

© The author; licensee Universidad Nacional de Colombia.
Revista DYNA, 86(211), pp. 174-183, October - December, 2019, ISSN 0012-7353

DOI: http://doi.org/10.15446/dyna.v86n211.75574

Usable and interactive application generator for Digital TV•

Mirtha Miranda & Sandra Casas

Instituto de Tecnología Aplicada, Unidad Académica Rió Gallegos, Universidad Nacional de la Patagonia Austral, Río Gallegos, Argentina,
mirfamir@gmail.com, scasas@unpa.edu.ar

Received: October 15th, 2018. Received in revised form: September 19th, 2019. Accepted: October 21th, 2019.

Abstract
Interactive Digital TV (iDTV) enhances viewers’ experience and participation by engaging them with an active role. The development of
interactive software requires the employment of usability criteria to provide satisfactory experiences for users. In addition, the diverse
characteristics of television programs require efficient processes for interactive software development. In Latin America, the process of
implementing DTV is in progress, so the current stage of development of interactive applications is too incipient and immature to support
industrial, quality-level development. This paper proposes combining software reuse strategies, specifically, software product lines (SPLs)
and user-centered interaction design patterns, to improve productivity and quality. A generic feature model for the automatic generation of
iDTV applications and an SPL-iDTV tool that supports the model are presented. The proposal is evaluated with two studies: an experiment
that attempts to reproduce real application prototypes that were originally developed manually, through the use of patterns, and an
evaluation of the quality of the SPL.

Keywords: interactivity; Digital TV; software product line; interaction design patterns; feature model; Ginga-NCL.

Generador de aplicaciones interactivas y usables para TV Digital

Resumen
La TV Digital interactiva (iDTV) mejora la experiencia y la participación de los espectadores. El desarrollo de software interactivo requiere
el empleo de criterios de usabilidad para proporcionar experiencias satisfactorias a los usuarios. Además, las diversas características de los
programas de televisión requieren procesos eficientes para el desarrollo de software interactivo. En América Latina, el proceso de
implementación de TVD está en progreso, por lo que la etapa actual de desarrollo de aplicaciones interactivas es muy incipiente e inmadura
como para afrontar el desarrollo a nivel industrial y de calidad. Este trabajo propone combinar estrategias de reutilización de software,
específicamente, líneas de productos de software (SPL) y patrones de diseño de interacción centrados en el usuario, para mejorar la
productividad y la calidad. Se presenta un modelo de características genérico para la generación automática de aplicaciones de iDTV y la
herramienta SPL-iDTV que da soporte al modelo. La propuesta se evalúa con dos estudios: un experimento reproduce prototipos de
aplicaciones reales que originalmente se desarrollaron manualmente, usando los patrones, y la evaluación de la calidad de la SPL.

Palabras clave: interactividad; TV Digital; líneas de producto de software; patrones de diseño de interacción; modelo de características;
Ginga-NCL.

1. Introduction

Digital TV (DTV) is a set of technologies for the generation,
transmission, and reception of optimal-quality images and
sounds using digital signals. Digital signals allow data, video,
audio files, software, and more to be sent over transmission
channels. Television stations can also send several services over
the same channel. Interactive DTV (iDTV) applications, which
are based on the capabilities of DTV, are multimedia software

How to cite: Miranda, M. and Casas, S, Usable and Interactive Application Generator for Digital TV. DYNA, 86(211), pp. 174-183, October - December, 2019.

that enables viewers to interact with linked content via remote
control [1]. In addition to providing information, iDTV
applications offer different mechanisms for viewer participation,
for example, polls, debates, voting, and games. For this reason,
interactive applications are very powerful, valuable content
communication tools that can benefit society in general.
Incorporation of the “interactivity” factor can lead actors in the
television industry to experiment, create, and search for
appropriate interactive applications [2].

Miranda & Casas / Revista DYNA, 86(211), pp. 174-183, October - December, 2019.

175

Usability [3] is a key factor that must characterize interactive
applications in order to provide satisfactory user experiences [4].
The design and subsequent implementation of the software must
consider adequate criteria for the screen layout, buttons, menus,
colors, and so forth, that will guarantee reasonable use of the
interactivity and audiovisual content. However, if usability is
implemented based on an evaluation of the product after it has
been created, the required changes revealed by these software
tests can delay the product delivery time, create higher costs, and
require greater effort. Therefore, usability engineering [5]
proposes that this evaluation be incorporated into the
development process, which is more appropriate but has the
drawback that developers must dominate this area or hire
usability process engineers, which will increase the product cost.

The television industry is very diverse in terms of content
(news, entertainment, magazines, debates, series, documentaries,
etc.), frequency of broadcasts (daily, weekly), mode of
production (live, recorded), audience (children, youth, etc.) and
more. In addition, all combinations are possible; for example, a
newscast can have several daily broadcasts and a documentary
can have live performances but be based on recorded content. To
address this heterogeneity, which is typical of television, highly
efficient and productive interactive software development
processes are necessary.

