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Abstract 
Composite structures with elastic layers and viscoelastic core have been used as a passive damping treatment applied to reduce vibration 
amplitudes. In the design phase of this type of damping technique, many aspects ranging from computer modeling to laboratory tests should 
be considered. Due to the frequency dependency of mechanical properties on these materials, time domain based models for viscoelastic 
materials are not as numerous as frequency domain based methods. Usually, time domain methods introduce extra dissipation coordinates 
or internal variables as Golla-Hughes-McTavish (GHM) method and also Anelastic Displacement Field (ADF) method. In this paper, these 
methods are evaluated by comparing their results to the ones obtained by means of theoretical analysis. Processing time are also evaluated 
highlighting advantages and disadvantages of these methodologies. Finally, these two-time domain methods are applied to a real structure, 
pointing out the facilities and difficulties to simulate an actual situation. 
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Comparaciones numéricas de modelos de vigas sándwich con 
núcleo viscoelástico 

 
Resumen 
Estructuras compuestas con capas elásticas y núcleo viscoelástico han sido usadas como tratamiento amortiguador pasivo para reducir las amplitudes 
de vibraciones. En el proyecto de este tipo de técnica de amortiguación, muchos aspectos deben ser considerados, desde este modelaje computacional 
hasta ensayos en laboratorio. En este artículo, un abordaje basado en los modelos Golla-Hughes-McTavish (GHM) y Anelastic Displacement Field 
(ADF) son presentados y aplicados al modelaje de materiales viscoelásticos. Con el fin de evaluar los resultados numéricos se realizó un programa 
experimental. En este sentido, a partir de las propiedades dinámicas de un material viscoelástico, son evaluados el comportamiento de estructuras 
sándwich a través de modelos numéricos, enseñándonos las ventajas y desventajas de estas metodologías. 
 
Palabras clave: material viscoelástico; modelo sándwich; control de vibraciones. 

 
 
 

1.  Intoduction 
 
Structural vibrations are undesirable not only for the 

discomfort caused to users, but also for the fatigue process, which 
is accelerated by dynamic oscillations. These effects may be 
detected specifically in structures with low stiffness and low 
natural frequencies, leading to large displacement amplitudes. 

Aiming the reduction of structural vibrations, several 
techniques were developed to increase structural damping. 
Among these techniques, the passive control with viscoelastic 
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materials has shown reasonable efficiency. In order to effectively 
reduce structural vibrations using this technique, it is important 
to understand the dynamic behaviors of the structure and of the 
viscoelastic material (VEM). 

Due to the mechanical properties frequency dependence 
on VEM, time domain based models are not so numerous as 
frequency domain methods. In spite of that, because of the 
facilities that time domain methods may directly provide, 
such as the maximum displacement range in a structural 
model analysis, many researchers have been developing 
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numerical methods to simulate the VEM dynamical response 
in the time domain. The most successful models are the ones 
that introduce extra dissipation coordinates or internal 
variables in a Finite Element, due to its simplicity and 
capability to virtually model any complex geometry. This 
kind of methodology has been applied in several situations 
such as the ones presented by Friswell et. al [1], Roy et. al 
[2], Wang et. al [3] and Wang et. al [4]. Among the dissipation 
coordinates based methods it is possible to observe that Golla-
Hughes-McTavish (GHM) method [5,6] and Anelastic 
Displacement Field (ADF) method [7-11] are frequently chosen 
in order to simulate the dynamic response of VEM. 

Within this context, this paper will discuss the computational 
modeling of VEM and their use for reducing vibrations in 
structures, working as a passive control mechanism in sandwich 
layers. Computational viscoelastic sandwich models, based on 
GHM and ADF methods, are analyzed and their results are 
compared with theirs theoretical counterparts. Finally, an actual 
structure is used to evaluate the facilities and difficulties of each 
applied technique. 

 
2.  Viscoelastic materials modelling 

 
2.1.  The GHM model 

 
The stress-strain relation for a single degree of freedom 

system on Laplace’s domain, as mentioned by reference [5], 
may be written as: 

 
𝜎𝜎(𝑠𝑠) = [𝐸𝐸0 + ℎ(𝑠𝑠)]𝜀𝜀(𝑠𝑠), (1) 

 
where s is the Laplace operator, σ(s) and ε(s) are, 

respectively, the stress and strain on Laplace’s domain, E0 is 
the elastic fraction of complex modulus and h(s) is the 
relaxation function. 

