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Abstract 
In this work, an optimization method of a six - bars mechanism is proposed, which is formulated with natural coordinates easing the 
kinematic modeling, since it avoids use of transcendental functions. After the kinematic model is established, the optimization problem is 
formulated to be solved by using a genetic algorithm with real or continuous coding; thus, avoiding computation of highly complex 
derivatives. The relevance of this work lies on fact that an alternative method is offered to those dependent on angular parameters, where 
equations that model the mechanism, are complicated, even in the simplest mechanism. 

Keywords: optimization; steering mechanism; genetic algorithm. 

Método de optimización de un mecanismo de dirección de seis 
barras formulado con coordenadas naturales 

Resumen 
En este trabajo se propone un método de optimización de un mecanismo de seis barras, formulado mediante coordenadas naturales, 
facilitando con esto el modelado cinemático ya que se evita el uso de funciones trascendentales. Luego de establecido el modelo cinemático, 
el problema de optimización es formulado para ser resuelto utilizando un algoritmo genético con codificación real o continua, evitando con 
esto el cálculo de derivadas altamente complejas. La relevancia de este trabajo se debe a que se ofrece un método alterno a los dependientes 
de parámetros angulares, donde las ecuaciones que modelan el mecanismo son complicadas hasta en el mecanismo más simple. 

Palabras clave: optimización; mecanismo de dirección; algoritmo genético. 

1. Introduction

The steering system has significant importance in a
vehicle dynamic behavior, where its function is to generate 
angles in the steerable wheels responding to the needs 
imposed by the driver, so that there is control in the vehicle 
[1]. 

The steering mechanism is a main device in the steering 
system since it allows controlled turn of the steerable wheel, 
therefore its optimum design is essential. The optimum 
design of steering mechanisms is not a trivial problem due to 
its intrinsic complexity and requirement. Generally, a 
steering mechanism is designed so that axes of steerable 

How to cite: Romero-Núñez, N.N. & Tuiran-Villalba, R.E., Optimization method of a six-bar steering mechanism formulated with natural coordinates. DYNA, 85(207), pp. 168-
173, Octubre - Diciembre, 2018.

wheels and rear wheels axis intercept at the same point, 
which is called the Ackermann’s condition [2].  

Several works about the steering mechanism synthesis 
have been published in the last two decades, one of these 
works is presented by Yao and Angeles, where they propose 
a method based on a eliminating process to synthesize a four 
bar mechanism [3], where the goal is to minimize the mean 
squared of the structural error, so finally the problem is 
transformed in a system  with two unknowns and two 
equations; and by eliminating one of these unknowns, a 
polynomial,  which roots are local minimums, is obtained. 
Another work based on minimizing the mean squared of the 
structural error is shown in [4].  
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In [5,6] a more complex problem about multilink steering 
mechanism and McPherson suspension optimization is 
presented. This problem was boarded using multibody 
analysis techniques and multi objective optimization. A. 
Rahmani et al [7], studied the rack and pinion mechanism 
optimization problem where the goal is to minimize the 
maximum structural error. Additionally, a sensitivity analysis 
was made in order to know structural error variability and, in 
this way, determine that the best option is that mechanism 
where sensitivity is lower.  

A different approach is shown in Collard [8], where links 
are modeled as deformable elements which deformation 
energy is minimized in order to find the optimal rigid design. 
For the model, natural coordinates were also used to simplify 
and greatly ease the equations that define the mechanism 
kinematics. 

In M. Shariati and M. Norouzi [9], a method for the 
optimization of a four bar steering mechanism is proposed. 
This is based on computing the objective function gradient 
corresponding to the mean squared of the structural error. 
The objective function is constructed by taking five precision 
points from which two, correspond to the limit positions, 
another precision point corresponds to the mechanism 
straight position, and the remaining precision points 
correspond to intermediate positions between the limit 
positions and the straight position. 

A. De-Juan et al [10] propose a method of general 
optimization for steering mechanisms based on the numerical 
calculation of the Jacobi Method where natural coordinates 
are used for the kinematics modeling. This is applied to the 
different steering mechanisms traditionally used. The 
method’s main advantage is that it can be applied to different 
steering mechanisms. It can also be used for any other 
problem of dimensional synthesis of planar mechanisms. 