In Latin America, the transition from analogue to digital
transmission (the “analog blackout”) is in progress and will be
completed by 2024. Seventy percent of Latin American countries
have adopted the ISDB-Tb standard (Integrated Services Digital
Broadcasting, Terrestrial, Brazilian version) that uses Ginga
middleware [6] for the execution of iDTV applications, which
must therefore be encoded in Nested Context Language (NCL;
[6]) or Java. NCL code is basically an XML document that
defines how media objects (videos, images, sounds, and text) are
structured and related in time and space.

As the tasks to complete the technological infrastructure
necessary for the implementation of DTV are being carried out,
the analog and digital systems coexist. During this time, the
following two problems arise from the development of iDTV
applications in Latin America:
• the interactive application development processes are still

too immature to support the construction of iDTV
applications on an industrial scale, because the development
is essentially manual and artisanal, reinforced by the
distance between the software and television industries;

• effective methods to incorporate usability criteria in
developed iDTV applications in a generalized manner are
lacking.

Overcoming these shortcomings is an important challenge
because, as in any productive process, it is necessary to reduce
costs, effort, and development time as well as improve the quality
of the final product. In short, this study seeks to address these
challenges in order to facilitate the adoption of interactivity in
Latin America and benefit the citizens.

The present study provides a solution to these challenges
posed by the iDTV domain that combines two approaches to
reusing software: It integrates the concepts of Software Product
Lines (SPLs; [7]) and interaction design patterns for iDTV [8].

We present an SPL that can generate executable iDTV
applications in Ginga middleware by automatically producing
NCL code. The SPL-iDTV tool was built from a generic feature
model (FM; [9]), based on patterns and design languages for
iDTV [8]. The design patterns provide the tool with variability
and reusability. We also present three case studies and an
evaluation of the SPL quality.

The rest of this paper is organized as follows. Section 2
presents materials and methods used in this work. Section 3
discusses related work. Section 4 briefly describes the approaches
and strategies used in this work. Section 5 presents an FM based
on the design patterns. Section 6 discusses the SPL-iDTV tool
that implements the model. Section 7 presents the evaluations.
Section 8 presents the study’s conclusions and future research
directions.

2. Materials and methods

In this work, the approach called Design Science Research

[10] was applied. It is generally used in research related to
engineering, computer science and information systems. This
approach proposes the production of artifacts, such as instances,
constructs, models or methods. The steps that have been followed
in this study are: (1) Identification of the problem for which a
solution is sought, in which the background was elaborated, from
the documentary research (presented in sections 3 and 4); (2)
design and construction of the artifact that represents a solution
to the problem. The Feature Model [8] approach was used for the
construction of a generic model. The Java and FeatureIDE tools
[11] with the AHEAD component [12] were used for the
development of SPL-iDTV software; and (3) Artifact evaluation
in which three complete case studies were developed to analyze
the functionality of the SPL-iDTV software. It was completed
with the evaluation of the model quality, using a specific method
based on the SQuaRE standard.

3. Related works

A variety of tools have been proposed for the development of

iDTV applications compatible with Ginga.
NCL Eclipse is a tool developed as a plugin for Eclipse. This

plugin is intended for programmers; it is used to write the source
code and correct syntax errors and has other very useful features
for the NCL-Lua application developer. Basically, it is a code
editor and compiler.

NCL Composer [14] is an author tool that supports several
integrated views—structural, temporal, design, and textual—to
create an NCL document. The views work synchronously, to
provide integrated development. Minimal knowledge of the NCL
language is required for using NCL Composer.

Ginga Game [15] is a framework for the development of
DTV games for Ginga. It offers different packages for reuse,
interfaces (GingaGame), components (GameComponent), and
specific classes of the platform (GingaGameJavaTV).

FrameIDTV [16] presents a framework created on the
multimedia home platform (MHP) that offers components for the
implementation of various kinds of services and allows
generation of the following types of applications: electronic

Miranda & Casas / Revista DYNA, 86(211), pp. 174-183, October - December, 2019.

176

voting, e-mail, electronic program guides (EPGs), application
portals, t-banking, and t-commerce.

NCL-Inspector [17] is an NCL code quality review tool that
allows experienced programmers to define new rules to be
validated. The specification of the rules is done in a Java or XSLT
document. It also enables modifications for improving
programming practices.

ATHUS [18] is a generic framework that aims to facilitate the
development of games for Ginga. The authors present two
versions, one based on Java for use in Ginga-J and the other based
on Lua for use in Ginga-NCL.

ITV-Learning [19] is a tool for educational instructors that
allow the creation of learning objects, which facilitates
development of interactive digital materials by abstracting them
from programming knowledge for the creation of iDTV
applications.

Crea Digital TV [20] is a tool for creating NCL-Lua
applications, aimed at content producers. It implements a graphic
timeline model to represent the life of the application elements,
the interactivity with the viewer, and the events that occur
throughout the application. Users are not required to have
knowledge of NCL.

