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Abstract 
One problem in the post-harvest phase of apples is the mechanical impact damage. Its identification prevents quality issues during storage. 
The objective was to identify the wavelengths at which damage is detected early in apples of the 'Fuji' cultivar. Damage was simulated 
with a controlled stroke and taking hyperspectral images from 400 to 1700 nm. Three experiments were carried out at different temperatures 
(4 and 20 ° C) and with varying sampling times. It was found that the NIR zone ranging between 1050 and 1100 nm allows to classify 
healthy and bruised zones by means of a discriminant analysis by partial least squares (PLS-DA). Additionally, the evolution of the damage 
over time was not significant for the classification of the pixels (healthy and bruised classes), since bumps were detected in all three 
experiments from the first time. 
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Identificación de daños mecánicos en la manzana cv. ´Fuji´ 
mediante visión artificial hiperespectral 

 
Resumen 
Uno de los problemas en la poscosecha de las manzanas es el daño mecánico por impacto. Su identificación evita problemas de calidad 
durante el almacenamiento. El objetivo fue identificar las longitudes de onda en las que se detecta el daño de manera temprana en manzanas 
del cultivar ‘Fuji’. El daño se simuló con un golpe controlado y tomando imágenes hiperespectrales de 400 a 1700 nm. Se realizaron tres 
experimentos a diferentes temperaturas (4 y 20 °C) y tiempos de muestreo. Se encontró que en la zona del NIR comprendida entre 1050 y 
1100 nm fue posible clasificar las zonas sanas y golpeadas, a través de un análisis discriminante por mínimos cuadrados parciales (PLS-
DA). Adicionalmente, la evolución del daño en el tiempo no resultó significativa para la clasificación de los píxeles (clases sana y 
golpeada), ya que se detectó el golpe desde el primer momento en cualquiera de los tres experimentos. 
 
Palabras clave: imágenes hiperespectrales; PLS-DA; NIR; espectroscopia. 

 
 
 

1.  Introduction 
 
The apple tree crop is spread throughout numerous 

regions of the world due to its easy adaptation to different 
climatic conditions, soil types and production systems. 
However, the great demand by the world fruit market, 
competition from producer countries with lower production 
costs, together with the serious price crisis that the Spanish 
fruit sector has suffered in recent years, have hindered the 
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return of high investments and maintenance costs of crops. 
Some alternatives to maintain the profitability of the fruit 
sector include reducing the production costs and ensuring an 
excellent quality product that can compete with an advantage 
in increasingly demanding markets. Both can be achieved 
with an appropriate degree of mechanization and automation 
in some production phases, such as harvest [1,2] or quality 
control and selection. 

Fruit-making companies currently execute quality 
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inspection manually, employing trained operators who sit on 
selection tables and visually inspect fruits individually. 
However, the absence of clear criteria when determining the 
quality of a fruit and the burden of carrying out such a 
repetitive task have a negative impact on the homogeneity of 
this selection, as well as in maintaining an stable and 
objective quality criteria. Additionally, some impact injuries 
occur due to handling during the post-harvest life of the fruit.  

The main problem is that the damage is perceptible days 
after it occurs, sometimes when the fruit is already on the 
market, manifesting physical changes in the tissue texture 
and eventually in chemical alterations that lead to changes in 
color and flavor, which causes the consumer rejection [3], 
[4]. For this reason, it is important to research and advance in 
techniques capable of detecting these damages before the 
symptoms are visible to the human eye [5], in order to 
identify mechanical damage before the fruits reach 
consumers, avoiding a loss of the commercial value of the 
product. Studies carried out by [6] show that 37% of the 
apples that reach retailers in the city of Madrid exhibit bruises 
and 41% exhibit other defects. To avoid these situations, 
image analysis is presented as an efficient technique for 
estimating the quality of horticultural products [7], while 
hyperspectral systems can be used to detect fruit properties 
and internal damage [8].  
 
