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Abstract 
Water stress due to soil water deficit is one of the limitations in the soybean production, which can be detected with multivariate statistical 
analysis and spectral reflectance signals, in the visible and near infrared range. This work was conducted to determine a spectral pattern 
during the stages of plant development from three conditions of soil water content. Cross validation was used in the classification model, 
obtaining an accuracy of 82.5%, and a mean sensitivity and specificity of 82 and 90%, respectively, at the phenological state of pod filling. 
Regions with the highest correlation between factors and wavelengths were located at 400-600 nm and 1850-2100 nm, which are related 
with the peaks of water energy absorbance associated to the hydric state of the plant. 
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Uso de la espectroscopia Vis NIR-SWIR para la predicción del 
estado hídrico de las plantas de soya en el Piedemonte Llanero 

Colombiano 
 

Resumen 
El estrés hídrico por deficiencia de agua es uno de los limitantes en la producción de grano de soya. Este déficit puede ser detectado con 
sensores de reflectancia espectral, en el rango visible e infrarrojo cercano, empleando métodos de análisis estadísticos multivariados. El 
objetivo fue determinar diferencias en el patrón espectral de las hojas, en plantas sometidas a una de las tres condiciones constantes de 
contenido de agua edáfica durante todo el ciclo del cultivo. Se construyó un modelo de clasificación con análisis discriminante y mínimos 
cuadrados parciales, el cual obtuvo una precisión de 82.5%, una sensibilidad y especificidad media de 82 y 90%, respectivamente. El 
modelo fue evaluado mediante validación cruzada en el estado fenológico de llenado de vainas. Las regiones con mayor importancia en el 
modelo fueron el visible y el infrarrojo de onda corta entre 1850-2000 nm, donde se presentaron cambios de pendiente en la curva espectral 
relacionados con el contenido de agua en la hoja. 
 
Palabras clave: hiperespectral; análisis discriminante; déficit hídrico; soya. 

 
 
 

1.  Introduction 
 
Soybean in Colombia has a growing internal demand, 

generated by the poultry, fish and livestock agroindustries, 
which are supplied with the internal production (5%) and 
requires imports that reach the 358,066 tons of soybean and 
833,083 tons of soybean meal per year on average for the last 
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10 years [1]. Therefore, the national government added 
policies to increase the area planted within the 2010-2018 
period, to encourage sowing that compensates the 
dependence on imports. 

The Colombian Orinoquia is the region with the greatest 
growth potential of the crop, which currently concentrates 
79% of the production [2]. In this region, genetic 
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improvement has focused on disease resistance [3] and 
increased yield through fertilization, while the grain yield 
could move from 2 to 4 t/ha, with the use of traditional 
varieties and application of complementary irrigation [4]. 

Soybean irrigation is not a common practice in the 
country, due to the lack of infrastructure, high costs, and 
climatic factors. In the Orinoquia, the rainfall is maintained 
during the vegetative and part of the reproductive stage in 
both semesters of production [5,6].  However, it is necessary 
to determine the soil water supply, since drought is an 
important limiting factor, which substantially hampers 
annual production throughout the world [7]. 

The soil water content, as an indicator of plant water 
supply [8], is measured with different methods that vary in 
cost, accuracy, spatial scale and response time [9]. A real-
time diagnosis technique is required at spatial and temporal 
fine scales [10]. 

Remote sensing meets the above conditions, and although 
it was considered an expensive and low precision technique 
[9], these limitations were overcome in the last decade by 
reducing the cost of optical sensors and measuring the 
canopies of plants through proximal sensing. The signals 
emitted by the optical sensors, that is, the reflectance spectra, 
depend on the biochemical composition of the leaves in the 
plants, and with the help of multivariate statistical 
algorithms, it was possible to associate them to plant water 
stress [11-14]. 