SGAi [21] is a tool that automatically generates surveys for
NCL-Lua applications, handling the return channel and
preserving the result through a web application.

iTV Suite Tool [22] proposes a required hardware and
software architecture for producing interactive applications. It
also proposes a software development process methodology and
applying design patterns to guarantee usability. The software
used to program the interactive application is iTV Suite. An
important feature of the iTV Suite tool is that the programming
structure is by scenes.

NCL-Textual Data Mixer [23] is a tool that facilitates graphic
design for creating media (images, scripts, and NCL code), by
means of metadata types declared in the NCL documents that use
web services, simple object access protocol (SOAP), repositories,
and other technologies to access information for the creation of
applications.

API TVD [24] is a wizart tool that consists of graphic
templates. It handles the management of temporal synchronism
between media and their lifespan. The purpose of this generator
is to simplify the development process by allowing the user to
engage with “what” the application should do rather than “how”
it is done. To this end, the user does not require knowledge of the
NCL language.

IT NEWs [25] is a tool that reuses previously created news
templates to generate new applications. These templates consist
of NCL code. By focusing on the elements of communicability
and usability, this tool allows users to create journalistic
applications without having to learn how to program.

Template Generator [26] is a tool that allows users to
automatically create code for an interactive application by
modifying the relevant fields of a pre-established template. The
templates are based on usability parameters such as level, service,
and type of interactivity.

Dr. Nau [27] is an NCL code (web) generator that uses some
[8] patterns as its main abstraction. It is an assistant aimed at end
users.

4. Strategies and approaches

4.1. Software product lines and feature models

SPL [7, 28] is an approach to developing families of systems

based on using reusable assets to improve software quality and
reduce production costs and time to market. The products
developed with an SPL are specified in terms of various features.
A feature is defined as an increase in the functionality of the
product, and an SPL can offer both common and variable
features. An FM [9, 29-30] can be used to provide a compact
representation of all the products of a product line in terms of
features and relationships between them. FMs can specify which
elements of the product family are similar or variable throughout
the development life cycle. In addition, FMs can incorporate a set
of rules in the form of logical expressions formed by features,
logical connectives, and quantifiers. The reason for using
predicate logic to express default rules is to avoid the ambiguities
of natural language.

Several tools [31] support the development of feature-
oriented software. Among these, we selected FeatureIDE [11] as
the framework for the present study. Fig. 1 presents an FM
represented in the FeatureIDE tool. The FM nodes represent
features, and the lines indicate the relationships between them.
The root node, A, represents the domain concept being modeled.
The features of the model are classified as mandatory, optional,
or alternative. Optional features, such as node C, are represented
with an empty circle and may or may not be part of a product.
Mandatory features, such as nodes B, D, and E, are represented
by a filled-in circle and will be part of all products that the SPL
can generate. Alternative features can be exclusive (XOR) or
nonexclusive (OR). XOR (“Alternative”) indicates that only one
subfeature can be selected, e.g., F or G; while OR (“Or”) allows
more than one option to be selected for a product, e.g., H or I or
both H and I. In addition, the diagram includes abstract and
concrete features. Feature A, which is abstract, represents an
interface; and the rest, which are concrete, are the features that
implement the functionalities. FMs can also be specified through
textual notations [32].

4.2. Interactivity design patterns for DTV applications

An interaction design pattern is a design pattern for the field of
HCI [33]. It documents proven solutions to interaction design

Figure 1. Feature Model Graphical Representation
Source. The Authors.

Miranda & Casas / Revista DYNA, 86(211), pp. 174-183, October - December, 2019.

177

problems in a systematic and understandable way, which is why
interaction design patterns are said to be centered on the user.
Different formats for interaction design patterns have been
proposed [34,35]; these vary in their elements, the number of
elements, and the names and order of the elements.

For the domain of iDTV applications, Kunert [8] presents the
most complete, richest, and widely accepted collection. This
catalog of interactivity design patterns, centered on the DTV user,
describes 41 patterns, classified into 10 groups. The catalog
provides a template for each pattern that indicates its name,
examples, the context of use, the problems it solves, the solutions
it provides, citations, and related patterns. The groups and
patterns are as follows:
Page Layout Group: Choosing the right page layout, Overlay,
Full-screen with video, Full-screen without video
Navigation Group: Multiple ways to navigate, Menu, Video
multi-screen, Index, Page numbers, Tabs.
Remote Control Keys Group: Choosing the right keys, Arrow
keys, OK-key, Colour keys, Number keys, Special keys.
Basic Functions Group: Initial call to action, Starting, Loading
indication, Exiting, Hiding application, Going one level up.
Content Presentation Group: Text design, Content box, Paging,
Scrolling, Switching between content items, Synchronized
content.
User Participation Group: Multiple ways of user participation,
Voting and multiple-choice question, Allocation of items, Text
completion, Approval for connectivity.
Text Input Group: Multiple ways to input text, On-screen qwerty
or alphabetical keyboard, Mobile phone keyboard.
Help Group: On-screen instruction, Help section.
Accessibility & Personalization Group: Accessibility,
Personalization)
Specific User Groups: Children.