2.  Materials and methods 

 
2.1.  Plant material and location 

 
Apples from the 'Fuji' cultivar harvested in the Huesca 

region (Spain), Osso de Cinca, were used for this study. 
Fruits harvested eight days earlier and with a state of mature 
ripeness were selected, with a reddish-green skin color, white 
pulp color, a pleasant aroma and slightly sweet-sour taste.  

 
2.2.  Sample preparation 

 
We used 1050 apples that were marked and hit only once 

in the equatorial zone of the fruit with a mechanical 
pendulum, graduated at 90 degrees to control the place of the 
blow and the impact force according to the methodology 
described by [9]. The force used for the blow was 1.5 N. 

The bruised apples were stored at two temperatures: at 4 
° C in cold room, reflecting storage conditions for long 
periods and at room temperature of 20 ° C reflecting the 
conditions that the apple may have at the time of packaging, 
transport or marketing. 

Three experiments were carried out with these two 
temperatures and different imaging times. This part of the 
experiment was called phase one. The tests were repeated 
three days after the completion of the first phase (phase two). 
The experiments had the following conditions: 

Experiment A: 100 kg of fruit (350 fruits) were stored at 
4 ° C. Hyperspectral images were taken every hour from the 
moment of the blow until six hours later. 

Experiment B: 100 kg of fruit (350 fruits) were stored at 
4 ° C. Hyperspectral images were taken daily for seven 
consecutive days to follow the evolution of the blow. 

Experiment C: 100 kg of fruit (350 fruits) were strored at 
100 ° C. Hyperspectral images were taken daily for seven 
consecutive days to follow the evolution of the damage 
caused by the blow. 

 
2.3.  Image acquisition 

 
Images were taken with two types of spectral systems: the 

first covers the near infrared (NIR) and the second covers the 
visible and part of the infrared (VIS-NIR). The equipment 
description is detailed below. 

NIR images: A total of 220 hyperspectral images in the 
range between 900 nm and 1700 nm were taken, using an 
image spectrometer (ImSpector N17E, Specim, Finland) 
coupled to a sensitive camera in the infrared (Xenics XEVA-
USB 2.0; XenicsVision, Leuven, Belgium). Lighting was 
controlled by a hood with a hemispherical diffuser and 12 
halogen lamps (USHIO, Eurostar IR 12 V - 37 W) (Fig. 1). 

VIS-NIR Images: A total of 110 spectral images 
(hypercubes) were taken using two liquid crystal tunable 
filters (LCTF): one sensitive in the visible (Varispec VIS-07, 
CRI, Canada) with a spectral range between 400 nm and 720 
nm and a resolution of 7 nm and a sensitive one in the near 
infrared (Varispec NIR-07, CRI, Canada) with a spectral 
range from 650 nm to 1100 nm with a spectral resolution of 
7 nm. Both filters were coupled to a monochromatic camera 
(CoolSnap ES, Photometrics ©, Tucson, USA), with optics 
(Xenoplan 1.4 / 17 mm C-Mount, Schneider, Germany) that 
allows to maintain the focus at all wavelengths. Lighting was 
controlled by a hood with hemispherical diffuser and 12 
halogen lights (Philips A6, Brilliantline 12 V - 20 W) (Fig. 
2). To control the parameters of image acquisition, it was 
necessary to automatically synchronize the filters with the 
camera using a software program developed for this work. 
 

 
Figure 1. Structure for the NIR hyperspectral camera Model Xenics XEVA. 
Source: The Authors. 
 
 

 
Figure 2. Hyperspectral camera CoolSnap ES structure and LCTF filters. 
Source: The Authors. 
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2.4.  Processing of hyperspectral images 
 
First, images pre-processing consisted in a white and 

black correction reference following the methodology of 
[10]. For this purpose, a flat white reference with a calibrated 
reflectance of 99% was used (CSRT-99-050, Labsphere Inc, 
USA). This procedure corrects spatial and spectral variations 
due to the equipment and the lighting intensity on the scene 
in all the hypercube bands. 

