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Abstract 
This paper presents a research centered on the impact of muscle fatigue on a pattern recognition scheme for myoelectric control that uses three features 
sets and a Linear Discriminant Analysis classifier. Separability and repeatability between classes were used to evaluate the features changes while muscle 
fatigue was induced. Results show that while muscle fatigue is increasing over time, both separability and repeatability of the classes decrease. Finally 
two training schemes that use data acquired under fatigue, multiconditional training and selective classification, were evaluated using the Total Error Rate 
(TER). Results indicate that, when LDA classifier was trained whit no-fatigue, moderated fatigue and fatigue data, TER decreased for moderated and 
fatigue data, but increased for no-fatigue data. On the other hand, using three LDA classifiers for each of the condition, TER decreased to 9.26 % and 11 
% in moderated fatigue and fatigue cases, while no-fatigue cases were not affected. 
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Hacia la reducción de los efectos de la fatiga muscular en el control 
mioeléctrico de prótesis de miembro superior 

 
Resumen 
Este artículo presenta una investigación centrada en el impacto de la fatiga muscular en un esquema de reconocimiento de patrones para el 
control mioeléctrico que utiliza tres conjuntos de características y un clasificador de análisis discriminante lineal. Los cambios en las 
características mientras se inducía la fatiga muscular se evalúan mediante la separabilidad y la repetibilidad entre las clases. Los resultados 
muestran que mientras la fatiga muscular aumenta con el tiempo, tanto la separabilidad como la repetibilidad disminuyen. Finalmente se 
evaluaron, mediante tasa de error total (TER), dos esquemas de entrenamiento que usan datos adquiridos bajo fatiga: entrenamiento 
multicondición y clasificación selectiva. Los resultados indican que, utilizando entrenamiento multicondición, el TER disminuyó para 
fatiga moderada y fatiga, pero aumentó para no-fatiga. Por otro lado, al usar clasificación selectiva, TER disminuyó a 9.26 % y 11 % en 
casos fatiga moderada y fatiga, mientras que la condición no-fatiga no se vio afectada. 
 
Palabras clave: electromiografía; control mioeléctrico; prótesis de miembro superior; reconocimiento de patrones. 

 
 
 

1.  Introduction 
 
The surface electromyogram, sEMG, has been for 

decades one of the major neural control sources for powered 
upper limb prostheses [1]. Various sEMG signal processing 
methods have been used to disclose the user’s intended 
movement. Conventional myoelectric control schemes 
employ measures such as the root mean square or mean 
absolute value of the EMG to quantify the strength of 
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contraction in the underlying muscles [2], controlling a 
prosthetic device with one or two degree of freedom (DOFs). 
On the other hand, pattern recognition-based myoelectric 
control is an advanced signal processing technique that can 
potentially be used to control multiple DOFs. In this 
approach, a set of features containing spatial and temporal 
information related to the acquired signals are extracted to 
form a pattern that is input to a classifier which determines 
the user’s intended movement [3]. 
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Although pattern recognition-based control of 
myoelectric prostheses has deserved great attention in 
research environments [4,5], it has not been widely used in 
clinical scenarios. According to scientific literature, 
myoelectric classification for prosthetic control is not only 
possible but also highly accurate [4-6]. This conclusion 
heavily collides with the clinical practice and the existing 
functional devices [7-9]: amplitude-based myoelectric 
control (and not pattern classification) has been used in most 
of commercial devices and only a quarter of patients with 
upper limb amputations use myoelectric prosthesis [3]. A 
possible explanation for that could be that researches usually 
were done under very controlled conditions and some 
external common factors that exist during daily activities 
have rarely been considered. In contrast, the changes in 
pattern during daily activities (caused by electrode 
displacements, muscular fatigue, variability of muscle 
contraction effort, limb positions, and many others) can affect 
the performance and robustness over time of Automatic 
Control of Myoelectric Prostheses [11]. All of these factors 
are currently challenges for the clinical use of prosthetic 
devices. Some newer studies have shown the particular 
effects caused by electrode displacements [12,13], variability 
of muscle contraction effort [11], and limb positions [14], 
however researches on the effects of muscle fatigue have 
been relatively limited [15]. The focus of this study is to 
reveal the effects of muscle fatigue on the performance of 
pattern classification. Muscle fatigue is a major cause of 
sEMG changes during repetitive contractions performed for 
long periods of time [16]. It is well known that muscle fatigue 
changes the recruitment of motor units contributing to muscle 
contraction, which in turn changes the nature of any sEMG 
signal measured at that muscle. In muscle physiology, it has 
been proposed that sustained static isometric contractions 
may cause an increase in EMG signal amplitude along with a 
shift of the spectrum toward the low frequencies [17]. For 
example, on [18], Park and Meek proposed a fatigue 
compensator preprocessor to reverse the effects of muscle 
fatigue on the frequency spectrum of an EMG signal. On the 
other hand, Song et al. [19] found that pattern recognition 
based systems, such as those that perform the classification 
using signals from a variety of EMG channels, are especially 
susceptible to the effects of fatigue.  