All the groups refer to specific types of content and are
classified into three classes: tasks of generic users of iDTV,
general content requirements, and general usability requirements.
We concluded that the concepts in the patterns meet the usability
levels required for iDTV, that they can be used effectively,
efficiently, safely, and satisfactorily, and that they can be recast
as features to provide variability.

5. Feature models for iDTV applications

Feature modeling consists of analyzing the domain of the

product line, defining its scope, identifying the common elements
and variable components of the product line, identifying the
restrictions of the model, and designing the reusable devices that
support the product line. The result is expressed in a feature
diagram, graphic or textual, and a set of rules. We carried out the
modeling in two stages: initial modeling and complete modeling.

5.1. Initial modeling

This stage defined the scope of the product line as iDTV

applications with local interactivity, which involves representing
patterns of presentation and selecting additional information. The
relevant patterns in the catalog are in the Page Layout,
Navigation, Basic Functions, Content, Remote Control Keys, and

Help groups, a subset that includes 27 of the 41 patterns in the
catalog.

To obtain a first representation, we manually and carefully
prepared a feature diagram for 32 iDTV applications using their
corresponding patterns. These iDTV applications were taken
from [8], and our strategy for defining the hierarchies of the
diagrams was to place the iDTV application as the root of the
diagram, the groups of patterns at the second level, and the
patterns used from each group at the third level. Then we
recorded the patterns used by each application in a matrix that
grouped the applications into 19 families, in order to identify their
similarities and differences.

An initial set of relationships was obtained from this analysis:
(1) The Page Layout group is present in all applications. (2) Only
one pattern of the Page Layout group (Overlay, Full-screen with
video or Full-screen without video) is used in each application.
(3) One or more patterns in the Navigation group (Menu, Video
Multi-screen, Index, Page Numbers, and/or Tabs) are used in
some applications. (4) One or more patterns of the Remote
Control group (Arrow, OK, Color, Number, and/or Special) can
be selected. (5) One or more patterns of the Basic Functions
group (Initial call to action, Starting, Loading indication, Exiting,
Hiding application, and/or Going one level up) can be selected.
(6) One or more patterns of the Content Presentation group (Text
design, Content Box, Paging, Scrolling, Switching between
content items, and/or Synchronized content) can be selected. (7)
Only one pattern from the Help group (On-screen instruction or
help section) is used in an application.

The obtained results allowed us to design the feature diagram
shown in Fig. 2, in which the groups of patterns are located at the
second level as abstract features and the patterns are represented
at the third level as concrete features. The diagram also indicates
the classifications corresponding to mandatory, optional, and
alternative features.

Figure 2. iDTV Feature Diagram
Source. The Authors.

Miranda & Casas / Revista DYNA, 86(211), pp. 174-183, October - December, 2019.

178

Next, we added a set of rules to the model. These specify
restrictions that must be met by the configurations that are
derived from the model for the products (applications). In
addition, these rules allow debugging valid products and in turn
contribute to the traceability of the created model. The rules are
obtained from the same catalog, which defines the relationships
between groups of patterns and patterns, and their importance lies
in the fact that they allow compliance with the imposed usability
guidelines. Because the patterns define complementary and/or
exclusionary relationships with other patterns, these guidelines
are indicated by rules in the model. Given that they arise at the
level of pattern groups, we considered the following initial rules:
Navigation => PageLayout
Remote Control => PageLayout ˄ Navigation
BasicFunction=>PageLayout˄Navigation ˄ RemoteControl
Content => PageLayout ˄ Navigation ˄ RemoteControl
Help => PageLayout ˄ Navigation ˄ RemoteControl

These rules indicate, for example, that to use the patterns of
the Remote Control group, patterns of the Page Layout and
Navigation group are required, and that to use the patterns of the
Basic Functions group, at least one pattern from each of the
following groups is required: Page Layout, Navigation, and
Remote Control.

Using the presented model, configurations can be derived and
valid products can be generated. The configuration of a product
is its specification or general instantiation. A configuration of an
FM is the result of selecting certain model elements and
eliminating others. Through the model presented, a number of
configurations or instances of new products can be obtained, such
as the following examples:
Product1 = {Overlay, Menu, Color, TextDesign}
Product2={FullWithVideo,Menu,Color,InitialCall,TextDesign}
Product3 = {FullWithoutVideo, Menu, Color, Starting, Loading,
Exiting, TextDesign}

5.2 Final Modeling

The complete FM for iDTV applications, graphically

represented, and the corresponding set of rules can be found in
this link1.The diagram incorporates a fourth level of features,
which represent the attributes or elements of each pattern. The
elements of a pattern can be mandatory, optional, or alternative.
Similarly, these new features impose their own restrictions, so
that rules to handle them are also incorporated.

Fig. 3 is a cutout of the complete diagram, presenting the
graphical representation of the Page Layout group of patterns,
which is mandatory and whose specification requires a total of 33
features.