The corrected image was obtained from the spectral 
image of the apple and the reference black and white images, 
dividing the absolute radiance of the apple into the absolute 
radiance of the white reference, according to Eq. (1): 
 

𝜌𝜌𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝜆𝜆) =
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
=  𝜌𝜌𝑅𝑅𝜌𝜌𝜌𝜌 (𝜆𝜆)

×
𝑅𝑅(𝑥𝑥,𝑦𝑦, 𝜆𝜆)  −  𝑅𝑅𝑅𝑅(𝑥𝑥,𝑦𝑦, 𝜆𝜆)
𝑅𝑅𝑅𝑅(𝑥𝑥,𝑦𝑦, 𝜆𝜆)  −  𝑅𝑅𝑅𝑅(𝑥𝑥,𝑦𝑦, 𝜆𝜆)  

(1) 

 
where: 

ρRef (λ): Average reflectance of the white reference 
(99%) percentage. 

R(x, y, λ): Apple reference (8-bits resolution, a value of 
255 equals 100%). 

Rb(x, y, λ): Radiance of the white reference (8-bits 
resolution, a value of 255 is equivalent to 100%). 

Rn(x, y, λ): Radiance of the black reference (8-bits 
resolution 8 bits, a value of 255 equals 100%). 

 
2.5.  Creation of the tagged data set 

 
A tagged set of data was created with information of the 

two classes involved (healthy and bruised). A specific 
software was developed that allows the researcher to open a 
hyperspectral image, placing itself in the band with the 
greatest contrast between the damage and the healthy skin. 
This is made by manually changing the spectrum band in the 
program until finding the image with greatest contrast where 
the classes involved are distinguished, and selecting the 
healthy and bruised regions using a computer mouse. As a 
result, a database was obtained for each of the acquisition 
systems studied, including the reflectance values of each 
pixel, the class to which it belongs (healthy and bruised) and 
its position (x, y) in the image, corresponding to each of the 
wavelengths acquired in the spectral ranges used (NIR, VIS-
NIR). 

 
2.6.  Reduction of the dimensionality of data with Partial  
        Least Squares Discriminant Analysis (PLS-DA) 

 
To reduce the dimension of the data, a PLS-DA is applied. 

The PLS that seeks to obtain a smaller space that maximizes 
covariance between the data and the dependencies of the 
model, while the DA seeks to reduce the dimensionality in 
terms of maximizing the distance between various classes 
and minimizing the distance between the data of the class 
itself. From this model, the components for the data obtained 
with the two acquisition systems were identified, in order to 
study which of them offers greater predictive power. 
Likewise, the VIP values (Variable Importance in Projection) 

were obtained for the wavelengths of the systems used, which 
indicates the total contribution of the wavelength to the PLS-
DA model. 

 
2.7.  Classification of data into mutually exclusive groups 

 
After classifying the data into the two classes, a confusion 

matrix was used to evaluate the degree of consistency 
between the classes assigned by the classifier and their 
correct locations according to the tagged data. In this step, the 
selection quality of the training classes were extracted from 
the classification representing it in a 2x2 matrix, where the 
columns correspond to the labeling data and the rows to the 
classifier assignments. The percentages of the classes that 
were correctly and erroneously classified are obtained from 
the data of the matrix, that is, the percentage of pixels that 
were classified as healthy, being struck (false positives), and 
the percentage of struck pixels that were classified as healthy. 

 
2.8.  Ranking of the most significant wavelengths 

 
For each experiment, a ranking was organized with the 

VIP values of the different wavelengths, ordered from 
highest to lowest, where the VIPs with the highest value 
correspond to the wavelengths that contribute the most to the 
classification model. Additionally, a joint ranking of VIP 
values was obtained for the three experiments A, B and C. 
For this reason, the mean of the VIP value was calculated for 
each wavelength of each experiment and a ranking of the five 
most important wavelengths was established, in order to 
detect the bruised and healthy areas of the apples. 

 
3.  Results and discussion 

 
3.1.  Dimensionality reduction and spectral range selection 

 
Results are shown in Table 1, where the prediction values 

of each spectral range (NIR, VIS-NIR) and each experiment 
are indicated.  

