal of 
Business Logistics, 34(1), pp. 46-76, 2013. DOI: 10.1111/jbl.12009 

[26] Carson, C,. Simulation and optimization: methods and applications. 
State University of New York at Binghamton, New York, 1997. 

[27] Juan, A.A., Faulin, J., Grasmanc, S.E., Rabe, M. and Figueira, G., A 
review of simheuristics: extending metaheuristics to deal with 
stochastic. Operations Research Perspectives, 2, pp. 62-72, 2015. DOI: 
10.1016/j.orp.2015.03.001  

[28] Pan, F. and Nagi, R., Robust supply chain design under uncertain 
demand in agile manufacturing. Computers & Operations Research, 
37(4), pp. 668-683, 2010. DOI: 10.1016/j.cor.2009.06.017 

[29] El-Sayed, M., Afia, N. and El-Kharbotly, A., A stochastic model for 
forward–reverse logistics network design under risk. Computers & 
Industrial Engineering, 58(3), pp. 423-431, 2010. DOI: 
10.1016/j.cie.2008.09.040 

[30] Prasanna-Venkatesan, S. and Kumanan, S., Multi-objective supply 
chain sourcing strategy design under risk using PSO and simulation. 
The International Journal of Advanced Manufacturing Technology, 
61(4), pp. 325-337, 2012. DOI: 10.1007/s00170-011-3710-y 

[31] Pishvaee, S. and Razmi, J., Credibility-based fuzzy mathematical 
programming model for green logistics design under uncertainty. 
Computers & Industrial Engineering, 62(2), pp. 624-632, 2012. DOI: 
10.1016/j.cie.2011.11.028 

[32] Pishavee, M., Razmi, J. and Torabi, S., Robust possibilistic 
programming for socially responsible supply chain network design: a 
new approach. Fuzzy Sets and Systems, 206, pp. 1-20, 2012. DOI: 
10.1016/j.fss.2012.04.010 

[33] Ruiz-Femenia, R., Guillén-Gosálbez, G., Jiménez, L. and Caballero, J., 
Multi-objective optimization of environmentally conscious chemical 
supply chains under demand uncertainty. Chemical Engineering 
Science, 95, pp. 1-11, 2013. DOI: 10.1016/j.ces.2013.02.054 

[34] Hamed, S. and Govindan, K., Reverse logistics network design and 
planning utilizing conditional value at risk K. Govindan, 237(2), pp. 
487-497, 2014. DOI: 10.1016/j.ejor.2014.02.030 

[35] Nooraie, V. and Mellat-Parast, M., A multi-objective approach to 
supply chain risk management: integrating visibility with supply and 
demand risk. International Journal of Production Economics, 161, pp. 
192-200, 2015. DOI: 10.1016/j.ijpe.2014.12.024 

[36] Jindal, A. and Sangwan, K., Multi-objective fuzzy mathematical 
modeling of closed-loop supply chain considering economical and 
environmental factors. Annals of Operations Research, pp. 1-26, 2016. 
DOI: 10.1007/s10479-016-2219-z 

[37] Mota, B., Gomes, M., Carvalho, A. and Barbosa-Povoa, A., Towards 
supply chain sustainability: economic, environmental and social design 
and planning. Journal of Cleaner Production, 105, pp. 14-27, 2015. 
DOI: 10.1016/j.jclepro.2014.07.052 

[38] Montoya-Torres, J.R., Designing sustainable supply chains based on 
the triple bottom line approach, in: Proceedings of the 2015 
International Conference on Advanced Logistics and Transport 
(ICALT 2015), Valenciennes, France, 2015.  

[39] Mavrotas, G., Effective implementation of the e-constraint method in 
multi-objective mathematical programming problems. Applied 
Mathematics and Computation, 213(2), pp. 455-465, 2009. DOI: 
10.1016/j.amc.2009.03.037 

[40] Deb, K., Thiele, L., Laumanns, M. and Zitzler, E., Scalable multi-
objective optimization test problems, Congress on Evolutionary 
Computation, 2002, pp. 825-830. 

[41] Pérez-Kaligari, E. y Guerrero, W.J., Métodos de optimización para el 
problema de ruteo de vehículos con inventarios y ventanas de tiempo 
duras. Revista Ingeniería Industrial, 3(1)4, pp. 31-49, 2015.  

 
 

W.J. Guerrero, received the BSc. Eng in Industrial Engineering in 2008, 
and MSc.degree in Industrial Engineering in 2010, and the PhD.degree in 
Engineering in 2014, all of them from the Universidad de Los Andes in 
Colombia. He received the PhD. degree in Systems Optimization and 
Dependability from Université de Technologie de Troyes, in France. He 
works in projects of the transportation area, with emphasis on developing 
heuristic and metaheuristic algorithms. Since 2017, he is associate professor 
at the engineering school at Universidad de La Sabana.  
ORCID: 0000-0002-9807-6593 
 
L.A. Sotelo Cortés, received the BSc. Eng in Industrial Engineering in 2012, 
and MSc. degree in Industrial Engineering in 2017, both from the Escuela 
Colombiana de Ingeniería Julio Garavito in Colombia. She works at Belcorp 
Co. as Sales and Operations Analyst.  
ORCID: 0000-0003-3398-4408 
 
E. Romero-Mota, received the BSc. Eng in Industrial Engineering in 1999 
from Escuela Colombiana de Ingeniería Julio Garavito (ECIJG), MSc. 
degree in Logistics, Materials and Supply Chain Management from Florida 
Institute of Technology and MSc. in Corporate Innovation Management 
from Universidad de Barcelona, Spain. Currently he is lecturer in ECIJG and 
innovation manager at Process Innova SAS.  
ORCID: 0000-0003-3427-0765 
 
 

 
 

 

Área Curricular de Ingeniería Administrativa e 
Ingeniería Industrial 

Oferta de Posgrados 

Especialización en Gestión Empresarial 
Especialización en Ingeniería Financiera 

Maestría en Ingeniería Administrativa 
Maestría en Ingeniería Industrial 

Doctorado en Ingeniería - Industria y Organizaciones 
 

Mayor información: 
 

E-mail: acia_med@unal.edu.co  
Teléfono: (57-4) 425 52 02 

 


	Palabras clave: diseño de cadena de abastecimiento; riesgo; sostenibilidad; simulación.
	1.  Introduction
	2.  State of the art
	3.  Mathematical formulations
	4.  Proposed solution methodology
	4.1.  Methods based on mixed-integer programming
	4.2.  Methods based on optimization via simulation
	4.3.  Approach 1: First stage: optimization. Second stage: simulation
	4.4.  Approach 2: Optimization-simulation cooperation

	5.  Computational results
	5.1.  Parameterization

	6.  Conclusions and future work
	References