In this work, we induced muscle fatigue in six non-disabled 
subjects and studied the effects of EMG patterns modification on 
LDA classifiers. We found, during muscle fatigue, a decrease in 
the separability between classes and an increase in the 
classification error rate. Finally, we compared classification error 
rate using different training strategies allowing us to claim that an 
adequate strategy can reduce the effects of muscle fatigue in 
pattern recognition-based myoelectric control.  

 
2.  Materials and methods 

 
2.1.  Data acquisition and preprocessing  

 
Surface EMG signals were collected from six healthy, 

normally-limbed subjects, including three male and three female, 
with ages ranging from 24 to 36 years. All experiments were 
approved by UNB Research Ethics Board and all subjects were 

sufficiently informed about the procedure.  Subjects were fitted 
around the dominant forearm with an elastic band containing six 
wireless electrodes equally spaced using a Trigno Wireless 
System (Delsys Inc., USA). The electrodes were placed 
approximately at one third of the length of the forearm at the area 
of largest muscle bulk. Data were acquired using a sampling 
frequency of 2000 Hz with a 16-bit analog-to-digital converter. 
In order to reduce low frequency motion artifacts, digital data 
were filtered with a high-pass 3th order Butterworth digital filter 
with cutoff at 20 Hz and with the Transference Function 

 

H(z) =
0,9391− 2,8173z−1 + 2,8173z−2 − 0,9391z−

1 − 2,8744z−1 + 2,7565z−2 − 0,8819z−3  
(1). 

 
Subjects were asked to maintain the contraction of each 

of eight classes of motion: wrist flexion/extension, wrist 
pronation/supination, hand close/open, pinch grip and no 
motion. In order to induce muscle fatigue, sixteen repetitions 
of each contraction were collected increasing the duration of 
the contraction:  eight repetitions of 3 seconds of duration for 
each contraction, four repetitions of 10 seconds of duration 
for each contraction, and finally four repetitions of 30 
seconds of duration for each contraction. In all cases 2 
seconds of rest were given between each contraction. Fig. 1 
is an illustration of how spectral characteristics of EMG 
signal changed while time of contraction were increased. 
Note the spectrum shifts toward low frequencies (17.3 Hz in 
the figure), which is characteristic of muscle fatigue.  

Finally, the overall data set included eight repetitions of 3 
seconds (no muscle fatigue), four repetitions of 10 seconds 
(assuming a moderate muscle fatigue) and four repetitions of 30 
seconds (assuming muscle fatigue). These data sets were 
clustered according to the total acquisition time and were named 
as baseline data, moderate fatigue data and fatigue data 
respectively. 

All the data were collected using a version of the software 
described in [20]. The program shows the subject the 
movement to do, control the number of repetitions and 
duration of each exercise and matches data collected and 
desired contraction. EMG data were digitally notch filtered 
at 60 Hz using a 3rd order Butterworth filter in order to 
reduce power line interference. Data were segmented before 
feature extraction by applying a 200 ms analysis window [21] 
with 100 ms of overlap between adjacent segments.  

 

Figure 1. An illustration of how muscle fatigue was induced by increasing 
the contraction time. 
Source: The authors  
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2.2.  Feature extraction and classification 
 
Data were described using three different feature sets: 

Time-Domain feature set (TD) described in [22], 4th order 
Autoregressive (AR) features [23-25] and a combination of 
both (TDAR). Pattern classification was performed using a 
Linear Discriminant Analysis (LDA) classifier. The TD 
features used are described by eq. (2)-(5). 

