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Abstract 
This paper examines the performance of two new closed-loop control strategies developed as part of the Artificial Pancreas project, this 
being the most promising treatment for type 1 diabetes mellitus. The first strategy uses a new version of the well-known proportional, 
integral and derivative control, developed to respect state and input positivity constraints. The second is a new formulation of model-based 
predictive control with an impulsive input. The strategies’ performance is evaluated with 50 virtual patients taken from the literature and 
the UVa/Padova metabolic simulator, approved by the US Food and Drug Administration. Also, a robustness analysis is added to evaluate 
the strategies under the parametric variations of the most important physiological parameters. The results show that both strategies have a 
good performance with low to moderate plant-model mismatch.  
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Páncreas artificial: estrategias de control glucémico que evitan 
hipoglucemia 

Resumen 
Este trabajo presenta un análisis de desempeño de dos nuevos algoritmos de control desarrollados como parte del proyecto conocido como 
“Páncreas Artificial”, siendo este el tratamiento más promisorio para la diabetes mellitus tipo 1. Se desarrolló una versión del controlador 
proporcional, integral y derivativo el cual cumple restricciones de positividad en los estados y entradas, además de una nueva versión 
impulsiva del control predictivo basado en modelo. El desempeño de las estrategias es evaluado en 50 pacientes virtuales extraídos de la 
literatura y del Simulador UVa/Padova aprobado por la Food and Drug Administration de EEUU. La robustez se evalúa realizando 
variaciones paramétricas en los parámetros importantes del modelo. Las estrategias se validan en el simulador considerando diferencia 
planta-modelo. Los resultados muestran que el control predictivo presenta mejor desempeño, pero puede presentar infactibilidad si aumenta 
la diferencia planta-modelo. En contraste, el controlador proporcional, integral y derivativo presenta una respuesta más rápida, manteniendo 
un desempeño aceptable bajo perturbaciones de comida y seguimiento de referencia. 

Palabras clave: páncreas artificial; diabetes mellitus tipo 1; control PID; control predictivo basado en modelo; desempeño; robustez. 

1. Introduction

Type 1 Diabetes Mellitus (T1DM) is a chronic disease
that impairs the functionality of glucose homeostasis. It is 
implicated in important morbidity and mortality rates 
worldwide, and its incidence grows at a rate of 3-5% per year 
[1]. It is estimated that about 6% of the world’s population 

How to cite: Sereno, J.E., Caicedo, M.A. and Rivadeneira, P.S. Artificial Pancreas: Glycemic control strategies for avoiding hypoglycemia DYNA, 85(207), pp. 198-207, Octubre 
- Diciembre, 2018.

suffers from diabetes mellitus (DM), and in 2005 there were 
1.1 million deaths associated with it. It is important to note 
that, according to one study, almost 80% of deaths from 
diabetes occur in low and middle-income countries [2]. In 
fact, Colombia, located in the Latin American region, has 3 
million people with DM [3]. This represents an 8% 
prevalence. In rural areas, this figure falls to less than 2%, the 
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disparity due to factors mainly associated with urbanization. 
The cities stand out for having high rates of obesity, a factor 
associated with the disease. In Colombia, DM is among the 
top 5 causes of death, and its morbidity is also considered 
high, due to its treatment occupying a greater proportion of 
the hospital network, which places DM in fourth place. 
Therefore, DM generates significant economic cost overruns 
for Colombia's national public health system [3]. 

New treatments for T1DM are focused on the 
development of the Artificial Pancreas (PA). This is a system 
composed of several control algorithms that emulate the 
natural functioning of the pancreas, supplying the correct 
dose of insulin to regulate glucose levels through the use of a 
subcutaneous insulin pump. The PA calculates the correct 
dose from the feedback it receives based on interstitial 
glucose measurements obtained from Continuous Glucose 
Monitoring sensors. With great advances in medical 
instrumentation, the development of the PA has provoked 
great interest worldwide. Nevertheless, it has not yet been 
possible to propose a set of algorithms that adequately solve 
the different problems that have arisen, mainly, how to 
eliminate hypoglycemic and hyperglycemic episodes when 
insulin levels are disturbed [4,5]. 

These types of problems have been the focus of most 
treatments since the beginnings of the development of the 
PA. For instance, in [6], the authors proposed the use of an 
MPC controller with asymmetric costs to perform glycemic 
control. They validated the controller through in silico tests 
and clinical trials with patients in their homes. In [7], an 
advanced Proportional-Integral-Derivative (PID) control 
system was proposed for patients with T1DM in intensive 
care. The control system is a PID and based on the concept 
of expert systems, the design of the PID controller employs 
rules conceived using controller dynamics according to the 
measurement of blood glucose values.  

In fact, it has been established that PID and MPC 
controllers are the most applied control strategies in T1DM. 
Reference [8] compares the performances of an MPC and a 
PID. The analysis shows that the MPC strategy has an equal 
or better performance than the PID controller, the MPC 
having the longest mean time in the normoglycemic zone 
(70-180 mg/dl) and the PID the lowest (74.4 Vs 63.7 %). The 
mean glucose level for the MPC strategy is less than the PID 
(181 Vs 220 mg/dl). Although different control proposals are 
found in the literature [9,10], there are certain problems that 
are still considered to be open topics, including insulin 
overdose, for which the application of pure PID control has 
not been successful. Also, there are factors to be taken into 
account such as the effect of plant-model mismatch, meals 
(unannounced or estimated incorrectly), parameter variations 
due to hormonal changes such as the dawn phenomenon, 
exercise, stress and external factors. Furthermore, automatic 
individualization of the controller for different patients in 
order to reduce the need for medical staff and patients to have 
expert knowledge of these technologies is still a challenge. 