Since damage was generated during its evolution, the NIR 
spectrum in the three experiments was better in power of 
description. In experiment A, the NIR spectrum obtained a 
predictive power of 66.3% with a confidence interval of 
61.1% and 71.5% calculated with Eq. (2). 
 

𝑃𝑃∗ − 𝑡𝑡𝑛𝑛−1
𝛼𝛼
2 �𝑃𝑃

∗(1 − 𝑃𝑃∗)
𝑁𝑁 ;      𝑃𝑃∗ + 𝑡𝑡𝑛𝑛−1

𝛼𝛼
2 �𝑃𝑃

∗(1 − 𝑃𝑃∗)
𝑁𝑁  (2) 

 
where: 
P *: Oredictive power percentages. 
N: Sample size. 
In experiment B, a predictive power of 77.5% was 

obtained with a confidence interval of 70.8% and 80.2%. For 
experiment C, predictive power was of 73.7% with a 
confidence interval of 68.9% and 78.5%. In all three 
experiments, the NIR spectrum was higher in the prediction 
than in the VIS-NIR spectra. 

Similarly, the NIR spectrum can be represented with a  
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Table 1.  
Predictive value for each spectral range. 

Experiment Spectral  
  

Predictio
  

Lower 
  

Higher  
 

PC's 

Experiment 
A Six hours 

LCTF-VIS 
(    ) 

55,3 48,85 50,75 12 
LCTF-NIR 

  
62,1 56,78 67,41 4 

Xenics 
   

66,3 61,12 71,48 4 

Experiment B 
LCTF-VIS 

(    ) 
47,1 41,63 52,57 5 

LCTF-NIR 
  

65,3 60,08 70,51 6 
Xenics  

  
75,5 70,79 80,21 1 

Experiment C 
LCTF-VIS 

(    ) 
57,1 51,68 62,52 5 

LCTF-NIR 
  

64,3 59,05 69,55 10 
Xenics  

  
73,7 68,89 78,52 2 

Source: The Authors. 
 
 
smaller number of components offering a more robust model, 
since it only needs four components in experiment A, one 
component for B and two components for C. Meanwhile, in 
the VIS-NIR spectrum more components are needed and its 
predictive power is lower. The NIR spectrum is considered 
as the most suitable for this problem, thus results are 
presented only for this system and its spectral range. 

In the three experiments, it is observed that the Xenics 
camera obtained the highest prediction value and that it 
coincides with the least amount of components of the model 
(Table 1). For the six-hour experiment A, the model can be 
represented with 4 components, while experiments B and C 
with 1 and 2 components. This can suggest that the six-hour 
experiment needs more than the wavelengths to identify the 
classes, while in experiments B and C less information is 
needed since they only need 1 and 2 components, 
respectively. This is also due to the early stages of the 
demage, as it is more difficult to identify the area and classify 
the pixels. In the other experiments, there was more time for 
classification and the model is expressed with fewer 
components. 

Experiment A: In the reduction of the dimensionality of 
experiment A, the model obtained does not display a number 
of anomalous values (Fig. 3) above the expected 
approximation, and never with extremely high values. 

It is worth highlighting that, for previous models 
associated with all the observations, the existence of 
influential data (high values in certain components) forced 
the existence of these components, resulting in little robust 
models (and over adjusted) ranging between 6 and 12 
components. 

The score-plot graph is obtained when facing the 
components of the selected models. It shows the confidence 
oval in which 95% of the component scores must be present 
in order for the model to be reliable. 

Fig. 4 shows the graph of the score-plots for component 
1 versus component 2 in experiment A. it was found that 95% 
of the component scores are within the confidence oval. 

Experiment B: The model obtained for this experiment 
does not display anomalous values above the expected in an 
approximate manner and never with extremely high values, 
as shown in Fig. 5. In addition, it was found that all the model 
variability can be represented with only one component.  

In order to determine the type of relationship of the 
spectral bands with the two classes analyzed (Healthy Class 

 
Figure 3. Distances to model X [4 Components] (PLS-DA), NIR spectrum, 
experiment A. 
Source: The Authors. 
 