Function h(s) can be written using Biot’s [12] series, with 
two terms as: 

 

ℎ(𝑠𝑠) = 𝛼𝛼1
𝑠𝑠2 + 𝛽𝛽1𝑠𝑠

𝑠𝑠2 + 𝛽𝛽1𝑠𝑠 + 𝛿𝛿1 + 𝛼𝛼2
𝑠𝑠2 + 𝛽𝛽2𝑠𝑠

𝑠𝑠2 + 𝛽𝛽2𝑠𝑠 + 𝛿𝛿2 , 
(2) 

 
where αi, βi and δi are materials constants and (αi, βI, δi)≥0. 
The GHM model is developed starting from the equation of 

motion in the Laplace domain:  
 

{𝑀𝑀𝐿𝐿𝑠𝑠2 + 𝐾𝐾𝐿𝐿}𝑞𝑞(𝑠𝑠) = 𝑓𝑓𝐿𝐿(𝑠𝑠), (3) 
 
where, M L, K L and f L are respectively the mass, stiffness 

and external loading in the Laplace domain, being: 
 

𝐾𝐾𝐿𝐿 =  [𝐸𝐸0 + ℎ(𝑠𝑠)]𝐾𝐾𝑣𝑣, (4) 
 
and Kv is the rigidity associated with geometrical 

characteristics of the model. 
The GHM model defines the equation of motion in the 

time domain as:  
 

𝐌𝐌�𝐪𝐪�̈ + 𝐂𝐂�𝐪𝐪�̇ + 𝐊𝐊�𝐪𝐪� = 𝐟𝐟,̅ (5) 
 
where: 

𝐌𝐌� =

⎣
⎢
⎢
⎢
⎡
𝑀𝑀 0 0
0

𝛼𝛼1
𝛿𝛿1
𝐾𝐾𝑣𝑣 0

0 0
𝛼𝛼2
𝛿𝛿2
𝐾𝐾𝑣𝑣⎦
⎥
⎥
⎥
⎤
, 

 

𝐂𝐂� =

⎣
⎢
⎢
⎢
⎡
0 0 0

0
𝛼𝛼1𝛽𝛽1
𝛿𝛿1

𝐾𝐾𝑣𝑣 0

0 0
𝛼𝛼2𝛽𝛽2
𝛿𝛿2

𝐾𝐾𝑣𝑣⎦
⎥
⎥
⎥
⎤

, 

 

𝐊𝐊� = �
𝐾𝐾∗ −𝛼𝛼1𝐾𝐾𝑣𝑣 −𝛼𝛼2𝐾𝐾𝑣𝑣

−𝛼𝛼1𝐾𝐾𝑣𝑣 𝐾𝐾𝑣𝑣 0
−𝛼𝛼2𝐾𝐾𝑣𝑣 0 𝐾𝐾𝑣𝑣

�, 

 

𝐪𝐪� = �
𝑞𝑞
�̂�𝑧1
�̂�𝑧2
� ,    𝐟𝐟̅ = �

𝑓𝑓(𝑡𝑡)
0
0
�, 

 

 
ẑi is the auxiliary variable introduced into the problem, 

called dissipation variable, and 𝐾𝐾∗ = 𝐾𝐾𝑣𝑣(𝐸𝐸0 + ∑ 𝛼𝛼𝑖𝑖2
𝑖𝑖=1 ). 

Generalizing eq. (5) for n degrees of freedom, then this 
equation may be written as in eq. (6):  

 
M�𝐺𝐺𝐺𝐺𝐺𝐺q�̈ + C�𝐺𝐺𝐺𝐺𝐺𝐺q�̇ + K�𝐺𝐺𝐺𝐺𝐺𝐺q� = f,̅ (6) 

 

M�𝐺𝐺𝐺𝐺𝐺𝐺 =

⎣
⎢
⎢
⎢
⎡
M 0 0
0

𝛼𝛼1
𝛿𝛿1

I 0

0 0
𝛼𝛼2
𝛿𝛿2

I⎦
⎥
⎥
⎥
⎤
, 

 

(6a) 

 

C�𝐺𝐺𝐺𝐺𝐺𝐺 =

⎣
⎢
⎢
⎢
⎡
0 0 0

0
𝛼𝛼1𝛽𝛽1
𝛿𝛿1

I 0

0 0
𝛼𝛼2𝛽𝛽2
𝛿𝛿2

I⎦
⎥
⎥
⎥
⎤

, 

 