In this paper, the performance and robustness of two 
glycemic control algorithms are examined. The first controller 
is based on the analysis of positivity in the state space and the 
control action. For this, a controller K+PID is proposed which 
is composed of a combination of the control by feedback of 

states and a new positive PID. The K represents state feedback 
which assures the state/input positivity trajectories [11,12]. For 
the PID, a representation in state space of the PID is developed 
that also respects positivity constraints. This form of control 
action is analyzed along with the state space of the model to 
obtain a guarantee of positivity in the states and control action’s 
trajectories. The second controller proposed here is a predictive 
control that targets a particular zone with impulsive control 
action (iZMPC) [13,14]. For this case, an impulse scheme is 
shown to manage the insulin injections as impulses, and obtains 
a more accurate representation than that of clinical practice. The 
iZMPC handles positivity through its optimization constraints. 
For both strategies the Kalman filter is applied to reconstruct 
the non-measurable states. These control strategies are 
evaluated with a cohort of 50 virtual patients taken from [15] 
and the UVa / Padova simulator approved by the Food and Drug 
Administration (FDA) of the United States, which serves as a 
substitute for clinical trials with animals. 

These strategies’ performances are evaluated in 
interaction with unannounced meal disturbances, plant-
model mismatch, hypo and hyperglycemic events and the 
percentage of time inside and outside the normoglycemic 
zone. First, an index is proposed to evaluate the performance 
of the two strategies. Second, a robustness analysis is 
performed. Three of the most important physiological 
parameters, sensitivity to insulin, CHO sensitivity factor, and 
average endogenous production, change during the 
simulation time. The sensitivity of the control strategies 
against parameter variations affects robustness, leading to a 
risk of hyper and hypoglycemia.  

Additionally, the control-variability grid analysis (CVGA) 
is used to evaluate the performance of closed-loop controllers 
for a specific cohort of T1DM patients obtained from the 
metabolic simulator approved by the FDA (Food and Drug 
Administration) of The United States. This method allows for 
the visualization of the extreme (maximum and minimum) 
excursions of glucose caused by a control algorithm in a group 
of subjects, each  represented by a point for any given 
observation period. The iZMPC controller is inside the 
normoglycemic zone 98.13 % of the time compared to 93.29% 
of the time for the K+PID controller. Also, the K+PID 
controller presents less excursions into the A zone in the CVGA 
matrix as well as the biggest performance index. 

The rest of the paper is organized as follows: Section 2 
describes the characteristics of the selected model for T1DM. 
Section 3 presents the PID control approach. Section 4 
outlines the model predictive controller by target zones and 
impulsive control action. Section 5 presents the Kalman 
observer used for state estimation. Section 6 includes the 
results of the performance and robustness analysis and its 
validation using the T1DMS Metabolic Simulator software 
(FDA approved). Finally, Section 7 presents the conclusions 
and recommendations for future study in this field. 

 
2.  Model for T1DM patients 

 
In the literature, different models have been presented to 

represent glucose-insulin dynamics [17-19].  In [15], a model 
based on functional insulin therapy (FIT) is proposed that has 
shown good acceptance rates in clinical practice. The main 
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characteristics of the model are good long-term prediction 
and the introduction of equilibrium points and parameters 
with clear physiological significance. In this paper a modified 
version of the model presented in [15] is used. Its realization 
in the state space is as follows: 
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(1) 

 
The proposed model presents five state variables and five 

parameters. Where 𝑥𝑥1(𝑡𝑡) represents glycemia (mg/dl), 𝑥𝑥2 and 
𝑥𝑥3 is the insulin subsystem (𝑥𝑥2 represents the plasma insulin 
and 𝑥𝑥3 represents the subcutaneous insulin). Similarly, a 
second order model is used to represent the increase of blood 
glucose concentration due to the absorption of carbohydrates 
(𝑥𝑥4 represents the plasma carbohydrates and 𝑥𝑥3 the digestion 
of carbohydrates). A detailed description of the state 
variables of this model is shown in Table 1. 

The blood glucose dynamics consist of the model’s first 
differential equation in eq. (1). It defines the glycemic 
variation and isdependent on: i) the levels plasma insulin, ii) 
the absorption of carbohydrates through digestion; and iii) 
the affine term representing the difference between the 
endogenous production of glucose by the liver (EGP) and the 
constant insulin independent consumption of glucose by the 
brain (𝜃𝜃1).  

The relationship between insulin infusions and 
insulinemia are derived from pharmacokinetics and insulin 
dynamics [15]. Insulin dynamics is calculated by a second 
order model with a time constant (𝜃𝜃3) and the insulin 
sensibility factor (𝜃𝜃2). Similarly, a second order model is 
used to represent the increase in glucose due to the absorption 
of carbohydrates (time constant 𝜃𝜃5 and sensibility factor 𝜃𝜃4). 
A summary of the parameters, their description and units is 
given in Table 2. 

 
Table 1.  
Description of the state space. 

Variable Units Description Type 
𝑥𝑥1(𝑡𝑡) [mg/dl] Glycemia Output 
𝑥𝑥2(𝑡𝑡) [U/min] Plasma insulin State 
𝑥𝑥3(𝑡𝑡) [U/min] Interstitial insulin State 
𝑥𝑥4(𝑡𝑡) [g/min] Plasma CHO State 
𝑥𝑥5(𝑡𝑡) [g/min] Digest CHO State 
𝑢𝑢(𝑡𝑡) 
𝑟𝑟(𝑡𝑡) 

[U/min] 
[g/min] 

Exogenous insulin 
Carbohydrates 

Input 
Input 

Source: Authors. 

Table 2.  
Definition of the parameters. 

Parameter Units Description 

𝜃𝜃1 [mg/dl/min] Average of endogenous production 
less consumption of glycemia 

𝜃𝜃2 [mg/dl/U] Insulin sensitivity factor 
𝜃𝜃3 [1/min] Insulin transfer time 
𝜃𝜃4 [1/dl] CHO sensivity factor 
𝜃𝜃5 [1/min] CHO transfer time 

Source: Authors. 
 
 

3.  Positive PID controller approach 
 

3.1.  Positive state feedback 
 
Glucose-insulin dynamics, as well as the large majority of 

biological processes, should not take negative values. However, 
this model would allow that to happen, so a controller that 
guarantees the control objectives and therefore the positivity of 
the states and the inputs, is developed theoretically. To simplify 
the analysis the input is considered as continuous. 