The relationship of plant water deficiency is identified 
with reflectance spectra through mathematical models, 
known as hyperspectral analysis [15]. These models aim to 
search regions of the reflectance spectrum that can explain 
the biochemical composition and physiology of the plant and 
its change due to the soil water availability [16]. 

The accuracy of the prediction models depends on the 
calibration, since the samples to predict must have 
characteristics in common with those that were used to build 
the model. The variation due to the plant phenological stages, 
change of genotype or species is clear when using equipment 
with an extensive atmospheric window and thousands of 
wavelengths (350-2500 nm) [11]. For this reason, for a 
specific application, the ideal is to calibrate the model with 
the appropriate samples of diagnosis in each case. 

In addition to the calibrations, the dispersion caused by 
the same measuring instrument must be considered, since the 
higher the spectral resolution, the higher the relationship 
between the signal and the noise. Therefore, when using 
hyperspectral sensors, noise also increases [17]. 

To reduce the amount of noise and dispersion due to the 
equipment or measurement setting, the spectra are 
standardized to mathematically correct trends unrelated to 
water deficits. The objective of standardization is to decrease 
the atypical variation at each point in each wavelength 
through corrections to the slope and the trend of the spectral 
curves [18].The objective of this study was to evaluate the 
potential of the spectroscopy of Visible Regions (VIS), Near 
Infrared (NIR) and Short-Wave Infrared (SWIR), for the 
detection of water stress in soybean plants subject to soil 
water contents deficit, by means of the construction of a 
classification model of spectral reflectance measurements in 
the leaves. 

Table 1.  
Fertilization applied to the pots. 

Element  kg/ha 
Boron Copper and Zinc B+ Cu+ Zn  1.5 

Phosphorus P2O5  80 
Potassium K2O  80 

Magnesium Mg+ S+ O  100 
Source: The Authors 

 
 
Likewise, the aim is to build a predictive model capable 

of classifying according to the water treatment applied to the 
soil, with the use of selected wavelengths according to the 
differentiation capacity among the three treatments. 

 
2.  Materials and methods 

 
2.1.  Plant material and location 

 
The test was in the municipality of Villavicencio, in La 

Reforma village 4°3'40.62"N, 73°27'41.21"W, 326 m.a.s.l., 
with an annual rainfall of 2933 mm, a median temperature of 
26°C, a relative humidity of 85% in the rainy season and 65% 
in the dry season. Three soybean varieties, Achagua 8, 
Guayuriba 9 and Iracá 10, were evaluated. In January 2016, 
two plants per soybean material were planted as experimental 
unit in 22 cm diameter pots, protected in a house with plastic 
cover and without walls. 

The soil used was disturbed before being poured into the 
pots and corresponds to an upper terrace Oxisol characterized 
by the low content of essential nutrients for plants growth. 
Crop fertilization was dissolved in water according to Table 
1, and for nitrogen, soybean seeds were inoculated with 
Rhizobium bacteria. 

 
2.2.  Experimental design 
 

The experimental design was a split plot, where the main 
plot had three water treatments and the three soybean 
varieties were randomized. Each experimental unit was 
replicated seven times, with a total of 62 units, and one plant 
was discarded within the process. Soil water content was 
monitored by measuring the volumetric water content every 
two days. The water layer applied to each plot was variable 
according to the requirements in each phenological stage.  

The water treatments were defined according to the soil 
water content. The first one was close to the Field Capacity 
(FC) (volumetric water content above 25%), the second one 
between 15.1 and 25% of water content, and the third one 
close to the Permanent Wilting Point (PWP) (<15% water 
content). The treatments were named as 1, 2 and 3, 
respectively. The water content in FC and in PWP was 
determined in the laboratory first by water retention curves, 
and then the point of FC was verified in a plot, by saturating 
the soil and allowing drain for 24 hours. 
 