Mean Absolute Value (MAV) [26] 
 

MAV =  
1
N
�|x[n]|
N

n=1

 (2) 

 
Zero-crossing (ZC) [27] 
 

ZC =  � sgn(−xi ∗ xi+1)
N

i=1

; sgn = �1, x > 0
0, x > 0 (3) 

 
Waveform Length (WL) [22] 
 

WL = �|∆xi|
N

i=1

;∆xi = x − xi−1 (4) 

 
Slope Sign Changes (SSC) [22] 
 

SSC = � sgn(xi+1 − xi) ∗ (xi+2 − xi+

N

i=1

 

sgn = �1, x > 0
0, x < 0 ; 

 

  
 

(5) 

In eq. (2)-(5), xi is the sEMG, N in the length in samples 
of the analysis window.  

AR features were obtained by calculating the coefficients, 
A = [1 A(2). . . A(K + 1)], of a 4th order [28] forward linear 
predictor defined by: 

 
Xp(n) = −A(2) ∗ X(n− 1)− 

A(3) ∗ X(n − 2) − A(4) ∗ X(n − 4) 
−A(5) ∗ X(n − 5) 

 
(6), 

 
in order to minimize the sum of the squares of the errors 
 

Err = ��x(n) − xp(n)�
2

N

i=1

 (7). 

 
More details on TD and AR features extraction can be 

found in [22] and [23]. 
 

Figure 2. Classification schemes, a) conventional, b) multiple condition 
training, c) selective classification. 
Source: The authors 

 
 

2.3.  Classification methods 
 
In order to analyze the effect of muscle fatigue on EMG 

features, we conducted three experiments using different 
classification schemes. First, data collected in no fatigue 
condition were used in the training phase and data collected 
in moderate fatigue and fatigue conditions were used in the 
testing phase. Second, multiple condition training strategies 
were used. In this approach data collected in no fatigue, 
moderate fatigue and fatigue conditions were used for both 
training and testing. Finally, three LDA classifiers were 
trained, the first one using data collected in no fatigue 
condition, the second using data collected in moderate fatigue 
condition and the last one using data collected in fatigue 
condition. This approach was named selective classification. 
Fig. 2 shows schemes of each of these classification methods. 

In addition, we propose an adaptive mechanism to improve 
the performance of LDA classifier when sEMG is affected by 
muscle fatigue. The proposed method can be summarized as 
follows: if the resulting classification of each new feature 
vector is correct the oldest feature vector in the training set is 
replaced and the classifier is retrained. (See Fig. 3) 

 

 
Figure 3. Flow diagram representing the adaptive LDA approach presented 
in the current research. Dashed line delimits re-training steps. 
Source: The authors  
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In this approach, for each subject the data was divided 
into two subsets: training data and test data. The training data 
was used to train a LDA classifier, while the test data was 
used to evaluate the static LDA classifier and to implement 
and evaluate the Adaptive Linear Discriminant Analysis 
(ALDA) classifier. 

 
2.4.  Analysis of effects of muscle fatigue 

 
The metrics used to quantify the data characteristics in the 

feature space were Repeatability Index (RI) and Separability 
Index (SI), introduced by Bunderson and Kuiken [29].  

The RI is a measure of how well a subject is able to 
reproduce EMG patterns from one trial to the next. The RI is 
calculated here as one-half the average Mahalanobis distance 
between the feature vector centroid for a trial (μk,j) and the 
next trial (μk+1,j ), averaged across all the trials and all the 
active classes as is shown in eq. 8: 

 

RI =  
1
J
��

1
K
�

1
2
��μj,k − μj,k+1�

T
Sj,k−1 �μj,k − μj,k+1�

K

k=2

�
J

j=1

 (8), 

 
where Sj is the covariance of the data for class j, J is the 

number of  active classes and K is the number of the testing 
trials. A lower consistency in pattern generation results in a 
greater RI. 

The SI is a measure of interclass distances computed as 
 

SI =  
1
J �� min

i=1,..J−1
�

1
2
��μj − μi�

T
STrj−1 �μj − μi���

J

j=1

 (9), 

 
SI is defined as one-half the Mahalanobis distance 

between the centroid μj of each class j to the centroid μiof the 
nearest class i, averaged across all the active classes. 
Separability Index increases when the classes are more 
distant.  