The three patterns of the group (Overlay, Full-screen with
video and Full-screen without video) are optional and concrete
features. All the elements of these patterns are represented at the
fourth level. For example, Overlay consists of two obligatory
features, SizeOver (the size of the area that the video occupies on
the screen) and TransOver (transparency over the video) that is,

1Complete FM and specification of the 50 rules are available at
https://drive.google.com/open?id=1YCLUykU2YC_7OOhHwdEu7oSc5B
EAJ0x1

Figure 3. Feature Diagram for the Page Layout Pattern Group
Source. The Authors.

whenever Overlay is chosen, the SizeOver and TransOver
elements must be specified. SizeOver, in turn, has two options,
TotalSize (the video occupies 100% of the screen) or PercSize
(the percentage of the screen the video occupies). The latter also
offers the options Horizontal or Vertical, which in turn each
present three options for the location of the video: Top, Center,
or Bottom in the case of Horizontal, and Left, CenterV, or Right
in the case of Vertical. TransOver only offers three options,
without transparency (NoTrans), Trans30 (30% transparency), or
Trans100 (100% transparency).

Thus, the groups of features that are located at the fourth level
of the diagram comprise the constituent elements of the patterns,
indicating the precise details of the interface. Some patterns do
not require more features for their configuration, as is the case
with Full-screen without video.

As previously mentioned, the model also includes a set of
rules that, when applied to the FM, allow the usability properties
specified in the pattern catalog to be met. We defined and applied
a set of 501 rules in total for the FM, which can be categorized as
rules to control certain features of the same group of patterns and
rules to restrict features of different groups of patterns. Examples
of rules include:
R#1: TopVideo ˄ LeftVideo ˄ TopMenu => ¬LeftMenu
R#2: LeftVideo ∧ LeftMenu => ¬ LeftCont

R#1 is a restriction that allows placing the video in the upper
left while prohibiting placement of the menu in the same position
on the screen; this rule is related to the Full-screen with video and
Menu patterns, which correspond to different groups. R#2
restricts the position of elements on the screen: if the video and
the menu will be on the left side, the content should not be on the

Miranda & Casas / Revista DYNA, 86(211), pp. 174-183, October - December, 2019.

179

Table 1.
Details of Features in the Model

Group/ Feature Mandatory Optional Alternative Or Total
Page Layout 5 4 24 0 33
Navigation 6 3 18 13 40
Remote Control 0 1 0 5 6
Basic Function 17 4 36 6 63
Content Presentation 4 3 12 6 25
Help 0 1 2 0 3
Root/end 2 0 0 0 2
Total 34 16 92 30 172

Source. The Authors.

left; this rule is related to the Full-screen with video, Menu, and
Content patterns. R#1 and R#2 are rules that control the
validation of different groups of patterns: R#1 concerns patterns
of the Page Layout and Navigation groups, while R#2 concerns
patterns of the Page Layout, Navigation, and Content groups.

In summary, to model the 27 interaction design patterns for
the design of an SPL, a total of 172 features were required, as
detailed in Table 1.

6. SPL-IDTV Tool

6.1. Design and implementation

The SPL-iDTV tool implements the abstract, generic
conceptual model described above. SPL-iDTV was implemented
in Java and FeatureIDE [11] with the AHEAD component [12].
This last component allows applying feature-oriented
programming [9] techniques. The central idea of the
implementation is to modularize iDTV design patterns as
features and automatically generate the required sections of code
in an NCL document.

The class diagram in Fig. 4 illustrates the most important
classes that make up the tool. These classes have been divided
into two groups. The classes on the left (App, WinNewProduct,
Main, Product, WritelnFile and Connector) are the classes that
control and execute the entire process of specifying, configuring,
and generating code, regardless of the patterns that are chosen.
For example, the App class is the main module that controls all
of the execution, offers the functionality of creating a
configuration, and allows generating an NCL application, and the
Main class realizes the invocation of the classes and methods that
implement the patterns involved in a given configuration and
controls the entire generation of a final product (the NCL code)
through invocation of the WinNewProduct class.

The classes on the right correspond to each of the specific
features of the FM and interaction design patterns (Overlay,
FullWithVideo, FullWithoutVideo, Menu, VidMultiScreen,
Index, PageNumbers, Tabs, Arrow, Ok, Color, Number, Special,
InitialCall, Starting, Loading, Exiting, HidingApp,
GoingOneLevelUp, TextDesign, ContentBox, Paging, Scrolling,
Switching, Synchronized, Instruction, and Section).

The classes that correspond to the concrete features of the FM
(patterns and pattern elements) contain all the logic needed to
implement a pattern in an NCL document. For this reason, some
attributes are concordant with NCL tags, such as region,
descriptor, media, and link, which are required in NCL. But each

Figure 4. Class Diagram for SPL-iDTV Tool
Source. The Authors.

class also specifies its own data for the implementation of the
pattern in question.