To develop the controller, the following definitions are 
taken into account: 

A linear system given by eq. (1) is considered, then 
system (1), is called internally positive if for every x�0 ∈ ℝ+

n , 
u� ∈ ℝ+

m, the state x�(t) ∈ ℝ+
n  and output trajectories y�(t) ∈

 ℝ+
p , for any t ≥ 0. 
For the system (1), the nonempty set M ∈ ℝn is a 

positively invariant set (PIS) if x�0 ∈ M implies x�(t, x0) ∈ M 
for any t > 0. 

If 𝐺𝐺 ∈  ℝ𝑟𝑟×𝑛𝑛, then 𝑀𝑀(𝐺𝐺) denotes the polyhedron 
 

𝑀𝑀(𝐺𝐺) =  {𝑥𝑥� ∈ ℝ|𝐺𝐺𝑥𝑥�  ≥ 0 }, (2) 

 
Then, the polyhedral set M(G) is a positively invariant set 

for the system (8), if and only if there exists a Metzler matrix 
H ∈  ℝr×r, i.e. Hij  ≥ 0 for i ≠ j, such that: 

 
𝐺𝐺𝐺𝐺 − 𝐻𝐻𝐺𝐺 =  0. (3) 

 
Notice if 𝐺𝐺 is Metzler, the positive orthant 𝑀𝑀(𝐼𝐼) = ℝ+

𝑛𝑛  is 
PIS. 

Note that the subsystems 𝑥𝑥2-𝑥𝑥3, and 𝑥𝑥4-𝑥𝑥5 have their 
positive octants as PIS. That is, these subsystems are positive; 
and are therefore more in line with physiology. 

To ensure that model states and their inputs always 
remain in the positive region of the space of states, the 
conditions that a feedback of states must fulfill are analyzed 
based on the first three differential equations of the model (1) 
and the physiological characteristics of the states. For this 
analysis, the following state feedback is considered: 

 
𝑢𝑢𝑘𝑘 =  𝑘𝑘1𝑥𝑥�1 + 𝑘𝑘2(𝑥𝑥�2 + 𝑥𝑥�3), (4) 

 
which generates the following characteristic polynomial: 
 
𝜆𝜆3 + 1

𝜃𝜃3
�2−𝑘𝑘2� 𝜆𝜆

2 + 1
𝜃𝜃3

2 �1− 2𝑘𝑘2� 𝜆𝜆+ 𝜃𝜃2
𝜃𝜃3

2𝑘𝑘1.   (5) 
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The first condition of stability, according to the Routh-
Hurwitz criterion, is such that all the coefficients of the 
polynomial (5) must be positive, which means that: 

 
𝑘𝑘1 > 0  𝑦𝑦  𝑘𝑘2 < 1

2.   (6) 

 
The second condition of stability is: 
 

𝜃𝜃2𝜃𝜃3𝑘𝑘1 < −𝑘𝑘2 + 2(1−𝑘𝑘2)2.   (7) 

 
For the positivity of input/state solution considers k2 <

0, θ2θ3k1 <  −k2, θ2 ≥ 1 and the set: 
 
Ω =  {𝑥𝑥� ∈  ℝ3| 𝑘𝑘1𝑥𝑥�1 + 𝑘𝑘2(𝑥𝑥�2 + 𝑥𝑥�3) ≥ 0}.   (8) 

 
Then, the maximum PIS of the system (7) with feedback 

(11) i 
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3 ∩Ω.   (9) 

 
Eq. (9) can be stated if it is considered Eq. (3) on the 

system with the polyhedron and the H matrices: 
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Note that the conditions 𝑘𝑘2 < 0 and 𝜃𝜃2𝜃𝜃3𝑘𝑘1 <  −𝑘𝑘2 not 

only ensure that H is Metzler (i.e., 𝐻𝐻14,𝐻𝐻41 y 𝐻𝐻42 are 
positive), but also that the roots of the polynomial (5) are 
negative and real. This is because its discriminant, 

 
∆ = (𝑘𝑘2 + 𝑘𝑘1𝜃𝜃2𝜃𝜃3)((2𝑘𝑘2 − 1)2(𝑘𝑘2 + 4) − 27𝑘𝑘1𝜃𝜃2𝜃𝜃3), 

 
(12) 

 
is greater than zero. Also, it can be verified that the second 

stability condition given by eq. (7) is automatically fulfilled 
as illustrated in Fig. 1, in which the feasible region for the 
parameters 𝑘𝑘1 and 𝑘𝑘2 is shown, where the positivity of 
solutions is assured.  

The yellow zone represents the region of stable and 
positive conditions, while the white zone solely represents 
the stable region. The system’s stable zone is characterized 
by the parametric equations obtained from the Routh-
Hurwitz criterion (eq. 6-7), while the positive zone is 
obtained from Eq. (9) by performing a pole placement 
analysis of the characteristic polynomial given by Eq. (5). 

 

 
Figure1: Admissible region of the parameters 𝑘𝑘1 and 𝑘𝑘2. 
Source: Authors. 

 
 

3.2.  Designing PID in state space with input positivity 
constraint 

 
This section outlines a PID control strategy in the state 

space form. In this way, the control output integrated with the 
model in eq. (1) is analyzed, along with the conditions that 
guarantee the positivity of the state space of the glucose-
insulin subsystem and the control action. The design of this 
strategy considers that, for patients applying insulin, the 
control rejects the effect of meals and also regulates within 
the normoglycemic zone during fasting periods (70 ≤ 𝑥𝑥1 ≤
140 mg/dl). 