2.3.  Equipment and data collection 
 

On a weekly basis, the spectral record was captured in one 
of the plot plants, from the vegetative state with 5 developed 
nodes (V5) up to physiological maturity (R6), in the last fully 



Gutiérrez-Rodríguez et al / Revista DYNA, 86(210), pp. 125-130, July - September, 2019. 

127 

expanded trifoliate leaves, as a growth indicator with respect 
to time. The equipment used was a portable 
spectroradiometer (FieldSpec3, ASD, Analytical Spectral 
Devices Boulder, Colorado, USA) with own light source. The 
equipment records the relative radiation between the 
wavelengths of 350 to 2500 nm Vis/NIR/SWIR, using an 
optical fiber of 25º FOV with a spectral resolution of 3 nm up 
to 700 nm, and 10 nm up to 2100 nm. 

Grain yield data were taken from one plant, since the 
experimental unit consisted of two plants. The number of full 
and empty pods were recorded; the full ones were classified 
by the number and weight of the grains. 
 
2.4.  Preprocessing of spectral data 
 

The reflectance values were converted to absorbance 
values, because the regions of spectral reflectance associated 
with water content in the leaves are observed as energy 
absorption in the ranges of a spectral centered band at 1450, 
1940 and 2500 nm, with significant secondary absorptions at 
980 nm and 1240 nm [19].  

Then, data was normalized with the SNV pretreatment 
(Standard Normal Variate), to decrease scattering in the NIR. 
For the spectral curve classification associated with the soil 
water content level, a mathematical model was used through 
the linear Discriminant Analysis method, and a variables 
reduction by Partial Least Squares (DA-PLS). 
 
3.  Results and discussion 
 
3.1.  Differential water treatment for soybean varieties 
 

The dry grain weight in each plot was the variable to 
evaluate the effect of the treatments, where 2 plants were 
harvested in each plot, that is, 124 samples in total.  

The descriptive analysis is showed in the Table 2. The 
variation greater than 40% with respect to its mean for dry 
weight, the bias value and standardized kurtosis are within 
the expected range for data from a normal distribution. 
Meanwhile, for the number of pods, the bias is out of range, 
although the normal distribution is assumed by the amount 
of data indicated in the central limit theorem. 

Significant treatments differences were found in the 
dry grain per plant due to soil water content. The mean dry 
grain production decreased when the level of soil water 
deficiency increased; the treatments were different from 
each other (P-value<0.01). The comparison among the 
means of the 3 possible combinations of water treatments, 
showed significant differences, for contiguous treatment. 
 
Table 2. 
Descriptive analysis of the variables measured at harvest. 

Descriptor Dry grain 
weight (g) 

Number of pods per 
plant 

Count 124 124 
Mean 6.3 25.7 

Standard deviation 2.7 12 
Coefficient of variation 42.3% 46.6% 

Range 12.8 53 
Standardized bias 0.3 2.4 

Standardized kurtosis -1.9 -1.2 
Source: The Authors. 

Table 3. 
Difference of means for grain weight, for the three soil water contents, 
Method: 95 percent Bonferroni, sigma LS 0.3. 

Treatment Cases LS Mean (g) Homogeneous Groups 
3 42 3.7 A 
2 40 6.9 B 
1 42 8.3 C 

Source: The Authors. 
 
 
In other words, for each degree range of difference, between 
treatment 1-2, there was a dry weight loss of dry grain per 
plant of 17%, and between 1 and 3 of 56% (Table 3). These 
results are similar to other studies [20], where the dry grain 
losses per plant were 12% and 49%, when it was only 
irrigated with 80% and 60% of the total evapotranspiration, 
respectively. 

In general, the production of total dry grain, among 
soybean varieties, did not showed significant differences, 
thus it was assumed that water deficit affects uniformly the 
production of the three varieties. 