6.2. Instrumentation

The SPL-iDTV tool generates an application in three steps:
(1) Configuration design: The first step for the generation of a

product is to indicate the product’s features (patterns). To do
this, the user must specify which interaction elements the
application will incorporate (images, text, menus, buttons,
etc.) from the design patterns. For this purpose, SPL-iDTV
offers a menu of characteristics with all the patterns. At this
point, each group with its set of patterns is identified and
ordered. An SPL product is specified by selecting or
canceling the selection of features according to the user’s
needs. A configuration is obtained as the result.

(2) Media selection: Once the configuration is created, the user
must specify the media (image, video, text) required for the
design. For this, SPL-iDTV offers an interface that allows
searching for the media files from a browser window. Once
the media are selected, the system assigns them to the
corresponding configuration elements.

(3) Generation of the product: The user selects a created
configuration and the set of associated media and orders the
automatic generation of the NCL code for the new product,
which implements the functionality of the application.
These three simple steps allow users to automatically

generate iDTV applications. The tool is very economical for
developing different configurations using the same media until
the product that best suits the needs of the TV producer is
obtained. Similarly, once the optimal configuration that
corresponds to the style of a TV program is found, updating the
media is even simpler. The user repeats the task from step 2, that
is, updating the media, according to the different broadcasts of a
program. This last capability of the tool works as a template
generator.

Miranda & Casas / Revista DYNA, 86(211), pp. 174-183, October - December, 2019.

180

7. Evaluations

7.1. Prototyping, Experiments, and Case Studies

This part of the study consisted in using the SPL-iDTV tool to
reproduce three iDTV applications, which were later executed
using a Ginga emulator. The case study experimentation had
several objectives: to prove the correct functionality of the SPL-
iDTV tool, to verify the design of different configurations, to
verify that the restrictions that fit the model are correct and
flexible, to verify that the generated code is valid, and primarily to
verify that the tool can be used to develop applications at the same
level of complexity as manually developed application
prototypes. For this last reason, the experimentation consisted of
replicating manually developed prototypes that make intensive
use of the patterns.

The prototypes were extracted from [8]. The Anke Late Night
prototype is an entertainment and interview program, produced
and issued by the Ilmenau Technology University (Germany) in
2004. The Music prototype is a musical program, also produced
and broadcast by the same german university in 2004. The Sport
prototype is a sports program, produced and broadcast by the
UK’s BBC since 1997.

After the prototypes were selected, the input sets (pattern
information and media) necessary for steps 1 and 2 of the
development using SPL-iDTV, as indicated in Section 4.2, were
determined. Table 2 specifies the input for the Anke Late Night
prototype, Table 3 for the Music prototype, and Table 4 for the
Sport prototype.

The entries for each case study were entered into SPL-iDTV.
Fig. 5 shows the SPL-iDTV configuration interface for the Anke
Late Night prototype. The chosen options are highlighted with
different shapes: rectangle without corner for the groups of
patterns, rectangle for the patterns, and ellipse for the elements of
each pattern.

After creating the three configurations and associating the
corresponding media, the code2 for the applications was
generated. The applications were then executed in a Ginga
emulator. Fig. 6 presents images from these executions.

The reproductions of the prototypes verify that the tool
functions correctly, as it was possible to design diverse
configurations that include different sets of patterns consisting of
various elements and a considerable amount and diversity of
medias. The code generated by the tool is correct and executed
correctly. The prototypes developed with the tool are not trivial
examples, and it was possible to automatically reproduce the
manually designed and coded iDTV applications.

To complete the analysis of the prototypes developed in the
experimentation, some results are listed in Table 5. The first
column indicates the numbers of pattern groups, patterns, concrete
and terminal features, and rules represented by the model and
implemented by SPL-iDTV. The last three columns indicate the
quantities for each prototype. The bottom two rows indicate the
amount of media (images, videos, texts) and the number of
automatically generated lines of code (LOC) for each prototype.

2 The configurations and generated codes of the three prototypes is available
at https://sites.google.com/site/laboratoriodetvdigital/software

Table 2.
Input for the Anke Late Night Prototype.

Requirement
Step 1: Pattern Group(PG)

Pattern (P) Pattern
Elements (PE)

Step 2:
Medias

Start of the application:
text and red button,
located at the bottom left
of the screen, duration in
seconds.

PG: BasicFunction
P: InitialCall
PE: IniText, IniKeyRed,
IniPosHorBottom,
IniPosVerLeft,
IniDurFewSeconds

a) an image
and a text for
the home
screen

b) a text and
two images,
one
background
and one for the
presentation
screen button

c) a video
d) three
images, one
for each menu
button

e) three text
files (to
specify the
content of each
menu option)

f) an image
and text for the
application
exit screen

Presentation: red button,
bottom left location,
permanent duration.

PG: BasicFunction
P: Startng
PE: StartBlue,
StartPosHorBottom,
StartPosVerLeft

The video is located on
the top left of the screen
with a size of 1/3.

PG: PageLayout
P: FullWithVideo
PE: TopVideo, Left Video,
SizVid1_3

The menu is at the
bottom left, below the
video, and has three
options indicated with a
color menu.