 

 
Figure 4. PLS-DA Score-plot: component 1 versus component 2 for the 
NIR spectrum in experiment A. 
Source: The Authors. 

 
 

 
Figure 5. Distances to model X [1 component] (PLS-DA), NIR spectrum, 
experiment B 
Source: The Authors. 
 
 

 
Figure 6. Weights w * c of the first component, for the NIR spectrum, 
Treatment B 
Source: The Authors. 
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Figure 7. Distances to model X [2 Components] (PLS-DA), NIR spectrum, 
experiment C. 
Source: The Authors. 
 
 

 
Figure 8. PLS-DA Score-plot, component 1 versus component 2 for the 
NIR spectrum, in experiment C. 
Source: The Authors. 
 
 
and Bruised Class), graph w * c (Fig. 6) is attached for the 
first latent variable of the treatment, whose weights (in 
absolute value) do not necessarily have to coincide with the 
order of the VIPs. 

In Fig. 6, the wavelengths are displayed in the X-axis 
against the weight of such wavelengths in the first 
component. 

Experiment C: As in the previous experiments, the model 
obtained for this experiment does not display anomalous 
values (Fig. 7), and is constituted by two components that 
express all the variability of the model. The score-plot graph 
is obtained (Fig. 8) when facing the components of the 
model, in which 95% of the scores are inside the confidence 
oval, which renders the model reliable. 

 
3.2.  Classification of data in mutually exclusive groups 

 
Experiment A: The analysis of the variance of the time 

and class factors shows that the effect of time is not 
significant in the fruit classification (p <0.05) and, therefore, 
no differences related to the evolution of damage over time 
were found. 

One possible explanation is that, as shown in Fig. 9, 
apples ripen differently, which has a great influence on the 

 
Figure 9. Average differences between the spectra of healthy and bruised 
areas. 
Source: The Authors. 
 
 
evolution of damage. This makes it difficult to establish a 
valid threshold or discrimination function for all fruits. In 
[11], the authors obtained a similar behavior detecting blows 
in different apple cultivars (‘Champion’, ‘Gloster’, ‘Golden 
Delicious’, ‘Idared’ and ‘Topaz’) after an hour of causing the 
damage. Likewise, in [12] the authors used the same apple 
cultivar and studied the evolution of the blow in different 
stages at 0 hours, 12 hours and 18 hours. They found that the 
blow can be detected from hour zero, and concluded that time 
only affects the percentage of classification. Additionally, 
other works such [13], detected the damage after one hour 
from the event, excluding time as a variable that affects the 
classification. Fig. 9 shows that the average of the differences 
between bruised and healthy areas within the same apple 
increase in time, although this does not guarantee that 
between different apples clear thresholds can be established, 
since no significance was found with the ANOVA. The 
reason is the variability existing between apples, which 
changes to the residual variance, since the type of apple 
where the classification model is located cannot be controlled 
each time. 

However, results obtained in terms of the detection of the 
bruised area help to lay the foundations for the development 
of devices that can potentially detect this type of damage, 
sometimes caused by the classification line itself. Different 
works, such as [14], use light scattering techniques and 
hyperspectral images for the prediction of blow damage at 
different strength levels. In [15], they developed a damage 
detection system in ‘Jonagold’ apples based on real-time 
pixel classification, obtaining 98% accuracy in the 
classification.  

Table 2 shows the confusion matrix obtained for the 
pixels classification. On the one hand, it was found that the 
model classifies 89% of healthy pixels correctly and the 
remaining 11% are classified as bruised, which are false 
positives. On the other hand, the model classifies 85% of the 
bruised pixels properly and the remaining 15% are classified 
as healthy. 

Experiment B: the evolution over time is not significant, 
thus data corresponding to all the moments of time in the 
model found are included, which generated an adequate 
classification. Finally, the model achieves a power of success 
in the classification, including the observations previously 
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Table 2.  
Confusion Matrix for experiment A. 

Predicted\Real Healthy Bruised 
Healthy 89% 11% 
Bruised 15% 85% 

Source: The Authors. 
 
 
Table 3.  
Confusion Matrix for experiment B. 