(6b) 

 

K�𝐺𝐺𝐺𝐺𝐺𝐺 =

⎣
⎢
⎢
⎢
⎡K𝑣𝑣 �𝐸𝐸0 + �𝛼𝛼𝑖𝑖

2

𝑖𝑖=1

� −𝛼𝛼1R −𝛼𝛼2R

−𝛼𝛼1R𝑇𝑇 𝛼𝛼1I 0
−𝛼𝛼2R𝑇𝑇 0 𝛼𝛼2I ⎦

⎥
⎥
⎥
⎤

, 

 

(6c) 

 

q� = �
q
z1
z2
� ,    f ̅ = �

f(𝑡𝑡)
0
0
�, (6d) 

 
and where:  
 

K𝑣𝑣 = T𝑇𝑇ΛT, (7) 
 
being 𝚲𝚲 a diagonal matrix consisting of the non-zero eigen-

values of the stiffness matrix normalized with respect to the elastic 
modulus, 𝐸𝐸; 𝐓𝐓 the matrix of vectors corresponding to the non-zero 
eigen-values of the matrix 1 𝐸𝐸⁄ 𝐊𝐊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒 , where 𝐊𝐊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒  the elastic 
Finite Element stiffness matrix is; 𝐑𝐑 = 𝐓𝐓𝚲𝚲1/2 and 𝐳𝐳i = 𝐑𝐑𝐳𝐳�i. 

As shown in eq. (2) and (6) the number of dissipative 



Felippe et al / Revista DYNA, 86(208), pp. 28-36, January - March, 2019. 

30 

degrees of freedom associated with viscoelastic elements 
depends on the number of terms used in relaxation function 
and the number of rigid body motions [13]. It should be noted 
that the greater the number of terms used to write the 
relaxation function the more accurate the modelling. 

Using eq. (6) and (7), it is possible to determine stiffness, 
mass and damping matrices, for any kind of Finite Element. 

 
2.2.  The ADF model 

 
Lesieutre [9] establishes that the displacement field can be written as: 
 

𝑞𝑞(𝑡𝑡) = 𝑞𝑞𝑒𝑒(𝑡𝑡) + �𝑞𝑞𝑗𝑗𝑒𝑒(𝑡𝑡)
𝑁𝑁

𝑗𝑗=1

, (8) 

 
where 𝑞𝑞𝑒𝑒(𝑡𝑡) is the elastic displacement field and 𝑞𝑞𝑗𝑗𝑒𝑒(𝑡𝑡) is the j-

th anelastic displacement field are then the strain field is defined as: 
 

𝜀𝜀(𝑡𝑡) = 𝜀𝜀𝑒𝑒(𝑡𝑡) + �𝜀𝜀𝑗𝑗𝑒𝑒(𝑡𝑡)
𝑁𝑁

𝑗𝑗=1

, (9) 

 
The ADF model defines the equation of motion in the 

time domain as 
 

𝑀𝑀�̈�𝑞(𝑡𝑡) + 𝜎𝜎(𝑡𝑡) = 𝑓𝑓(𝑡𝑡), (10) 
 
where 𝜎𝜎(𝑡𝑡) the stress in material is. Considering eq. (9) 

one can obtain: 
 

𝑀𝑀�̈�𝑞(𝑡𝑡) + 𝐸𝐸∞ �𝜀𝜀(𝑡𝑡) −�𝜀𝜀𝑗𝑗𝑒𝑒(𝑡𝑡)
𝑁𝑁

𝑗𝑗=1

� = 𝑓𝑓(𝑡𝑡). (11) 

 
where 𝐸𝐸∞ the elastic modulus at high frequency is. 

Defining the anelastic stress as a “thermodynamic force” that 
carry the anelastic deformations to an equilibrium point 
Lesieutre [9] defines:  

 
1
Ω𝑗𝑗
𝐸𝐸∞

𝜕𝜕
𝜕𝜕𝑡𝑡 𝜀𝜀𝑗𝑗

𝑒𝑒(𝑡𝑡) + 𝐸𝐸𝑗𝑗𝑒𝑒𝜀𝜀𝑗𝑗𝑒𝑒(𝑡𝑡) − 𝐸𝐸∞𝜀𝜀(𝑡𝑡) = 0, (12) 

 
where 𝐸𝐸𝑗𝑗𝑒𝑒 the j-th anelastic modulus is and Ω𝑗𝑗 it is a material 

parameter. Applying the Finite Element Method on eq. (11) and (12) 
and considering just two terms on eq. (8) one can write:  