PG: Navigation
P: Menu
PE: BottomMenu, LeftMenu,
MenuColor,SinTransparencia
Menu, item1, item2, item3
PG: RemoteControl
P: Color

The text is displayed in
the upper right, font type
Sans Serif, size 24, and
white.

PG: Content
P: TextDesign
PE: SansSerif, Font24,
FontWhite
PG: Content
P: ContextBox
PE: TopCont, RightCont

Completion: text and red
button at the bottom left
of the screen and always
active.

PG: BasicFunction
P:Exiting
PE: ExitText, Exit_0,
ExitBottom, ExitRight

Source. The Authors.

Table 3.
Input for the Music Prototype.

Requirement
Step 1: Pattern Group(PG)

Pattern (P) Pattern Elements
(PE)

Step 2:
Medias

Start of the application:
button with image
INFO, located at the top
right of the screen,
permanent duration.

PG: BasicFunction
P: InitialCall
PE: IniKeyInfo,
IniPosHorTop,
IniPosVerRight,
IniDurPermanenty

a) an image
and a text for
the home
screen

b) a video and
an image for
the overlay
c) four
images, one
for each menu
button
d) four text
files (to
specify the
content of
each menu
option)

The video occupies the
entire screen with an
overlay at the bottom.

PG: PageLayout
P:Overlay
PE: Bottom, Trans30

The menu is at the
bottom of the overlay
and is a color menu with
four options.

PG: Navigation
P: Menu
PE: BottomMenu,
CenterVMenu, MenuColor,
SinTransparencyMenu, item1,
item2, item3, item4
PG: RemoteControl
P:Color

Text is displayed in the
overlay, font type Sans
Serif, size 24, and blue
red.

PG: Content
P:TextDesign
PE: SansSerif, Font24,
FontBlue
P: ContentBox

Miranda & Casas / Revista DYNA, 86(211), pp. 174-183, October - December, 2019.

181

PE: BottomCont, LeftCont e) an image
and a text for
the exit screen
of the
application

Completion: white text
and blue button located
at the bottom right of the
screen as part of the
menu options and
always active

PG: BasicFunction
P: Exiting
PE ExitBlue, ExitBottom,
ExitRight

Source. The Authors.

Table 4.
Input for the Sport Prototype.

Requirement

Step 1: Pattern
Group(PG)

Pattern (P) Pattern
Elements (PE)

Step 2:
Media

Start of the application: text,
located in the upper right of the
screen, duration in seconds.

PG: BasicFunction
P: InitialCall
PE: IniText,
IniPosHorTop,
IniPosVerRight,
IniDurFew-Seconds

a) text for the
home screen

b) image for
the exit button
for the
presentation

c) a video

d) four videos
for the menu
e) four texts
for each menu
option

f) text for
loading status
page

g) text and
image to exit
the application

Presentation: red button, bottom
left location.

PG: BasicFunction
P: Starting
PE: StarRed,
StarPosHorBo-ttom,
StarPosVerLeft

The video is located in the center
of the screen with a size of 1/3.

PG: PageLayout
P: FullWithVideo
PE: CenterVideo,
CenterVVideo,
SizVid1_3

Multiscreen location on the right
side of the running video, with
four video options, each labelled
with a description at the top.

PG: Navigation
P: VidMultiScreen
PE: MultiScreen_4
PG: RemoteControl
P:Arrow, OK

The text is displayed at the
bottom, in font Sans Serif, size
24, and yelow.

PG: Content
P: TextDesign
PE: SansSerif,
Font24, FontYellow
P: ContentBox
PE: BottomCont,
LeftCont

Text for status message loading
page.

PG: BasicFunction
P: Loading
PE: LoadPage,
LoadOverlay,
LoadStatic, LoadTop,
LoadRight
P: Exiting
PE: ExitText,
ExitRed, ExitBlue,
ExitLeft

Completion: text and button color
blue, located in the bottom left of
the screen, always active.

Source. The Authors.

Table 5.
Results.

 Model &
Tool

Anke Late
Night Music Sport

Pattern Groups 6 5 5 5
Patterns 27 8 7 10
Concrete
Features 126 36 30 36

Terminal
Features 114 28 23 27

Rules 50 33 27 28
Medias - 14 14 14
LOC - 238 201 248

Source. The Authors.

Figure 5. Configuration Design for Anke Late Night prototype
Source. The Authors.

Figure 6. Images of prototypes generated by SPL-iDTV
Source. The Authors.

7.2. Evaluation of the SPL-iDTV

We conducted an evaluation of the quality of the SPL
developed with SPL-iDTV, using the method proposed in [13].
This method is based on the quality standard SQuaRE. The main
advantage of this method is that it is general and can be applied
to any developed SPL. In addition, it is flexible insofar as it
allows the independent evaluation of activities at any stage of the
SPL development. Although the quality assessment process
always involves the same activities at each stage of the SPL’s life
cycle, these should be adapted for the conditions of each phase.