Predicted\Real Healthy Bruised 
Healthy 98% 2% 
Bruised 6% 94% 

Source: The Authors. 
 
 
Table 4.  
Confusion Matrix for treatment C. 

Predicted\Real Healthy Bruised 
Healthy 100% 0% 
Bruised 7% 93% 

Source: The Authors. 
 
 
eliminated at the time of construction: 98% for healthy, and 
94% for bruised ones (Table 3). 

Experiment C: As in experiment B, the evolution over 
time in experiment C is not significant. Nevertheless, it 
achieves a high power of success in the classification, 
including the observations previously eliminated at the time 
of construction: 100% for healthy and 93% for bruised ones 
(Table 4). 

The success in the pixels classification of healthy apples 
in experiment B and experiment C are practically the same 
(98% and 100%), therefore, only 2% false positives were 
obtained. In pixels classification bruised apples, accuracy 
ranging between 93% and 94% was reached for the two 
experiments. In [12], they used other classification models in 
the same cultivar confirming that time (evolution of damage) 
only increases the accuracy in the classification of pixels as 
shown in experiment C. 

 
3.3.  Ranking of the most significant wavelengths 

 
Experiment A: With the values of the distance graph to 

model X (Fig. 3), we extracted the VIP values that summarize 
the total contribution of each variable X (in our case, each 
wavelength) to the PLS model. The variables with higher 
discrimination power for the chosen model, according to the 
model importance (VIP) list, are those shown in Fig. 10. 

Fig. 10 shows that the wavelengths that contribute the 
most to the classification model are around 1060 nm and 
1100 nm, where the first is the most significant contributor to 
the model. 

Experiment B: As in experiment A, the VIP values of 
Fig. 5 were extracted and represented in Fig. 11. 

When observing experiment B in Fig. 11, it was found 
that the wavelengths that contribute most to the model are 
around 1050 nm and 1100 nm. In this case, the range is 
extended but the spectrum area does not change. 

Experiment C: Using the same methodology as in the 
previous experiments, the VIP values of Fig. 7 were extracted 
and are represented in Fig. 12. 

When observing experiment C in Fig. 12, the same 
behavior as in experiment B is shown, the wavelengths that 
contribute most to the model are around 1050 and 1100 nm. 

 

 
Figure 10. Wavelengths with greater discrimination power for experiment 
A. 
Source: The Authors. 
 
 

 
Figure 11. Variable importance for wavelengths projection (VIP) with 
greater discrimination power for experiment B.  
Source: The Authors. 
 
 

 
Figure 12. Variable importance for wavelengths projection (VIP) with 
greater discrimination power for experiment C 
Source: The Authors. 
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Figure 13. Wavelengths with greater discrimination power. 
Source: The Authors. 
 
 
3.4.  Most significant wavelengths 
 

Based on the mean values of the VIP wavelengths of the 
first 5 bands of experiments A, B and C, the wavelengths with 
a greater discrimination power of the healthy and bruised 
classes 1071, 1064, 1067, 1061 and 1074 were chosen, which 
were used to identify the blow in the 'Fuji' apple, in the area 
of the spectrum that goes from red to near infrared (Fig. 13). 

In the work of [16], the authors used the same cultivar 
and hyperspectral images from 450 to 1000 nm. They found 
that the most significant lengths are 780, 850 and 960 nm 
using the segmented principal component analysis (PCA) 
technique. It is possible that if in the work of [16] they had 
used a camera with a greater spectral range, they would have 
found wavelengths closer to those found in this study. 
Additionally, their success in the classification had an 8.5% 
of false positives without taking into account the storage 
temperature or the impact force of the apple. In the work of 
[17], the authors used the same cultivar and hyperspectral 
images from 400 to 1000 nm, proposing a method that 
combines a successive projections algorithm (SPA) with a 
support vector machine based on the optimization of grid 
search parameters (GS -SVM) to classify and identify apple 
samples with different degrees of shock and obtaining 
wavelengths from 882 to 983 nm. Although it coincides with 
[16], it is worth mentioning that they did not take into account 
the impact force and storage temperature, in addition to 
classifying them in different degrees of the blow, obtaining 
classification accuracy percentages ranging between 62.5% 
and 80%. 