N. Romero [11] proposes a global optimization method 
using a continuous genetic algorithm, where natural 
coordinates are used to obtain equations that model the 
mechanism kinematics. These equations are solved by the 
Newton-Raphson method [12], where the initial method 
coordinates are given by the genetic algorithm. The method 
is applied to all traditional steering mechanisms and to more 
complicated mechanisms such as the Double-Butterfly 
steering mechanism. 

In this article an optimization global method using a 
continuous genetic algorithm, is proposed; where the aim is 
to minimize the structural error of a six-bars steering 
mechanism. The position kinematic is analytically solved 
through natural coordinates. 

 
2.  Ackermann steering geometry 

 
In Fig. 1, the ideal geometry of the vehicle turning is 

illustrated where the rotation is around the center 𝐼𝐼. 
Mathematically this condition can be written as: 

 

cot𝛿𝛿𝑖𝑖 − cot𝛿𝛿𝑜𝑜 =
𝑤𝑤
𝑙𝑙

 (1) 

 
where 𝛿𝛿𝑖𝑖 and 𝛿𝛿𝑜𝑜 are the steering angles of the left and right 

wheels respectively, 𝑤𝑤 is the distance between the pivots of  

 
Figure 1. Ackermann steering geometry.  
Source: The authors. 

 
 

 
Figure 2. Modeling of the six-bars steering mechanism using natural 
coordinates.  
Source: The authors. 

 
 

the front wheels, 𝑙𝑙 is the distance between the front and rear 
axle. This eq. (1) is known as the Ackermann steering 
criterion. 

If a vehicle does not fulfill the Ackermann criterion, the 
front axes intersect at different points with the rear axle, 
causing sliding on the wheels and therefore, the vehicle is on 
a general planar motion [13]. 

Eq. (1) can also be written as 
 

sin(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑜𝑜) −
𝑤𝑤
𝑙𝑙

sin𝛿𝛿𝑖𝑖 sin𝛿𝛿𝑜𝑜 = 0 (2) 

 
where eq. (2) has a major numerical behavior because the 

sine function varies between −1 and 1 [3]. 
 

3.  Kinematic modeling through natural coordinates 
 
Natural coordinates are mainly cartesian coordinates 

located in kinematic pairs or interest points [14], this 
facilitates the modeling of mechanisms since the use of 
transcendental functions is avoided. Fig. 2 shows the 
simplicity of modeling using natural coordinates. 

To solve the mechanism kinematic position, the 
parameter 𝜑𝜑 is chosen as the input, hence the point 𝐶𝐶1 can be 
calculated through,  

 

𝐶𝐶1 = �
𝐴𝐴1𝑥𝑥 + 𝑎𝑎 cos𝜑𝜑
𝐴𝐴1𝑦𝑦 + 𝑎𝑎 sin𝜑𝜑� (3) 
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Figure 3. Triangulation to determine 𝐷𝐷1.  
Source: The authors. 

 
 
where  𝜑𝜑 angle and left steering angle are related by: 
 

𝜑𝜑 = (𝛿𝛿𝑖𝑖 − 𝛽𝛽) + 180° (4) 
 
Point 𝐷𝐷1 is determined using the procedure provided in 

[15] and [16] , this is described then. From triangle ⊿𝐶𝐶1𝐵𝐵𝐷𝐷1 
it is possible to determine 𝐷𝐷1 by means of triangulation, 
which consists of determining a point given two points and 
two distances of a triangle. This is possible by writing 𝑙𝑙1 and 
ℎ1 (Fig. 3), depending on the triangle distances. 

 
Doing  
 

𝑠𝑠1 = ‖𝐵𝐵 − 𝐶𝐶1‖ 
 

𝑙𝑙1 =
𝑏𝑏2 + 𝑠𝑠12 − 𝑐𝑐2

2𝑠𝑠1
 

 

ℎ1 = 𝑡𝑡1�𝑏𝑏2 − 𝑙𝑙1
2 

 

𝑅𝑅 = �0 −1
1 0 � 

 
where 𝑡𝑡1 can take values of 1 or -1, meaning that there are 

two possible positions of point 𝐷𝐷1, determined by, 
 

𝐷𝐷1 = 𝐶𝐶1 +
𝑙𝑙1
𝑠𝑠1

(𝐵𝐵 − 𝐶𝐶1) +
ℎ1
𝑠𝑠1
𝑅𝑅(𝐵𝐵 − 𝐶𝐶1) (5) 

 
where eq. (5) can be written more compactly as, 
 

𝐷𝐷1 = 𝐶𝐶1 + 𝑁𝑁1(𝐵𝐵 − 𝐶𝐶1) (6) 
 
so that  
 

𝑁𝑁1 =

⎣
⎢
⎢
⎡
𝑙𝑙1
𝑠𝑠1

−
ℎ1
𝑠𝑠1

ℎ1
𝑠𝑠1

𝑙𝑙1
𝑠𝑠1 ⎦

⎥
⎥
⎤
 

 
Proceeding in the same way for the triangle ⊿𝐷𝐷1𝐵𝐵𝐷𝐷2, it 

turns out that, 
 

𝑠𝑠2 = 𝑐𝑐 

 