Considering a PID type controller of the form: 
 

𝑘𝑘(𝑠𝑠) =
𝑢𝑢(𝑠𝑠)
𝑒𝑒(𝑠𝑠)

=
𝑛𝑛2𝑠𝑠2 + 𝑛𝑛1𝑠𝑠 + 𝑛𝑛0
𝑑𝑑2𝑠𝑠2 + 𝑑𝑑1𝑠𝑠 + 𝑑𝑑0

, (13) 

 
where 𝑒𝑒(𝑠𝑠) represents the dynamics of the error expressed 

as 𝑦𝑦 − 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟  and 𝑢𝑢(𝑠𝑠) is the PID control output. The controller 
in eq. (13) can be expressed as: 

 

𝑢𝑢(𝑠𝑠) = 𝑘𝑘1𝑒𝑒(𝑠𝑠) +
𝑘𝑘2𝑠𝑠 + 𝑘𝑘3

𝑘𝑘4𝑠𝑠2 + 𝑘𝑘5𝑠𝑠 + 𝑘𝑘6
𝑒𝑒(𝑠𝑠), (14) 

 
with 
 

𝑘𝑘1 = 𝑛𝑛2
𝑑𝑑2

, 𝑘𝑘2 = 𝑛𝑛1 −
𝑑𝑑1𝑛𝑛2
𝑑𝑑2

, 

𝑘𝑘3 = 𝑛𝑛0 −
𝑑𝑑0𝑛𝑛2
𝑑𝑑2

, 𝑘𝑘4 = 𝑑𝑑2, 

𝑘𝑘5 = 𝑑𝑑1, 𝑘𝑘6 = 𝑑𝑑0. 
 
For the second term of eq. (14), artificial states are 

proposed such that 
 
𝑥𝑥(𝑠𝑠)

=
1

𝑘𝑘4𝑠𝑠2 + 𝑘𝑘5𝑠𝑠 + 𝑘𝑘6
𝑒𝑒(𝑠𝑠), 

𝑒𝑒
= 𝑘𝑘4�̈�𝑥 + 𝑘𝑘5�̇�𝑥
+ 𝑘𝑘6𝑥𝑥, 

𝑢𝑢(𝑠𝑠) = (𝑘𝑘2𝑠𝑠 + 𝑘𝑘3)𝑥𝑥(𝑠𝑠), 𝑢𝑢 = 𝑘𝑘2�̇�𝑥 + 𝑘𝑘3𝑥𝑥, 
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let 𝑝𝑝1 = 𝑥𝑥 and 𝑝𝑝2 = �̇�𝑥, and so the system can be 
expressed as: 

 

�̇�𝑝(𝑡𝑡) =  �
0 1
−𝑘𝑘6
𝑘𝑘4

−𝑘𝑘5
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0
1
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Finally, considering the first term of eq. (14), the output 

of the PID controller (13) can be expressed as: 
 

𝑢𝑢(𝑡𝑡) =  (𝑘𝑘3 𝑘𝑘2) �
𝑝𝑝1
𝑝𝑝2� + 𝑘𝑘1𝑒𝑒(𝑡𝑡). (15) 

 
3.3.  PID with the glucose-insulin subsystem 

 
The glucose-insulin subsystem is a composition of the 

first three state variables of model (1) and insulin input 𝑢𝑢(𝑡𝑡). 
Hence, it is considered that 𝑟𝑟(𝑡𝑡) = 0 and the states 𝑥𝑥4 − 𝑥𝑥5 
are not taken into account. Therefore, the glucose-insulin 
subsystem can be expressed as: 

 
�̇�𝑥1 = −𝜃𝜃2𝑥𝑥2, 

�̇�𝑥2 = − 1
𝜃𝜃3
𝑥𝑥2 + 1

𝜃𝜃3
𝑥𝑥3, 

�̇�𝑥3 = − 1
𝜃𝜃3
𝑥𝑥3 + 1

𝜃𝜃3
𝑢𝑢(𝑡𝑡). 

 
Bearing in mind that 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟  is a constant value, it should be 

taken into account that the dynamic of error is equal to the 
dynamic of the output, in this case �̇�𝑥1. Considering the 
control action in eq. (15), the system can be rewritten as 

 
�̇�𝑒 = −𝜃𝜃2𝑥𝑥2, 

�̇�𝑥2 = − 1
𝜃𝜃3
𝑥𝑥2 + 1

𝜃𝜃3
𝑥𝑥3, 

�̇�𝑥3 = − 1
𝜃𝜃3
𝑥𝑥3 +

𝑘𝑘3𝑝𝑝1 + 𝑘𝑘2𝑝𝑝2 + 𝑘𝑘1𝑒𝑒
𝜃𝜃3

, 
 
and expressed in matrix form as 
 

⎝

⎜
⎛

�̇�𝑒
�̇�𝑥2
�̇�𝑥3
�̇�𝑝1
�̇�𝑝2⎠

⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

 

0 −𝜃𝜃2 0 0 0

0
−1
𝜃𝜃3

1
𝜃𝜃3

0 0

𝑘𝑘1
𝜃𝜃3

0
−1
𝜃𝜃3

𝑘𝑘3
𝜃𝜃3

𝑘𝑘2
𝜃𝜃3

0 0 0 0 1
1
𝑘𝑘3

0 0
−𝑘𝑘6
𝑘𝑘4

−𝑘𝑘5
𝑘𝑘4 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎛

𝑒𝑒
𝑥𝑥2
𝑥𝑥3
𝑝𝑝1
𝑝𝑝2⎠

⎟
⎞

. (16) 

 
Definition A has the dynamic matrix of eq. (16). It should 

be noted that the subsystems 𝑥𝑥2-𝑥𝑥3, and 𝑝𝑝1-𝑝𝑝2 have their 
positive octants as PIS. That is, the dynamic insulin 
subsystem has a natural positivity and the dynamic 𝑝𝑝-
subsystem can be tuned using the controller variables in order 
to guarantee its positivity. Regarding the positive criterion 
(corollary 1), it is important to note that it is equivalent to a 
placement analysis of the root of the characteristic 
polynomial of the matrix A (𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦(𝐺𝐺)). In fact, a similar 
process is used to obtain the positivity conditions through the 
fulfillment of the Routh-Hurwitz criterion and the 

discriminant. Both criterions must be complied so that the 
roots remain real and negative, without an imaginary part 
[11,12]. 