Another indicator of plant stress was the total number of 
pods per plant, in which the three groups are separated, 
without interaction between the genotype and the water 
treatment, although both factors had significant differences. 
The number of pods for Achagua 8 was significantly lower, 
compared to the Guayuriba 9 and Iracá 10. This could be due 
to the fact that it is not the recommended genotype with 
adaptation to the area of the Piedmont plains. In the 
description, its strength lies more in the production of pods 
with a greater number of grains [21] than in generating more 
pods [22], as shown in Fig. 1. 
 

Figure 1. 95% Confidence intervals, Bonferroni comparator for each of the 
means  
Source: The Authors. 
 
 
Table 4. 
Mean difference for the total number of pods per plant, Method: 95.0 
Bonferroni percentage, sigma LS 1.2. 

Treatment Cases LS Mean Homogeneous Groups 
3 42 15.2 A 
2 40 26.2 B 
1 42 35.8 C 

Source: The Authors. 
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Similar to the dry weight, the three water treatments 
significantly affect the number of pods, and the range of the 
soil water content is proportional to the number of pods per 
plant. The driest treatment had the less pods. For each level 
of water decrease in the soil, pods decreased 26% for the 
intermediate treatment and 56% for the treatment close to 
PWP (Table 4). These results are compared with other studies 
[23], in which the number of pods per plant decreased in 5, 
20 and 32% when an irrigation layer was reduced in 60, 40 
and 20% with respect to the reference. 

 
3.2.  Spectral information analysis 

 
Although measurements were weekly, only data taken at 

flowering and at the beginning of pod formation (R1, R2 and 
R3 stages) were used. The reason is that at the vegetative 
phenological stage and at the seed formation it was not 
possible to obtain efficient classification models with the 
described methodology. 

The DA-PLS classification model had an accuracy of 
82.5%. Table 5 shows the confusion matrix for the model 
evaluated by cross-validation. 

The precision of the model is affected by the range 
separation of the water content maintained in the soil. In other 
words, the classification loses efficiency, since treatment 2 is 
intermediate among the three, which makes it predictable as 
a sample of treatment 1 or treatment 3. 

When the measurement of samples with water content 
still available but lower than the FC were omitted, the model 
showed an accuracy of 92.9%. The proposed model could be 
used when a fixed irrigation layer is available, and the 
decision would depend on the soil water content lower than 
the FC. When using the three water treatments, it is possible 
to decide how much water to apply by using variable layers, 
according to the classification. This could reduce the amount 
of water and optimize resources and economic cost. 

The values of specificity and sensitivity for each group 
were calculated based on the values predicted by the model. 
The critical diagnosis situation is that when the plants belong 
to groups 2 or 3 (soil water content lower than the FC), they 
are classified by the model within group 1, in which 
additional water would not be required, thus the results would 
lead to low production. This means that group 1 must have 
high specificity to avoid false positives, that is, pods with a 
need for low water content predicted as if they were in FC. 
Groups 2 and 3 should have a high sensitivity to avoid false 
negatives, or pods that have a water content below FC and 
are predicted in the wrong group (Table 6). 

In the development stages used (R1, R2 and R3), there 
were 63 individuals, 21 of each treatment, while, for the 
construction of the classification model, there were up to 
2151 variables, delivered by high definition or precision in 
the range of measured wavelengths, from 355 to 2494 nm. 
Therefore, it was necessary to reduce the variables to 5 
factors, found by principal components. 

The linear regression coefficient between all the 
combinations of wavelengths was calculated to explore the 
correlation and redundant variables. It was observed that with 
the NIR and SWIR, the consecutive wavelengths were wider 
than those of the Vis (Fig. 2). 

Table 5. 
Classification model per treatment evaluation. 

Treatment Prediction 
1 2 3 

Real 
1 16 2 0 
2 3 18 3 
3 2 1 18 

Source: The Authors. 
 
 
Table 6. 
Diagnostic test of treatment classification. 

 Sensitivity Specificity 
1 76.2% 94.7% 
2 85.7% 85.0% 
3 85.7% 91.9% 

Source: The Authors. 
 