 
M�𝐴𝐴𝐴𝐴𝐴𝐴q�̈ + C�𝐴𝐴𝐴𝐴𝐴𝐴q�̇ + K�𝐴𝐴𝐴𝐴𝐴𝐴q� = f,̅ (13) 

 
where 
 

M�𝐴𝐴𝐴𝐴𝐴𝐴 = �
M 0 0
0 0 0
0 0 0

�, 

 
(13a) 

C�𝐴𝐴𝐴𝐴𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡
0 0 0

0
𝐶𝐶1
Ω1

𝐸𝐸∞Λ 0

0 0
𝐶𝐶2
Ω2

𝐸𝐸∞Λ⎦
⎥
⎥
⎥
⎤

, (13b) 

  

K�𝐴𝐴𝐴𝐴𝐴𝐴 = �
K𝑣𝑣
∞ −K𝑣𝑣

∞T −K𝑣𝑣
∞T

−R𝑇𝑇K𝑣𝑣
∞ 𝐶𝐶1𝐸𝐸∞Λ 0

−R𝑇𝑇K𝑣𝑣
∞ 0 𝐶𝐶2𝐸𝐸∞Λ

�, 

 
(13c) 

 

q� = �
q

q1𝑒𝑒
q2𝑒𝑒
� ,    f ̅ = �

f(𝑡𝑡)
0
0
�, (13d) 

 
𝐶𝐶𝑗𝑗 it is a material parameter and, as in GHM Model: 𝐊𝐊𝑣𝑣 = 𝐓𝐓𝑇𝑇𝚲𝚲𝐓𝐓. 
As shown in eq. (8) and (13) the same observations about the 

number of dissipative degrees of freedom associated with viscoelastic 
elements can be made as the ones made for GHM model. 

 
3.  Evaluation of VEM models 

 
3.1.  The GHM model 

 
The validation test applied to both methods consists of 

evaluating the dynamic behavior of a viscoelastic cantilever 
beam. The beam has rectangular cross-section and 1000mm 
length; the cross-section has 300mm height and 150mm 
width as shown in Fig. 1. 

The numerical simulations ware performed using 
triangular element (constant strain triangular elements - CST) 
meshes to discretize the domain of the structures. In order to 
obtain the suitable refined mesh a convergence analysis was 
performed until no significant difference was observed for 
two levels of refinement. Once defined the configuration of 
the mesh for each tested beam model, this mesh was used for 
the both formulations – GHM and ADF. The refined mesh 
has 602,302 physical dof and 1,800,000 dissipative dof, 
2,402,302 dof total. A schema of the used mesh is presented 
in Fig. 2. The viscoelastic triangular elements matrices were 
obtained with eq. (6), for GHM Model, and eq. (14), for ADF 
Model. 

 

 
Figure 1. Viscoelastic cantilever beam geometry.  
Source: The authors. 

 
 

 
Figure 2. Structural Finite Element discretization for validation tests.  
Source: The authors.  
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Table 1. 
Material parameters used in validation tests of GHM model.  

Parameter Value 
Term 1 Term 2 

G0 (MPa) 637 
α (MPa) 763774.0 763774.0 
β (s-1) 2.9178×107 2.9178×107 
δ (s-2) 3.2408×108 3.2408×108 

Source: The authors. 
 

Table 2. 
Material parameters used in validation tests of ADF model.  

Parameter Value 
Term 1 Term 2 

G0 (MPa) 637 
∆ 2.0118 2.0118 
Ω 83.0916 83.0916 

Source: The authors. 
 
 
In order to better evaluate the accuracy of the analyzed 

methods, two VEM were used for the validation. For GHM’s and 
ADF’s tests, materials 1 and 2, respectively, were applied. Tables 
1 and 2 present the parameters of these materials used in eq. (6) 
and (13) to obtain the VEM cantilever models. This strategy was 
adopted due to the differences in the expressions for the complex 
modulus for the two formulations.  

GHM and ADF formulations allow time domain 
equations for VEM. However, using their respective 
frequency domain equations, it is possible to apply classical 
discrete solutions to compare and evaluate the quality of 
GHM and ADF results, as is explained below. 