The control proposed here is composed of a combination 
of state feedback control and positive PID. In the first 
instance, the feedback control is responsible for bringing the 
patient into the normoglycemia zone, and in the second, the 
PID is responsible for rejecting any disturbances when the 
patient is already in this zone or beforehand, if the 
disturbance appears before the patient enters the 
normoglycemia zone. Disturbances due to food intake are 
detected using the CGM signal. In this way, a switch between 
the controllers is made when an increase of more than 10 mg 
/ dl in the glucose values is detected, within a time window 
of 20 minutes. In this way, when using the K + PID strategy, 
the user does not need to enter details of the time and value 
of their meals into the computation. 

 
4.  MPC strategy for blood glucose control 

 
This section outlines a zone targeting MPC strategy that 

is extended for impulsive systems, and compares it with a 
standard MPC as well as the previous controller, in terms of 
its performance and robustness according to its application. 
The design of the strategies takes into account impulsive 
control inputs while satisfying state and input constraints 
[20]. Blood glucose is regulated in the normoglycemic zone, 
calculated by 70 ≤ 𝑥𝑥1 ≤ 140 mg/dl. Furthermore, these 
strategies could be used at any time of the day, during fasting 
periods or when ingesting a meal. Currently, blood glucose is 
regulated with injections and for those patients who use an 
insulin pump, insulin is delivered in periodic pulses, small 
enough to be considered as impulses. Therefore, this 
assumption that considers the injections as impulses seems to 
be more suited in practice for the treatment of diabetic 
patients. 

 
4.1.  Impulsive discrete system 

 
An impulsive discretization of the system in eq. (1) is 

carried out in order to position control inputs as impulses. 
The following continuous time system in state space form is 
taken into consideration: 

 
𝑥𝑥�̇(𝑡𝑡) = 𝐺𝐺 𝑥𝑥�(𝑡𝑡) +𝐵𝐵 �𝑢𝑢�(𝑡𝑡)

𝑟𝑟�(𝑡𝑡)� ,    𝑥𝑥�(0) = 𝑥𝑥�0,  (17) 

 
Let 𝑢𝑢 (similarly �̃�𝑟) be the impulsive input such that 
 
𝑢𝑢�(𝑡𝑡) = 𝑢𝑢�𝑘𝑘𝛿𝛿�𝑡𝑡 − 𝑘𝑘𝑘𝑘� = �𝑢𝑢�𝑘𝑘 𝑠𝑠í 𝑡𝑡 = 𝑘𝑘𝑘𝑘

0 𝑠𝑠í 𝑡𝑡 ≠ 𝑘𝑘𝑘𝑘
 , (18) 

 
evaluating the continuous system state at sample time 

instants given by 𝑡𝑡 = (𝑘𝑘 + 1)𝑘𝑘, then 
 

𝑥𝑥�[(𝑘𝑘+ 1)𝑘𝑘] = 𝑒𝑒𝐺𝐺𝑘𝑘𝑥𝑥�[𝑘𝑘𝑘𝑘] … (19) 

+� 𝑒𝑒𝐴𝐴[(𝑘𝑘+1)𝑇𝑇−𝜏𝜏]𝐵𝐵 �𝑢𝑢�𝑘𝑘�̃�𝑟𝑘𝑘
� 𝛿𝛿(𝑡𝑡 − 𝑘𝑘𝑘𝑘) 𝑑𝑑𝑑𝑑

(𝑘𝑘+1)𝑇𝑇

𝑘𝑘𝑇𝑇
, 
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𝑥𝑥���𝑘𝑘+ 1�𝑘𝑘� = 𝑒𝑒𝐺𝐺𝑘𝑘𝑥𝑥�[𝑘𝑘𝑘𝑘] + 𝑒𝑒𝐺𝐺��𝑘𝑘+1�𝑘𝑘−𝑘𝑘𝑘𝑘�𝐵𝐵�𝑢𝑢�𝑘𝑘𝑟𝑟�𝑘𝑘
�,   

𝑥𝑥���𝑘𝑘+ 1�𝑘𝑘� = 𝑒𝑒𝐺𝐺𝑘𝑘𝑥𝑥�[𝑘𝑘𝑘𝑘] + 𝑒𝑒𝐺𝐺𝑘𝑘𝐵𝐵�𝑢𝑢�𝑘𝑘𝑟𝑟�𝑘𝑘
�.   

 
Now the discrete time model is  
 

𝑥𝑥�[𝑘𝑘+ 1] = 𝐺𝐺𝑑𝑑 𝑥𝑥�[𝑘𝑘] +𝐵𝐵𝑑𝑑 𝑢𝑢�[𝑘𝑘], (20) 

where 𝐺𝐺𝑑𝑑 = 𝑒𝑒𝐺𝐺𝑘𝑘 and 𝐵𝐵𝑑𝑑 = 𝑒𝑒𝐺𝐺𝑘𝑘𝐵𝐵. 
 

4.2.  Impulsive zone targeting MPC strategy 
 
The main goal for zone targeting MPC is to steer the 

system to target zone and keep the system inside of it for as 
long as possible. In general, MPC generates an optimal 
control trajectory 𝒖𝒖𝒐𝒐 =  {𝑢𝑢0𝑜𝑜,𝑢𝑢1𝑜𝑜, … ,𝑢𝑢𝑁𝑁−1𝑜𝑜 } which minimizes 
a quadratic cost function and only the first input 𝑢𝑢0𝑜𝑜 is injected 
into the system. In this section, a zone targeting MPC for 
impulsive systems is presented that steers glycemic levels 
from an initial state to zone 𝛿𝛿 using a tracking reference [20]. 
This approach has been studied before with some 
modifications in [13,14,21]. 