In addition to RI and SI, the Total Error Rate (TER) for 
each of the three classification schemes described above was 
evaluated, calculated as follows: 

 

TER = 100%
# Incorrect Decisions

# Total  Decisions
 (10) 

 
In the adaptive approach, the performance of the 

classifiers was measured by the offline metric classification 
Accuracy (Acc), False Positive Rate (FPR), Sensitivity (Se) 
and F1-score (F1). Expressions are given in eq. (11)-(14) 

Accuracy: 
 

𝐴𝐴𝐴𝐴𝐴𝐴 =  
# 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶 𝐷𝐷𝐶𝐶𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷

# 𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇 𝐷𝐷𝐶𝐶𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷 100% (11) 

 
False Positive Rate: 
 

𝐹𝐹𝐹𝐹𝐹𝐹 =
∑ 𝐹𝐹𝐹𝐹𝑖𝑖𝐼𝐼
𝑖𝑖=1

∑ (𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖)𝐼𝐼
𝑖𝑖=1

100% (12) 

 
Sensitivity: 
 

𝑆𝑆𝐶𝐶 =
∑ 𝑇𝑇𝐹𝐹𝑖𝑖𝐼𝐼
𝑖𝑖=1

∑ (𝑇𝑇𝐹𝐹𝑖𝑖 + 𝐹𝐹𝑇𝑇𝑖𝑖)𝐼𝐼
𝑖𝑖=1

100% (13) 

 
F1-score: 
 

𝐹𝐹1 =  
𝑆𝑆𝐶𝐶 ∗ 𝐹𝐹𝐶𝐶
𝑆𝑆𝐶𝐶 + 𝐹𝐹𝐶𝐶

 ;                   𝐹𝐹𝐶𝐶 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹 (14) 

 
In all cases I is the number of classes considered, I = 8 in this 

study. In eq. (12)  ∑ 𝐹𝐹𝐹𝐹𝑖𝑖𝐼𝐼
𝑖𝑖=1   represents the number of false 

positive when the classification task for each class is considered 
as a binary problem. The term ∑ (𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖)𝐼𝐼

𝑖𝑖=1  is the sum of false 
positives and true negatives from each class. In eq. (13) ∑ 𝑇𝑇𝐹𝐹𝑖𝑖𝐼𝐼

𝑖𝑖=1  
represents the number of true positive for each class 𝐷𝐷 and 
∑ (𝑇𝑇𝐹𝐹𝑖𝑖 + 𝐹𝐹𝑇𝑇𝑖𝑖)𝐼𝐼
𝑖𝑖=1  is the sum of true positive and false negative for 

each class. Equation (14) is a simultaneous measurement of 
sensitivity and precision. Note that for Acc (eq. (11)), Se (eq. 
(13)) and F1-Score (F1) (eq. (14)) a higher value indicates a 
major performance, while in FPR (eq. (12)) the best performance 
corresponds to the lowest value. 

 
3.  Results and discussions 

 
Fig. 4 shows the effects of induced muscle fatigue in 

Repeatability Index (Fig. 4a) and Seperability Index (Fig. 
4b). The graphs show the mean value of the index for each  

 

a) 

b) 
Figure 4. Effects of muscle fatigue measure in a) Repeatability Index, b) 
Separability Index. 
Source: The Authors  
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Figure 5. Classification Error with no-fatigue data set training, and test was 
performed with fatigue and no fatigue condition. 
Source: The Authors  

 
 

feature set and the vertical error bar indicates the inter-subject 
variability. Note that for visualization purposes indices were 
normalized. The results showed that both, Repeatability and 
Separability Indexes decreased when fatigue level increased. 
The trend is similar in all of the features set considered, but 
in AR set, the mean of the Separability is the lowest. 

The more obvious consequence of this trend in RI an SI, 
is that the accuracy of the classifier decreases in presence of 
muscle fatigue. Fig. 5 illustrates the TER when classifier was 
trained only with patterns from no fatigue condition. In this 
scheme, the classifier can identify test patterns from non-
fatigue data with high accuracy (TER ≈  7 ± 2.5 %), 
however it is not able to reliably recognize patterns with 
moderate (TER ≈  21 ± 5 %) or high muscle fatigue (TER 
≈  39 ± 15 %). The best results were obtained with the 
TDAR dataset. 