Starting from the dynamic equilibrium equations, using the 
complex excitation one has the classical discrete equation: 

 
𝐌𝐌�̈�𝐪+ 𝐊𝐊(𝜔𝜔)𝐪𝐪 = 𝐏𝐏𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖𝜔𝜔𝑡𝑡), (14) 

 
where M is the structure mass matrix; K(ω) is the 

frequency dependent stiffness matrix on the structure; 
Pexp(iωt) is the harmonic excitation vector having ω as the 
excitation frequency and 𝑖𝑖 = √−1. It can be noticed that, if 
the mechanical properties of the structure are not frequency 
dependent, K(ω) = K, which is not the case of VEM. 

Using GHM or ADF, eq. (14) may be rewritten as: 
 

𝐌𝐌� ��̈�𝐪�̈�𝐳� + 𝐂𝐂� ��̇�𝐪𝐳𝐳� + 𝐊𝐊� �𝐪𝐪𝐳𝐳� = �𝐏𝐏𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖𝜔𝜔𝑡𝑡)
𝟎𝟎 �, (15) 

 
where 𝐌𝐌� , 𝐊𝐊�� and 𝐂𝐂 the mass, stiffness and damping 

matrices for GHM or ADF are respectively. It is important to 
notice that the stiffness matrixes in the GHM or ADF 
formulations are not frequency dependent. 

The frequency domain displacements, 𝐪𝐪, may be obtained 
by solving eq. (15) and (16), resulting in eq. (17) and (18), 
respectively: 

 
𝐪𝐪 = [𝐊𝐊(𝜔𝜔) − 𝜔𝜔2𝐌𝐌]−1𝐅𝐅 (16) 

 
�𝐪𝐪𝐳𝐳� = [𝐊𝐊� − 𝑖𝑖𝜔𝜔𝐂𝐂� − 𝜔𝜔2𝐌𝐌� ]−1 �𝐏𝐏𝟎𝟎� (17) 

 
By solving eq. (16) and (17) for the two beam models, the 

graphs in Fig. 3 may be achieved. It is possible to observe that, 

 
a) GHM model. 

 
b) ADF model. 

Figure 3. Density frequency functions for validation tests.  
Source: The authors. 

 
 

for all tested beam models, ADF and GHM formulations 
allow identical results when compared to the respective 
classical responses, supporting the accuracy of applied 
methods. Fig. 3.a and 3.b were achieved observing the 
vertical nodal displacements at the free end of the beam 
models, with only one nodal harmonic transversal load also 
at the free end. As can be seen in this figure both models 
produce the same response on the frequency domain as the 
Classic model. 

 
3.2.  Time evaluation of numerical methods 

 
Another parameter to compare both methods is the time 

taken to assemble the models global matrixes. Both methods 
ware implemented virtually with the same code in MATLAB 
where each program uses global sparse matrixes; Assembles 
the global matrixes element-per-element; and for each 
element, an eigenvalue problem is solved. 

In an Intel Core 2 Duo computer with 2.1GHz clock and 
2.00Gb RAM the VEM cantilever beam models were evaluated 
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a) GHM model. 

 
b) ADF model. 

Figure 4. Time histograms for GHM and ADF viscoelastic cantilever beams.  
Source: The authors. 

 
 

20 times, running under a Windows Vista operational system, 
and the total time taken to assemble the global matrixes and 
impose the boundary conditions were registered. The time 
taken to solve the time problem and to solve the dynamical 
system were disregarded. 

With these registered times the histograms on Fig. 4 were 
able to build. For the GHM model the mean time is 8.97h 
with standard deviation 1.83 and coefficient of variation 
0.24; and for the ADF model the mean is 8.00h with the 
standard deviation 0.79 and coefficient of variation 0.10. 

One can notice that the mean times of both models are 
close but the ADF model coefficient of variation is about half 
of the GHM model. 

 
4.  Experimental evaluation of VEM models 

 
4.1.  Experimental program 

 
In order to evaluate the viscoelastic models, an 

experimental program was developed. In these laboratory 
studies, a set of three kinds of sandwich beams was tested. 
The beams were divided into three groups in accordance with 
its layer configuration: 

a) VS1 beam, with two elastic layers (base beam and 
clamped restraining layer) and one viscoelastic layer; 

 
a) VS1 beam. 

 
b) VS1c beam. 

 
c) VS2 beam. 

Figure 5. Longitudinal section of the analyzed beams.  
Source: The authors. 

 
 

Table 3. 
Mechanical properties of beam materials.  