 

Figure 2. Pearson correlation between wavelengths. 
Source: The Authors. 
 
 

 
Figure 3. Weights of the values of the wavelengths in each factor. 
Source: The Authors. 
 
 

The continuous wavelengths have a high collinearity with 
each other, whereby the weights of the variables in the factors 
are related to areas of the spectrum with broadband steps, 
which are in turn related to the hydric state in the leaves. Fig. 
3 shows that the NIR near-infrared region (780-1310 nm) is 
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not significant, while the region that most influences the 
model is the one visible in blue, green and red borders, with 
a much thinner band step than the previous two. 

The second most important region in the SWIR shortwave 
infrared comprises the wavelengths between 1850 and 2000 
nm that have a change of slope in the characteristic spectral 
curve related to the water content in the leaf [11]. This author 
found that the wavelengths with the highest sensitivity to 
relative water content (RWC), using the relationship between 
dry weight and moist weight in the leaves, are close to 1450, 
1940, and 2500 nm. 

In factor 1, greater weight is given to the regions from 
1430 to 1470 nm and 2100 to 2270 nm (Fig. 3). The reason 
is related to the general areas for the first harmonic of the O-
H stretch, the combination band of the O-H stretch and the 
O-H deformation, and the combination band of the O-H 
stretch and the F-C deformation for cellulose, respectively 
[24]. 

However, factors 2, 3, 4 and 5 do not show high 
correlation in these regions, since they are more detailed and 
specific to the variation due to water stress. Thus, they are 
less affected by chemical differences in H-bonds and other 
subtle interactions play a role in NIR measurement. For 
example, in the range of 1300 to 1500 nm, water has a high 
absorption of radiation, which limits the application of these 
wavelengths, since reflectance becomes saturated even when 
there is low water availability [25]. 

Stepwise linear discrimination methods found that the 
regions of blue, green, red and red edge are the most 
important in the classification [26].  However, in the same 
study, results were found in the NIR region at 820.7, 835.5, 
852.2, 870.3 nm for the maize species. This last region was 
not relevant for our case study, according to the weight that 
each factor had. 

Studies with complete spectrum analysis in soybean with 
water stress measured in the leaves are not frequent in the 
literature. However, differences have been found between the 
spectral curves of fresh leaves and dry leaves, in which the 
latter group shows an increase in reflectance. This could be 
attributed to leaf structure parameters, where the cell walls of 
the leaf mesophyll cells limit cell volume at maximum turgor 
pressure [14]. As a leaf becomes dehydrated, water loss 
decreases cell volume by 10-20% until the turgor pressure is 
zero [27]. With the decrease in cell volume, mesophilic cells 
can be separated from each other by exposing more cell walls 
to the intercellular airspace, therefore, each species shows 
differently the dehydration process in the spectrum.  

 
4.  Conclusions 

 
The prediction of water states in soybean through spectral 

measurements in the leaves was only possible in the 
reproductive stages, because the vegetative plants of the 
soybean materials used were resistant to low contents of 
water in the soil, as could be seen in the field during periods 
of low rainfall. At the beginning of pods filling, the plant 
expresses stress due to water deficit and it is possible to 
differentiate this condition by the reflectance technique 
evaluated. 

The methodology of spectroscopy used to diagnose stress 
by low water content of soil under plastic cover conditions, 
allowed to differentiate plants with water deficit in states R1, 
R2 and R3, by linear discriminant analysis with an accuracy 
of 82.5% with five regression factors, where the most 
important regions of the spectrum were visible, followed by 
the middle infrared. Near infrared is not a region that 
influences the factors that build the classification model.  

In addition to the treatment of permanent differential 
water content during the stages of development of the 
soybean crop, it is necessary to make specific deficit 
diagnoses for each vegetative state. This allows evaluating 
the capacity of recovery of the plants and the production 
affectation, in order to complement the present study with 
fast and efficient diagnostic tools used in the field and in great 
extensions. 
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