The impulsive discrete system in (20) should be 
considered with 𝑥𝑥 ∈ 𝑋𝑋 ⊆ ℝ𝑛𝑛𝑥𝑥, 𝑢𝑢 ∈ 𝑈𝑈 ⊆ ℝ𝑛𝑛𝑢𝑢 as the 
constrained state and input respectively. 𝑦𝑦 ∈ ℝ𝑛𝑛𝑦𝑦 isthe 
controlled output, 𝑦𝑦� ∈ ℝ𝑛𝑛𝑦𝑦 the tracking reference and 𝛿𝛿 ∈
ℝ𝑛𝑛𝑦𝑦 defines the zone around 𝑦𝑦�. The quadratic cost function 
of the optimization problem to be solved by the MPC every 
time sample is given by [20]: 

 
𝑉𝑉(𝑦𝑦�,𝑢𝑢� , 𝛿𝛿) =  𝑉𝑉𝑑𝑑𝑑𝑑𝑛𝑛(𝑦𝑦�;𝑢𝑢� , 𝛿𝛿) + 𝑉𝑉𝑡𝑡𝑟𝑟𝑟𝑟(𝑦𝑦�;𝑢𝑢� , 𝛿𝛿), (21) 

 
where, 
 

𝑉𝑉𝑑𝑑𝑦𝑦𝑛𝑛�𝑦𝑦�;𝑢𝑢�,𝛿𝛿� = ��𝑦𝑦��𝑘𝑘+ 𝑗𝑗�𝑘𝑘� − 𝑦𝑦� + 𝛿𝛿�𝑄𝑄
2

𝑁𝑁−1

𝑗𝑗=0
 

(22) 

         + ‖𝑢𝑢�(𝑘𝑘 + 𝑗𝑗|𝑘𝑘)− 𝑢𝑢�‖𝑅𝑅2 ,  

 
with N as the prediction horizon, this being the term that 

penalizes the predicted output trajectory (𝑦𝑦�(𝑘𝑘 + 𝑗𝑗|𝑘𝑘)) and 
input trajectory (𝑢𝑢�(𝑘𝑘 + 𝑗𝑗|𝑘𝑘)) so that it stays inside the target 
zone.  𝑄𝑄 > 0 and 𝑅𝑅 > 0 penalize the outputs and inputs 
respectively with respect to an equilibrium (𝑦𝑦�,𝑢𝑢�).  The term 

 
𝑉𝑉𝑡𝑡𝑒𝑒𝑟𝑟�𝑦𝑦�;𝑢𝑢�,𝛿𝛿� = �𝑦𝑦�(𝑁𝑁)−𝑦𝑦� + 𝛿𝛿�𝑘𝑘𝑃𝑃�𝑦𝑦�(𝑁𝑁)−𝑦𝑦�

+ 𝛿𝛿�, 
(23) 

 
with 𝑃𝑃 > 0, represents the final cost and forces the 

outputs to reach an equilibrium (or target zone) at the end of 
the horizon. Then, the optimization problem that solves the 
MPC at every instant k is given by: 

 
min𝑉𝑉�𝑦𝑦�;𝑢𝑢�,𝛿𝛿�            (24) 

𝑠𝑠. 𝑡𝑡.   

𝑥𝑥�(𝑗𝑗+ 1) = 𝐺𝐺𝑥𝑥�(𝑗𝑗) +𝐵𝐵𝑢𝑢�(𝑗𝑗),  
𝑥𝑥�(0) = 𝑥𝑥�0,  
𝑦𝑦 = 𝐶𝐶𝑥𝑥,  
𝑥𝑥 ∈ 𝑋𝑋,  
𝑢𝑢 ∈ 𝑈𝑈,  

𝛿𝛿 ≤ 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚.  
 
It should be noted that 𝛿𝛿  is an additional constrained 

decision variable, where 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 is the parameter that defines 
the maximum value for the zone around 𝑦𝑦�.  In this case, 𝐺𝐺 
and 𝐵𝐵 are the impulsive discrete matrices calculated in eq. 
(20) for predictions. 

 
5.  Kalman observer for discrete systems 

 
The first state variable (glycemia) is the only measurable 

variable.  For this reason, both strategies need an observer to 
estimate the remaining state variables. Consequently, a 
Kalman observer is designed for impulsive systems.  

The discrete time system for predictions in eq. (20) should 
be considered. The system must satisfy the observability 
criteria for impulsive systems [22]. The system is observable 
if and only if: 

 

𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘 �

𝐶𝐶
𝐶𝐶𝐺𝐺𝑑𝑑
⋮

𝐶𝐶𝐺𝐺𝑑𝑑𝑛𝑛−1
� = 𝑛𝑛                                 (25) 

 
The discrete Kalman observer takes the following form: 
 

𝑥𝑥�(k+1|k) =  𝐺𝐺𝑑𝑑𝑥𝑥�(k|k) + 𝐵𝐵𝑑𝑑𝑢𝑢(k|k) + 𝐿𝐿𝑘𝑘  �𝑦𝑦�(k|k) − 𝐶𝐶𝑑𝑑𝑥𝑥�(k|k)�         (26) 
 
The observer gain and the estimated states are obtained 

through prediction and correction. The correction is made 
using the measurement update equations: 

 

⎩
⎪
⎨

⎪
⎧𝑥𝑥�k = 𝑥𝑥�(𝑘𝑘|𝑘𝑘−1) + 𝐿𝐿𝑘𝑘 �𝑦𝑦�𝑘𝑘� − 𝐶𝐶𝑥𝑥��𝑘𝑘�𝑘𝑘− 1�� ,

 𝐿𝐿𝑘𝑘 = 𝑃𝑃(𝑘𝑘|𝑘𝑘−1)𝐶𝐶
𝑘𝑘 �𝑅𝑅+ 𝐶𝐶𝑃𝑃(𝑘𝑘|𝑘𝑘−1)𝐶𝐶

𝑘𝑘�
−1

,
𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐿𝐿𝑘𝑘𝐶𝐶)𝑃𝑃(𝑘𝑘|𝑘𝑘−1),

     (27) 

 
Finally, the prediction is made using the time update 

equations:  
 

�
𝑥𝑥�(k+1|k) = 𝐺𝐺𝑑𝑑𝑥𝑥�(𝑘𝑘|𝑘𝑘) + B𝑢𝑢𝑘𝑘 ,
𝑃𝑃(𝑘𝑘+1|𝑘𝑘) =  𝐺𝐺𝑑𝑑𝑃𝑃(𝑘𝑘|𝑘𝑘) 𝐺𝐺𝑑𝑑

𝑘𝑘 +𝑄𝑄.
            (28) 

 
6.  In silico: virtual patient results 

 
This section presents a comparison of the control 

strategies’ performance, developed in consideration of the 
rejection of disturbances caused by unannounced meals, the 
percentage of time inside and outside the normoglycemic 
zone, hypo and hyperglycemic events, CVGA metrics and a 
performance index that is proposed for the evaluation of the 
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general performance of the strategies. In addition, both 
control strategies are assessed in the UVa/Padova Simulator 
for the average adult patient. 