Mechanical 
property Aluminum VHB 4955 

Elastic modulus 
(GPa) 109.6 - 

Poisson’s coefficient 0.30 0.49 
Density (kg/m3) 8794.0 795.0 

Source: The authors. 
 
b) VS1c beam, with two elastic layers (base beam and 

free restraining layer) and one viscoelastic layer and;  
c) VS2 beam, with three elastic layers (one base beam and 

two clamped restraining layer).  
The layer configurations of each sandwich beam group 

can be seen at Fig. 5. 
All beams have rectangular cross section and 1140 mm 

length, working as the elastic base structure with 16,1mm 
height; viscoelastic layers with 2,0mm height; and elastic 
constraining layers with 3,17mm height. 

The elastic material was aluminum and the viscoelastic 
material used was VHB 4955 [14], their mechanical 
properties are listed in Table 3.  

Two geometrically identical based structures (Base beam A 
and B) were used for each group of beams. This strategy was 
applied in order to evaluate the experimental result dispersion. 
For exact identical Base beams, one should have identical results. 

The beams were excited under the action of a hammer impact 
at 15 cm from cantilever and at the same section the transversal 
displacements were measured with LVDT sensors, which could 
register displacements without touching the structure. 

For the two base beams (A and B) used as base structures, 
without damping treatment, the natural frequencies and their 
damping rates are listed in Table 4, respectively.  
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Table 4. 
Natural frequencies and damping ratios of base beams. 

Base beam Vibratio
n mode 

Natural 
frequency (Hz) 

Damping ratio 
(%) 

A 
1 10.25±0.00 0.05±0.00 
2 63.38±0.00 0.02±0.00 
3 179.00±0.00 0.06±0.00 

B 
1 10.24±0.00 0.05±0.00 
2 63.70±0.00 0.04±0.00 
3 179.26±0.00 0.05±0.00 

Source: The authors. 
 
 

Table 5. 
Natural frequencies and damping ratios of VS1 specimens.  

Base beam Vibratio
n mode 

Natural 
frequency (Hz) 

Damping ratio 
(%) 

A 
1 11.31±0.02 4.98±0.11 
2 63.37±0.17 4.90±0.19 
3 175.05±0.12 4.39±0.01 

B 
1 11.03±0.02 4.44±0.01 
2 61.76±0.14 4.32±0.05 
3 168.08±0.23 3.28±0.06 

Source: The authors. 
 
 

Table 6. 
Natural frequencies and damping ratios of VS1c specimens.  

Base beam Vibratio
n mode 

Natural 
frequency (Hz) 

Damping ratio 
(%) 

A 
1 9.82±0.00 2.74±0.01 
2 63.70±0.04 4.80±0.10 
3 174.05±0.35 4.44±0.04 

B 
1 8.41±0.01 2.23±0.02 
2 55.09±0.06 3.48±0.06 
3 145.48±0.16 3.86±0.07 

Source: The authors. 
 
 

Table 7. 
Natural frequencies and damping ratios of VS2 specimens.  

Base beam Vibratio
n mode 

Natural 
frequency (Hz) 

Damping ratio 
(%) 

A 
1 * * 
2 * * 
3 * * 

B 
1 12.34±0.05 7.92±0.11 
2 64.79±0.37 8.65±0.20 
3 173.29±0.90 6.17±0.49 

*: Results for VS2 with base beam A were corrupted. 
Source: The authors. 

 
 
For the three specimens with damping treatment, their 

natural frequencies and damping rates are listed in Tables 5-
7, respectively. 

 
4.2.  Models parameters 

 
There are several methodologies for characterizing the 

Complex Modulus of viscoelastic materials: ASTM Standard 
Method [15], Direct Method [16] and Indirect Method [17]. 
These methods basically register, at a given temperature, the 
temporal responses, when a specimen is submitted into shear 
or axial deformation [18]. 

After the values of Complex Modulus are experimentally 
determined, one can adjust the curves of the real part of the 
Complex Modulus and the loss factor for the points obtained 
experimentally. In the case of the formulation GHM, they are 
given, in terms of shear modulus, by: 

 

𝐺𝐺′(𝜔𝜔) = 𝐺𝐺0 + �𝛼𝛼𝑖𝑖
𝜔𝜔2�𝜔𝜔2 − 𝛿𝛿𝑖𝑖 + 𝛽𝛽𝑖𝑖2�
(𝛿𝛿𝑖𝑖 − 𝜔𝜔2)2 + 𝛽𝛽𝑖𝑖2𝜔𝜔2

2

𝑖𝑖=1

, (18) 