𝑙𝑙2 =
𝑑𝑑2 + 𝑠𝑠22 − 𝑐𝑐2

2𝑠𝑠2
 

ℎ2 = 𝑡𝑡2�𝑑𝑑2 − 𝑙𝑙2
2 

 

𝑁𝑁2 =

⎣
⎢
⎢
⎡
𝑙𝑙2
𝑠𝑠2

−
ℎ2
𝑠𝑠2

ℎ2
𝑠𝑠2

𝑙𝑙2
𝑠𝑠2 ⎦

⎥
⎥
⎤
 

 
it is obtained  
 

𝐷𝐷2 = 𝐷𝐷1 + 𝑁𝑁2(𝐵𝐵 − 𝐷𝐷1) (7) 
 
finally, for the triangle ⊿𝐷𝐷2𝐴𝐴2𝐶𝐶2  we can write, 
 

𝑠𝑠3 = ‖𝐴𝐴2 − 𝐷𝐷2‖ 
 

𝑙𝑙3 =
𝑏𝑏2 + 𝑠𝑠32 − 𝑎𝑎2

2𝑠𝑠3
 

 

ℎ3 = 𝑡𝑡3�𝑏𝑏2 − 𝑙𝑙3
2 

 

𝑁𝑁3 =

⎣
⎢
⎢
⎢
⎡
𝑙𝑙3
𝑠𝑠3

−
ℎ3
𝑠𝑠3

ℎ3
𝑠𝑠3

𝑙𝑙3
𝑠𝑠3 ⎦

⎥
⎥
⎥
⎤
 

 
it is obtained  
 

𝐶𝐶2 = 𝐷𝐷2 + 𝑁𝑁3(𝐴𝐴2 − 𝐷𝐷2) (8) 
 
This way, the position kinematics problem is solved, 

where the natural coordinate vector q is, 
 

𝑞𝑞 = �
𝐷𝐷1
𝐷𝐷2
𝐶𝐶2
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐷𝐷1𝑥𝑥
𝐷𝐷1𝑦𝑦
𝐷𝐷2𝑥𝑥
𝐷𝐷2𝑦𝑦
𝐶𝐶2𝑥𝑥
𝐶𝐶2𝑦𝑦⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (9) 

 
thus, the steering angle of the right wheel is determined as: 
 

𝛿𝛿𝑜𝑜 = tan−1 �
𝐶𝐶2𝑦𝑦

𝐶𝐶2𝑥𝑥 − 𝐴𝐴2𝑥𝑥
� − 𝛽𝛽 (10) 

 
The mechanism possible configurations can be 

represented with the configuration matrix, 
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𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 1 1
1 1 −1
1 −1 1

1 −1 −1
−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (11) 

 
in which each matrix line represents the values of 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3. 

In this case the mechanism has eight different configurations. 
 

4.  Optimization  
 
The objective function is defined as,  
 

�𝑓𝑓𝑖𝑖2(𝑥𝑥) + 𝜅𝜅𝜅𝜅(𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

 (12) 

 
where  
 

𝑓𝑓𝑖𝑖 = sin(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑜𝑜) −
𝑤𝑤
𝑙𝑙

sin𝛿𝛿𝑖𝑖 sin𝛿𝛿𝑜𝑜 
 
𝜅𝜅 is a penalty constant and 𝜅𝜅(𝑥𝑥) is a penalty function 

defined by: 
 

𝜅𝜅(𝑥𝑥) = �𝑔𝑔𝑖𝑖+(𝑥𝑥)2
𝑛𝑛

𝑖𝑖=1

 (13) 

 
𝑔𝑔𝑖𝑖+(𝑥𝑥) = max (0,𝑔𝑔𝑖𝑖(𝑥𝑥)) (14) 

 