The results of Multiple Condition Training (Fig. 6) 
showed that TER in moderate and high levels of fatigue 
decreased to 9.3 ±  1.4 % and 11.9 ± 0.95% respectively. 
This is around 25 % better compared to the previous scheme. 
In contrast, in no fatigue data TER increased to 8.67 ±
2.5 %. This trend is similar in all of the features set analyzed. 
These results suggest the need of a new scheme based on 
selective classification. 

 

Figure 6. Classification Error when classifier was trained using Multiple 
Training Scheme and test was performed using data in no fatigue, moderate 
and high fatigue condition. 
Source: The Authors 

Figure 7. Classification Error when classifiers were trained using Selective 
Classification Scheme and test was performed using data in no fatigue, 
moderate and high fatigue condition. 
Source: The Authors 

 
Results for the Selective Classification scheme are 

showed in Fig. 7. A simple analysis of the figure suggests that 
the classifier achieved stable results for all data sets with this 
approach. However, with no fatigue data set the classifier did 
not increase the accuracy. This is because the data used to 
train the classifier were the same used in the first training 
scheme. Using the dataset with moderate level of fatigue the 
classifier showed a TER of 9.26 %, while the data with high 
level of fatigue showed a TER of 11.06 %. It represents an 
increase in accuracy compared with the traditional approach. 

Classification results were validated using Accuracy (Acc), 
False Positive Rate (FPR), Sensitivity (Se) and F1-score (F1). 
Validation parameters were calculated epoch by epoch in both 
scenarios: using Adaptive LDA and using non-adaptive LDA. 
Fig. 8 represents the mean and standard deviation of the 
parameters for the six subjects. Parameters were obtained from 
each of the class and combined. The solid lines represent 
classification results of the adaptive LDA classifier proposed in 
the current work, whereas the dashed lines represent 
classification results of the conventional LDA classifier. As 
shown in Fig. 8, when muscle fatigue increases, the accuracy and 
sensitivity of the conventional LDA classifier decreases from 
more than 90 % to less than 58 % in normally-limbed subjects. 
Fig. 8 (b) shows that False Positive Rate increases from around 
9% to 36.2 %. The F1-score (Fig. 8 c) decreases from 0.9 to 0.6. 
On the other hand, the parameters of the adaptive LDA show 
stable and higher performance. 

 
4.  Conclusions 

 
In this study we investigated the effects of muscle fatigue 

on the performance of automatic pattern recognition of eight 
movements of the arm by using the repeatability and 
separability indices and the classification rate. It was shown 
how muscle fatigue affects the feature spaces and also the 
classification rate. Total Error Rate computation for the 
schemes addressed demonstrated how the use of a multiple 
condition training scheme can reduce the classification error 
in presence of muscle fatigue, but it also degrades the 
performance of the classifier when data are not affected by 
fatigue. On the other hand, selective classification improves  
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a) 

b) 

c) 

d) 
Figure 8. Comparison of Adaptive vs. Non-adaptive LDA in normally-
limbed subjects a) Accuracy, b) False Positive Rate, c) Sensitivity and d) F1-
score. In all cases solid line represents Adaptive LDA while dashed line 
represents Non-adaptive LDA. 
Source: The Authors 

the performance of classifier in presence of muscle fatigue 
without affecting the performance in absence of fatigue. 
Nevertheless, this solution presents two major problems: the 
first one is the need of training three different classifiers 
which increases the computational load; the second, and 
more important, is the need to previously assess the fatigue 
condition, requiring an additional classifier to determine the 
fatigue level in a dual-stage classification scheme. In the case 
of adaptive vs non-adaptive LDA, results show that when 
muscle fatigue increases, the recognition accuracy and 
sensitivity of the non-adaptive LDA classifier decreases from 
more than 90% to less than 58% in normally-limbed subjects, 
in the same situation False Positive Rate increases from 
around 9% to 36.2% and the F1-score decreases from 0.9 to 
0.6. These parameters showed a more stable behavior and 
higher performance when adaptive LDA was evaluated. 
Future work should respond to the question: when it is 
necessary to adapt the classifier? 
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