 

𝜂𝜂(𝜔𝜔) =
1

𝐺𝐺′(𝜔𝜔)�
𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖𝛿𝛿𝑖𝑖𝜔𝜔

(𝛿𝛿𝑖𝑖 − 𝜔𝜔2)2 + 𝛽𝛽𝑖𝑖2𝜔𝜔2

2

𝑖𝑖=1

, (19) 

 
and in the case of the ADF formulation these equations are: 
 

𝐺𝐺′(𝜔𝜔) = 𝐺𝐺0 �1 + �Δ𝑗𝑗
�𝜔𝜔 Ω𝑗𝑗⁄ �2

1 + �𝜔𝜔 Ω𝑗𝑗⁄ �2

2

𝑗𝑗=1

�, (20) 

 

𝜂𝜂(𝜔𝜔) =
∑ Δ𝑗𝑗 �𝜔𝜔 Ω𝑗𝑗⁄ � �1 + �𝜔𝜔 Ω𝑗𝑗⁄ �2��2
𝑗𝑗=1

1 + ∑ Δ𝑗𝑗 �𝜔𝜔 Ω𝑗𝑗⁄ �2 �1 + �𝜔𝜔 Ω𝑗𝑗⁄ �2��2
𝑗𝑗=1

 (21) 

 
these functions are used to determine the GHM and ADF 

materials parameters. 
In this paper, the Direct Method was applied for frequencies 

between 0 and 200 Hz. Using data from the experiments, the 
materials parameters could be determined using the Nonlinear 
Least Squares Method [19, 20]. These fitted values are shown in 
Table 8, for the GHM Model, and Table 9, for the ADF Model. 
Fig. 6 shows two graphics comparing the experimental values 
and the adjusted curves of G′(ω) and η(ω) for both models. 

 
4.3.  Numerical evaluation 

 
The viscoelastic triangular elements matrices were obtained 

with eq. (6), for GHM Model, and eq. (13), for ADF Model. The 
discretized beams were excited using an impact model, shown in 
Fig. 7, at 15 cm from cantilever and, at the same point, the 
transversal displacement along the time was observed. 

 
Table 8. 
GHM parameters adjusted to the viscoelastic material.  

Parameter Value 
Term 1 Term 2 

G0 (MPa) 637 
α (MPa) 763774.0 6873966.0 
β (s-1) 2.9178×107 1.2146×107 
δ (s-2) 3.2408×108 4.0554×109 

Source: The authors. 
 
 

Table 9. 
ADF parameters adjusted to the viscoelastic material.  

Parameter Value 
Term 1 Term 2 

G0 (MPa) 637 
∆ 2.0118 3.6212 
Ω 83.0916 293.1763 

Source: The authors. 
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a) Shear modulus. 

 
b) Loss factor. 

Figure 6. Experimental values and fitted curves of G’(ω) and η(ω).  
Source: The authors. 

 
 

 
Figure 7. Impact model used to excite the discretized beams.  
Source: The authors. 

 
 
The same elastic layer mechanical properties and 

viscoelastic layers ware considered in Table 3 in addition to the 
GHM and ADF parameters previously listed in this section. 

With the models, meshes and mechanical properties 
described, the time response of beams could be obtained. In 
order to obtain the natural frequencies and damping rates it 
was constructed the spectral response; The first three natural 
frequencies were identified; The time response signal was 
filtered around these frequencies and; The damping rates 
were obtained. The relationship between the numerical and 
experimental data could be seen on Fig. 8 through Fig. 10. 

 
a) Natural frequency. 

 
b) Damping rate. 

Figure 8. Relationship between the numerical and experimental data for VS1 beam. 
Source: The authors. 

 
 

 
a) Natural frequency. 

 
b) Damping rate. 

Figure 9. Relationship between the numerical and experimental data for VS1c beam.  
Source: The authors. 
  