𝒈𝒈(𝑥𝑥) = �
�𝑙𝑙1

2 − 𝑏𝑏𝟐𝟐�
�𝑙𝑙2

2 − 𝑑𝑑𝟐𝟐�
�𝑙𝑙3

2 − 𝑏𝑏𝟐𝟐�
� < 𝟎𝟎 (15) 

 
where 𝑔𝑔𝑖𝑖(𝑥𝑥) are the restrictions ensuring that mechanisms 

have a real configuration. The design variables are contained 
in the 𝑥𝑥 vector in the following way, 

 
𝑥𝑥 = [𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑 𝑒𝑒 𝛽𝛽]𝑇𝑇  (16) 

 
therefore, the optimization problem can be written as: 
 

minimize  �𝑓𝑓𝑖𝑖2(𝑥𝑥) + 𝜅𝜅𝜅𝜅(𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

 (17) 

 
5.  Continuous genetic algorithm 

 
The optimization problem formulation is focused to be solved 

by using optimization methods where the calculation of 
derivatives is not necessary. In this case a continuous genetic 
algorithm is used, which flowchart is shown in Fig. 4. For more 
detail the reader can see [16]. 

5.1.  Selection 
 
Of the 𝑁𝑁N chromosomes of the population only a 

percentage 𝜂𝜂 is selected to be crossed. The number of the 
selected chromosomes to be crossed is determined by, 

 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑(𝜂𝜂𝑁𝑁)  (18) 

 
Where round is a default approach to the nearest integer. 
 

5.2.  Crossing 
 
The selected chromosomes are randomly crossed as 

follows, 
 
𝜅𝜅𝑖𝑖 = [𝜅𝜅𝑚𝑚1 ⋅⋅⋅ 𝜅𝜅𝑚𝑚𝑚𝑚 ⋅⋅⋅ 𝜅𝜅𝑚𝑚𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣]  (19) 
 
𝜅𝜅𝑘𝑘 = [𝜅𝜅𝑑𝑑1 ⋅⋅⋅ 𝜅𝜅𝑑𝑑𝑚𝑚 ⋅⋅⋅ 𝜅𝜅𝑑𝑑𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣]  (20) 

 
they are the father 𝑖𝑖 and 𝑘𝑘 respectively. The element 𝛼𝛼 α 

from 𝜅𝜅𝑖𝑖Pi and  𝜅𝜅𝑘𝑘 is given by, 
 

𝛼𝛼 = 𝑐𝑐𝑒𝑒𝑖𝑖𝑙𝑙(𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑 ∗ 𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣) 
 

 
(21) 

 
where 𝑐𝑐𝑒𝑒𝑖𝑖𝑙𝑙 is an approximation by excess to the nearest 

integer. The 𝛼𝛼 elements are combined by, 
 

𝜅𝜅𝑛𝑛1 = 𝜅𝜅𝑚𝑚𝑚𝑚 − 𝜏𝜏(𝜅𝜅𝑚𝑚𝑚𝑚 − 𝜅𝜅𝑑𝑑𝑚𝑚)  (22) 
 

𝜅𝜅𝑛𝑛2 = 𝜅𝜅𝑑𝑑𝑚𝑚 + 𝜏𝜏(𝜅𝜅𝑚𝑚𝑚𝑚 − 𝜅𝜅𝑑𝑑𝑚𝑚)  (23) 
 
in which 𝜏𝜏 is a random number between 0 and 1. From this 

combination result the sons h1𝐻𝐻1 and h2𝐻𝐻2 which are given by: 
 
𝐻𝐻1  = [𝜅𝜅𝑚𝑚1 ⋅⋅⋅ 𝜅𝜅𝑛𝑛1 ⋅⋅⋅ 𝜅𝜅𝑚𝑚𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣]  (24) 
 
𝐻𝐻2  = [𝜅𝜅𝑑𝑑1 ⋅⋅⋅ 𝜅𝜅𝑛𝑛2 ⋅⋅⋅ 𝜅𝜅𝑑𝑑𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣]  (25) 
 

5.3.  Mutation  
 
After having a new population, the percentage 𝜇𝜇μ of the 

chromosomes is mutated. The number of mutated elements is 
given by, 

 
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑(𝜇𝜇 ∗ 𝑁𝑁) 

 
 

(26) 

 
and the chromosome is mutated taking randomly one of 

its elements and changing it to a new element given by 
Equation  

 
𝑋𝑋(𝑖𝑖, 𝑗𝑗) = (𝑙𝑙𝑠𝑠 − 𝑙𝑙𝑖𝑖)𝑋𝑋𝑛𝑛(𝑖𝑖, 𝑗𝑗) + 𝑙𝑙𝑖𝑖  (27) 

 
where 𝑙𝑙𝑠𝑠 and 𝑙𝑙𝑖𝑖 are the lower and upper bounds 

respectively. 
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Figure 4. A genetic algorithm flowchart.  
Source: The authors. 