 
6.1.  Virtual scenario 

 
The performance of the control strategies is tested with a 1-

day virtual protocol. Each patient is assigned a starting level of 
hypoglycemia (180 mg / dl) at 00 hours, the control loop is 
closed at this time. 3 meals are ingested, spaced as follows: a 
breakfast of 40g at 7am, a lunch of 50g at 12pm and a dinner of 
70g at 8pm. The virtual scenario ends after 24h. 

 
6.2.  Performance 

 
Table 3 shows the performance comparison between the 

previous control strategies and a standard impulsive MPC for the 
50 virtual patients. As shown, the iZMPC has the highest 
percentage of time inside the normoglycemic zone and the lowest 
percentage of time in hypo or hyperglycemia. As expected, the 
MPC strategies need more computation time than the PID.  

Performance indices are a quantitative measure of the 
system response. For this application, hyperglycemic episodes 
after meal intake are not as dangerous as hypoglycemic 
episodes due to overestimation of insulin doses. As a result of 
this, a performance index is proposed in order to penalize blood 
glucose concentration outside of the normoglycemic zone. The 
index is multiplied by higher values when 𝑥𝑥1 lies within 
hypoglycemia. The index is given by: 

 

𝜑𝜑 =  𝛼𝛼�|𝑒𝑒(𝑡𝑡)|𝑑𝑑𝑡𝑡, (29) 

 
where, 
 

𝛼𝛼 =  

⎩
⎪
⎨

⎪
⎧

1.4, 250 < 𝑥𝑥1
1.2, 180 ≤ 𝑥𝑥1 ≤ 250,

0, otherwise,
1.6, 60 ≤ 𝑥𝑥1 ≤ 70,

2.0, 𝑥𝑥1 < 60.

 

 
In Table 3 the mean of the index in eq. (29) for the 50 

virtual patients is given.  It is important to note that the 
performance index for iMPC is bigger than that of iZMPC, 
this is because of short episodes where blood glucose rises 
above 180 (mg/dl). Therefore, it is beneficial to use MPC 
strategies based on its performance, assuming that no plant-
model mismatch is proven. Thus, the impulsive zone MPC 
strategy seems to perform best. 

In Fig. 2, the CVGA is used to compare the performance 
of both controllers in the 50 virtual patients. Table 4 shows 
the CVGA summary outcome. The iZMPC controller 
manages to maintain the correct glycemic control in all 
patients (A+B zone). The PID controller achieves a correct 
glycemic control in 48 patients, and an acceptable control for 
2 patients (C zone). 

The proposed control strategies have a good performance 
against plant-model mismatch as shown in the preclinical test in 
the UVa/Padova T1DMS metabolic simulator, Fig. 3. The 
simulator has a highly non-linear model to accurately represent a 

patient with T1DM, in addition to representing the dynamics 
present in commercial insulin pumps and CGM devices. The 
performance of both controllers is validated using the same 
scenario presented in section 5.1, measurements of the CGM 
sensor and a generic insulin pump are taken into account.  It can 
be observed that in this pre-clinical trial, both controllers manage 
to maintain normoglycemic values despite the disturbances of 
food intake. 

 
6.3.  Robustness 

 
The robustness of control strategies depends on the 

accuracy of the model describing the plant. Type 1 diabetes 
mellitus patients tend to be affected by external disturbances 
that the model used here for the control design normally does 
not take into account. In this section, the previous control 
strategies are evaluated for scenarios of plant-model 
mismatch due to parameter variations.  First, parameter 
variations are justified by means of a physiological analysis 
of external disturbances affecting glucose regulation. 

Let 𝜃𝜃2𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟, 𝜃𝜃3𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟, and 𝜃𝜃5𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟  be the parameters related to 
insulin sensitivity, insulin time action and carbohydrates time 
action in the real plant, respectively. When 𝜃𝜃2𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟  is greater 
than 𝜃𝜃2, the patient is less resistant to insulin action. Here, the 
controller is expected to be able to reduce insulin doses to 
avoid hypoglycemia. On the other hand, when 𝜃𝜃2𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟  is less 
than 𝜃𝜃2 and the patient is more resistant to insulin action, the 
controller should increase insulin doses to avoid 
hyperglycemia. Changes in insulin sensitivity are produced 
because of physical activity (increases insulin sensitivity) and 
dawn phenomenon (reduces insulin sensitivity) [23,24]. 

Fig. 4 shows the variations in a day for 𝜃𝜃2real with respect 
to 𝜃𝜃2. The sensitivity for the iZMPC strategy is higher than 
for PID due to incorrect predictions. Here, MPC strategies 
tend to overestimate or underestimate insulin doses causing 
hypo and hyperglycemia. The blood glucose concentration 
for the PID strategy lies inside the normoglycemic zone and 
could handle higher variations in this parameter. 

 
 

Table 3. 
Performance comparison for control strategies.  

Strategy iMPC iZMPC PID 

B
G

 [m
g/

dl
]  

 %
 

Ti
m

e 

[80 , 140] 86.05 83.91 76.09 
[70 , 180] 97.84 98.13 95.01 

< 80 0.00 0.00 0.00 
< 70 0.00 0.00 0.00 
>180 2.16 1.87 4.99 
>250 0.00 0.00 0.66 

# 
 E

ve
nt

s  
 

B
G

 [m
g/

dl
]  < 80 0 0 0 

< 70 0 0 0 
>180 2 2 3 
>250 2 0 0 

 

BG [mg/dl] Mean: 113.17 118.20 126.54 
BG [mg/dl] Min: 87.72 95.23 79.74 
BG [mg/dl] Max: 252.34 236.26 325.02 

 Computation Time [s]: 0.050  0.075 0.0015 
Index 𝜑𝜑 2976 2875 10889 

Source: Authors. 
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Figure 2: CVGA for 50 patients, iZMPC black points, and PID blue points.  
Source: Authors. 