Different authors, such as [18-20,12], have found 
wavelengths closer to the visible one for the shock detection. 
However, this is due to the limitations of the equipment used, 
as expressed by [8], who performed a compilation of research 
on the application of hyperspectral images for fruits and 
vegetables. However, in the researches quoted by [8] it is also 
established that the infrared provides valuable information 
for damage detection. In [21], they found that in the bands 
centered at 558, 678, 728 and 892 nm, the blows were 
detected in 'Golden Delicious' apples, just as [12] in the same 
cultivar they found the wavelengths of 680 and 960. 

The importance of the 'Golden' cultivars, used by [21] and 
[12], are their greenish-yellow skin, which makes it possible 
for the effect of the light with its skin tone to detect damages 

in the spectrum lengths between yellow and green. Bruises 
were detected in 'McIntosh' apples at three wavelengths in the 
near-infrared region 750, 820 and 960 nm, in [19]. Apples 
from the 'McIntosh' cultivar have red skin, similar to those of 
the 'Fuji' cultivar, with a skin tone ranging from green to red, 
which explains why their bruises can be identified from red 
to near infrared in the spectrum area. 

However, in the work made by [20], the evolution of 
mechanical damage caused in different cultivars in the 
spectral region from 900 to 1900 nm was followed. They 
found that the most significant wavelengths to identify the 
blow were all in the infrared, specifically 970, 1200, 1470 
and 1900 nm. 

As for the accuracy in the pixels classification by PLS-
DA, the classification of healthy apples in experiment B and 
experiment C are practically the same (98% and 100%), thus 
there was only 2% false positives. In the pixels classification 
of bruised apples, a success between 93% and 94% was 
reached in both experiments, which leads to the conclusion 
that the temperature effect is not important for pixels 
classification. In [22], they used a PLS-DA model in three 
apple cultivars (‘Jonagold’, ‘Joly Red’ and ‘Kanzi’) 
obtaining a success in classification between 90.1% and 96% 
with a temperature of 4°C, as the one used in this experiment. 
It also highlights, as in [12], that time increases classification 
success after the blow. Regarding treatment A, it was 
concluded that the model classifies 89% correctly out of 
100% of healthy pixels, and the remaining 11% are classified 
as bruised, while 85% out of 100% of the bruised pixels are 
classified correctly by the model and the remaining 15% is 
classifies as healthy pixels.  

In the work of [18], they used the PLS data pre-processing 
methodology to detect bruises on ‘Jonagold’ apples, 
obtaining a correct classification rate of 84.6% healthy areas 
and 15.4% of false positives. For the bruised areas, there was 
a success ratio of 77.5% and a 22.5% of false positives 
obtained. Additionally, the peduncle area was classified with 
a success rate of 98.3% and only an error of 1.7%, which 
indicates that the selection of classification algorithms 
proposed for the ‘Fuji’' apple (PLS-DA) is more appropriate, 
since they are more predictive than the ones proposed in [18]. 

 
4.  Conclusions 

 
It was found that the most significant wavelengths (1071, 

1064, 1067, 1061 and 1074 nm) are obtained through a PLS-
DA, showing that the NIR area between 1050 nm and 1100 
nm is the one with the highest classification power between 
the two classes studied (healthy and bruised). 

The study of the temporal damage evolution in order to 
determine the moment from which detection is possible 
concludes that the effect of time (evolution of the blow) is 
not significant in the pixels classification of fruit, which 
means that from the first moment of the blow, the pixels can 
be classified in both categories established as healthy and 
bruised. 

It has also been concluded that the analysis of the 
hyperspectral images used in this study can prematurely 
determine the existence of damage in the fruit, which allows 
its practical application in the industry. 
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However, it would be necessary to further reduce the 
number of selected bands, since the range found in this work 
(1050 nm to 1100 nm) is small compared with the range used 
in the study (400 nm to 1700 nm). 
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