Frequency (Hz)
0 20 40 60 80 100 120 140 160 180

1

2

3

4

5

6

7

8

9

10
G

´(?
)  

(M
Pa

)
Experimental [10]
GHM curve fit
ADF curve fit

Frequency (Hz)
0 20 40 60 80 100 120 140 160 180

0.2

0.4

0.6

0.8

1.0

1.2

1.4

η
ω(

)  
(M

Pa
)

1 2
0

1

P(
t) 

 (k
N

)

Time (x10  s)-3

0

20

40

60

80

100

120

140

160

180

Fr
eq

en
cy

 (H
z)

1 2 3
Vibration mode

Beam A
Beam B
ADF
GHM

1 2 3
0

1

2

3

4

5

6

7

8

9

Vibration mode
D

am
pi

ng
 ra

te
 (%

)

0

20

40

60

80

100

120

140

160

180

Fr
eq

en
cy

 (H
z)

1 2 3
Vibration mode

Beam A
Beam B
ADF
GHM

1 2 3
0

1

2

3

4

5

6

7

8

9

Vibration mode

D
am

pi
ng

 ra
te

 (%
)



Felippe et al / Revista DYNA, 86(208), pp. 28-36, January - March, 2019. 

35 

 
a) Natural frequency. 

 
b) Damping rate. 

Figure 10. Relationship between the numerical and experimental data for VS1c beam.  
Source: The authors. 

 
5.  Conclusions 

 
This study evaluated the GHM and ADF methods on 

computational modeling of viscoelastic materials acting as 
structural vibration dampers. These models were 
implemented in a finite element code and were observed that 
both produce the same response on frequency domain and 
results nearly to those obtained in the experimental program. 

Analyzing the obtained responses for the experimentally 
studied beams, one can observe that natural frequencies obtained 
with both presented models, in general, have good agreement 
with the experimental counterpart for the first three modes. 

In Table 10, are shown the absolute differences, in terms 
of damping rates, between the experimental and numerical 

results. As could be seen, in general, the GHM model 
presents a better agreement than the ADF model. It could be 
stated that GHM model evaluated damping rates with 
differences, in terms of percentual points, between -0,32 and 
+0,16 for first vibration mode; between -0,80 and -0,71 for 
second mode and; between -4,06 and -0,52 percentual points 
for third mode. For the ADF model these differences are 
between -0,76 and +1,59 for first vibration mode; between -
3,07 and -1,64 for second mode and; between -3,86 and +0,55 
for third mode. 

It is important to emphasize that material functions with 
two terms in both models were adopted and it is possible to 
see in Fig. 2 that the curve fit for ADF model was better than 
that obtained with the GHM model. It can also be highlighted 
that the Nonlinear Least Squares Method is an iterative curve 
fit method and a higher number of attempts was needed to get 
a good fit with the GHM model than with the ADF model. 

By analyzing the obtained responses for the cantilever 
beams, one can observe that despite the good correlation 
between the fitted curves and the experimental data, the 
damping factor obtained through the numerical models were, 
in general, underestimated for both models, while the good 
agreement of natural frequencies obtained with the models 
and the experimental values. Obviously these differences 
cannot be attributed only to curve fitting. Other factors such 
as: the methodology used on modal identification (in 
numerical evaluation the exponential decrement 
methodology was adopted and in laboratory tests the half 
power method was adopted); 2) Dispersion of experimental 
results; 3) The Finite Element discretization, also play a 
significant influence on numerical results. 

It could be also observed that the adopted damping 
treatment, in both cases, considerably increased the damping 
rates of the structures when compared with the elastic 
structure without damping treatment. This structural 
behavior allows the conclusion that viscoelastic materials 
may be used to reduce vibration oscillations. 

Despite the fact that both models provided results close to 
experimental data and in favor of safety, the curve fit and the 
results obtained with the ADF model were better than the 
ones obtained with the GHM model. It seems that 
considering the formulations presented here the ADF model 
is more suitable to model viscoelastic materials than the 
GHM one.  

 
Table 10. 
Summary of damping results.  

Beam Vibration 
mode 

Experimental damping 
(mean value) 

(%) 

ΔGHM damping  
(𝝃𝝃𝑮𝑮𝑮𝑮𝑮𝑮 − 𝝃𝝃𝒆𝒆𝒆𝒆𝒆𝒆) 

(%) 

ΔADF damping 
(𝝃𝝃𝑨𝑨𝑨𝑨𝑨𝑨 − 𝝃𝝃𝒆𝒆𝒆𝒆𝒆𝒆) 

(%) 

VS1 
1 4,71 -0,32 +0,66 
2 4,61 -0,71 -1,64 
3 3,84 -0,52 -2,73 

VS1c 
1 2,49 +0,16 +1,59 
2 4,14 -0,79 -1,63 
3 4,18 -2,15 +0,55 

VS2 
1 7,92 -0,22 -0,76 
2 8,65 -0,80 -3,07 
3 6,17 -4,06 -3,86 

Source: The authors. 
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