 
 

Table 4:  
Summary CVGA outcome 

Controller A B C D 
iZMPC 12 38 0 0 
PID 4 44 2 0 

Source: Authors. 
 
 

 
Figure 3. Validation in the UVa/Padova Metabolic Simulator for the patient 
adult#average. 
Source: Authors. 

 
 
The type of insulin, the place of the injection, the 

temperature, age of patient, and other medications all 
produce changes in 𝜃𝜃3 [25]. When 𝜃𝜃3𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟  is greater than 𝜃𝜃3, 
insulin absorption occurs slowly. When insulin remains from 
previous boluses increases, the patient requires less insulin to 
avoid accumulation and a subsequent hypoglycemic episode. 
Otherwise, insulin absorption is fast and no insulin remains. 
In this case, the patient needs more insulin to avoid 
hyperglycemia events. The strategies are less sensitive to 
variations in 𝜃𝜃3𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟  with respect to 𝜃𝜃3 as shown in Fig. 5. The 
PID and iZMPC are more sensitive when 𝜃𝜃3𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟  tends to 
increase, leading to a risk of hypoglycemia. Slow carbs need 
less insulin to absorb glucose for energy. When 𝜃𝜃5𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟  is 

greater than 𝜃𝜃5, carbohydrates are digested easily, then, the 
blood glucose concentration tends to increase rapidly, and the 
insulin needed should increase to avoid hyperglycemia [26]. 
Moreover, when  𝜃𝜃5𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟  is less than 𝜃𝜃5,  carbohydrates need 
more time to be digested. Then, blood glucose concentration 
increases slowly, requiring less insulin to be injected. In this 
case, in Fig. 6, the PID strategy is more sensitive when 𝜃𝜃5𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟  
tends to decrease with respect to 𝜃𝜃5, leading to 
hypoglycemia. MPC strategies are less sensitive to variations 
in this parameter. it should be noted that for these cases, the 
iZMPC can handle higher variations than the PID. 

 
7.  Conclusions and future study 

 
This paper addressed the design of fundamental 

algorithms for blood glucose regulation for patients with type 
1 diabetes mellitus. An affine model composed of five state 
variables and five parameters was used to represent the 
glucose-insulin dynamic and carbohydrate absorption. For 
this model, two strategies were developed. 

The first is a state space PID which has the conditions to 
guarantee positivity of the state variables and control action. 
The second strategy is an extended zone targeting model 
predictive controller for impulsive systems.  

In general terms, the algorithms accomplish the objective of 
steering the blood glucose concentration into the normoglycemic 
zone under realistic conditions, modelling impulsive input and 
unannounced meals. Furthermore, the strategies presented are a 
contribution to control theory, especially the PID in state form 
and the extension of the zone targeting MPC with impulsive 
systems for these kinds of application.  

The control strategies were evaluated using a simulation 
with data from 17 real patients collected by the Nantes 
University Hospital, France [15] and 33 virtual patients from 
the UVa/Padova simulator. In terms of performance, both 
strategies avoid hypoglycemic events completely and 
respond quickly to unannounced meal intake, reducing 
postprandial hyperglycemic events. Additionally, a standard 
impulsive MPC was added to the comparison in order to 
establish the advantages and disadvantages of using an 
iZMPC instead of a standard one.   

The addition of the slack variable 𝛿𝛿 as a decision variable 
increases the computation time. However, the use of the 
iZMPC reduces unnecessary injections when reaching the 
reference glucose value and will stop delivering insulin once 
the normoglycemic zone is reached.  

Despite eliminating hypoglycemic events, the PID 
strategy spends more time in postprandial hyperglycemic 
periods and thus a higher performance index. Nevertheless, 
this strategy is less sensitive to plant-model mismatch when 
parameters associated with insulin sensitivity and insulin 
time action are affected by external disturbances, causing 
parameter variations. The benefit of using a PID controller as 
opposed to the iZMPC, is that the latter will present 
feasibility problems if plant-model mismatch increases. The 
results of the controller behavior are in accordance with the 
physiological justification found in the literature. 

Embedded artificial pancreas systems have 
computational limitations. Therefore, the PID controller 
presents more benefits due to its faster computation time.  
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                                                                 a)                                                                                                                       b) 
Figure 4. Variations in 𝜃𝜃2real w.r.t. 𝜃𝜃2 for a) PID and b) izMPC. Black line for nominal parameters. Green dotted line for +10% variation, green continuous 
line for -10%. Blue dotted line for +20% variation, blue continuous line for -20%. Red dotted line for +30% variation, red continuous line for -30%. 
Source: Authors. 

 
 

 
                                                                 a)                                                                                                                       b) 
Figure 5. Variations in 𝜃𝜃3real w.r.t. 𝜃𝜃3 for a) PID and b) izMPC. Black line for nominal parameters. Green dotted line for +10% variation, green continuous 
line for -10%. Blue dotted line for +20% variation, blue continuous line for -20%. Red dotted line for +30% variation, red continuous line for -30%. 
Source: Authors. 

 
 

 
                                                                 a)                                                                                                                       b) 
Figure 6. Variations in 𝜃𝜃5real w.r.t. 𝜃𝜃5 for a) PID and b) izMPC. Black line for nominal parameters. Green dotted line for +10% variation, green continuous 
line for -10%. Blue dotted line for +20% variation, blue continuous line for -20%. Red dotted line for +30% variation, red continuous line for -30%. 
Source: Authors. 

 
 

Nevertheless, the computation time of the iZMPC controller 
is still within the acceptable range for these types of 
biomedical applications. Sampling time in artificial pancreas 
systems is usually between 5-15 minutes. 

The control strategies are presented as an initial approach 
to solving some of the existent problems in artificial 
pancreases. However, good results from the simulation allow 
for an improvement in the development of theory and the 
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possibility of clinical validation. For future studies, more 
realistic scenarios should be considered. Furthermore, robust 
characteristics should be studied to avoid, in theory, 
hypoglycemic events due to parameter variations and plant-
model mismatch. 
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