 
 

Table 1. 
Vehicle geometry.  

Dimensions 𝒘𝒘 (𝒄𝒄𝒄𝒄) 𝒍𝒍 (𝒄𝒄𝒄𝒄) 𝒍𝒍 (𝒄𝒄𝒄𝒄) 𝜹𝜹𝒊𝒊 𝒄𝒄𝒎𝒎𝒎𝒎 ° 
 76 140 −27 40 

Source: The authors. 
 
 

6.  Results 
 
The model proposed for the mechanism optimization of six 

bars by using natural coordinates was implemented in 
MATLAB®, for a vehicle with the geometry given in Table 1. 

The input parameters of the genetic algorithm used in the 
optimization are: 

 
𝑁𝑁 = 100  

 
𝜂𝜂 = 0.7  

 
𝜇𝜇 = 0.6 

 
𝐿𝐿𝑖𝑖 = [8 20 5 5 −13 225] 

 
𝐿𝐿𝑠𝑠 = [20 50 20 20 13 315] 

 

Table 2. 
Optimal dimensions in centimeters and degrees.  

𝒎𝒎 𝒃𝒃 𝒄𝒄 𝒅𝒅 𝒆𝒆 𝜷𝜷 
13.7 32.1 16.5 17 −1.3 280.7 

Source: The authors. 
 
 

 
Figure 5. Optimal configuration of the six-bars steering mechanism.  
Source: The authors. 

 
 
The genetic algorithm was executed for one hour 

obtaining the optimal dimensions shown in Table 2. 
The optimal configuration with the dimensions shown in 

Table 2, is presented in Fig. 5. Which corresponds to the 
values of, 

The restrictions on the design dimensions of the 
mechanism are not included in eq. (18), since the limit values 
of the variables are inputs of the genetic algorithm. 

 
𝑡𝑡1 = −1 

 
𝑡𝑡2 = −1 

 
𝑡𝑡3 = −1 

 
In Fig. 6 the grey line represents the delta optimum  Δ𝛿𝛿. 

This is defined by,  
 

Δ𝛿𝛿 = 𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑜𝑜 (28) 
 
and the black line represents the delta Ackermann Δ𝛿𝛿𝐴𝐴. 

This is defined by, 
 

Δ𝛿𝛿𝐴𝐴   = 𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑜𝑜𝐴𝐴 (29) 
 
where  
 

𝛿𝛿𝑜𝑜𝐴𝐴 = cot−1 �
𝑤𝑤
𝑙𝑙

+ cot𝛿𝛿𝑖𝑖� (30) 

 
This is a way of visualizing how far away the steering 

mechanism of the Ackermann ideal geometry is, where the 
difference in the vertical of these two lines, given an angle 
𝛿𝛿𝑖𝑖, represents the steering mechanism deviation of the 
Ackermann geometry. 

Fig. 7 shows the structural error of the steering 
mechanism, defined as, 

 
𝜀𝜀 = 𝛿𝛿𝑜𝑜𝐴𝐴 − 𝛿𝛿𝑜𝑜 (31) 

 
where the maximum error is 0.9 degrees for an angle 𝛿𝛿𝑖𝑖 =

40 °. 
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Figure 6. Comparison between Delta Ackermann and the optimal delta.  
Source: The authors. 

 
 

 
Figure 7. Structural error of the six-bar mechanism.  
Source: The authors. 

 
 

6.  Conclusions 
 
Use of natural coordinates eases kinematic modeling and 

formulation of the objective function. In addition, the 
proposed method can be extended to any steering mechanism 
where the position kinematics can be resolved analytically or 
in a closed way. 

The genetic algorithm using continuous variables allowed 
us to deal with the problem, where the main complexity is the 
high non-linearity of the equations involved in the model. 

Although the optimization problem was formulated to be 
solved without use of derivatives, this does not exclude the 
possibility of using optimization methods based on the 
calculation of derivatives. 

It should also be noted that the optimization problem was 
optimized by including integer variables, therefore it can be 
said that a mixed optimization problem was solved. 
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