In this study, we applied this method to evaluate the
maintainability of the SPL. A high degree of maintainability
indicates that a product is structured in a way that makes it is easy
to modify. This property is one of the most evaluated properties
for SPLs, since it considers their modularity and reusability.
Modularity analyzes the active proportion by feature, and
reusability employs four metrics to independently mediate
commonality and variability. Commonality is evaluated by
taking into account aspects related to the reuse of assets, because
these are common parts of different products, and variability is
evaluated based on the SPL’s richness and complexity. The
attributes and metrics for commonality involve functional
commonality, the functional coverage of an asset, and its
cumulative applicability. The attributes and metrics for
variability include the variability in an asset and the complexity
of the variability of the SPL, captured by measuring the number
of variabilities in the SPL.

The results of the evaluation are presented in Table 6. This
table also provides the formulas used for the calculations, the
acceptable values, the bases, the derived metrics, and the
dependencies between them. The possible values of the metrics
are continuous values between 0 and 1. Since these are subjective
values, we consider each evaluated attribute as accepted or not
accepted for an independent reason. The values for the

Miranda & Casas / Revista DYNA, 86(211), pp. 174-183, October - December, 2019.

182

calculation of the metrics were taken from the statistics provided
by FeatureIDE.

The FM defined for the creation of the proposed SPL presents
an acceptable degree of maintainability. Each asset is defined by
a feature, which facilitates the modularity of the model. The level
of reuse of an asset covered by the functional features of the
model does not reach the average possible value, while the
coverage of variability is favorable. The predominance of
optional and alternative features (variability) controls this
tension, giving the model a high level of flexibility.

Table 6.
Evaluation of SPL quality.

Attribute: Modularity of the SPL
Metric: Ratio of assets and feature (M)
Formula M = A / B (A = number of assets to be developed in the SPL B =
number of features in the feature model)
Acceptable value: M > 0.7
Result: M = 0.73
Analysis and Conclusion: The modularity of the SPL is accepted; increased
modularity facilitates the derivation of products and the evolution of the SPL.
The strategy of representing groups of patterns, patterns, and pattern elements
as features promotes a high modularity.
Attribute: Functional Commonality
Metric: Functional coverage of an asset (FC)
Formula : FC = S / N (S = sum of A / B for each i, i = 1 to N, where, A = number
of applications using functional feature, B = total number of applications in the
SPL, N = total number of functional features)
Acceptable value: FC > 0.7
Result: FC = 0.45
Analysis and Conclusion: Assets show less than acceptable average
functionality. This indicates that among the assets, there is not one that is reused
in all the possible products that the SPL can generate. This is due, in part, to the
fact that most of the patterns are optional or alternative. Although the Page
Layout group is mandatory, it offers three optional configuration patterns.
Finally, it is not possible to have an asset (pattern) that is present in all possible
configurations, which provides minimum functional commonality. The low
value for this metric is consistent with the high value of the complexity of
variability metric (V).
Attribute Variability Coverage in an Asset
Metric: Variability coverage (CV)
Formula: CV = A / B (A = number of implemented points in the asset, B =
number of points of variation within the scope of the SPL)
Acceptable value: CV < 0.3
Result: CV = 0.27
Analysis and Conclusion: The value is accepted; this indicates that most assets
are covered by a point of variation in the SPL. The higher the value, the lower
the variability of coverage for an asset, and its low reuse is serious.
Attribute Applicability of an Asset
Metric: Cumulative applicability (CA)
Formula: CA = 0.5 * FC + 0.5 * CV (FC = functional coverage of an asset, CV
= coverage of the variability of an asset)
Acceptable value: CA > 0.5
Result: CA = 0.36
Analysis and Conclusion: The result of CA being less than 0.5 indicates that the
assets are not applicable for developing several products, i.e., an asset (pattern)
will be present in fewer than the average number of products that the SPL can
generate. Clearly, the FC value directly affects CA, and the conclusions reached
regarding FC are also applicable in this case.
Attribute Complexity of Variability
Metric: Number of variabilities in SPL (V)
Formula: V = (A + B) / N (A = number of alternative features B = number of
optional features, N = total number of features)
Acceptable value: V > 0.5
Result: V = 0.85
Analysis and Conclusion: Most (concrete) features are optional or alternative,
so that the variability is high and is therefore considered an accepted value.

Source. The Authors.

8. Conclusion

In Section 3, we describe some tools to develop iDTV

applications for Ginga middleware. A group of these tools clearly
aimed at developers [14-19,23], since they require knowledge of
programming and software design. These tools offer different
levels of reuse, placing the frameworks of specific domains
[15,18] on a more prominent level than general-purpose text
editors. The generators [20,21,24-26] are intended for TV
producers, allowing applications to be made mainly using
predesigned template, of general purpose or specific domains.
[27] an assistant to generate NCL applications with a certain level
of usability for end users. Here SPL-iDTV presents an advantage,
since it not only generates the code of a certain configuration, but
also allows designing a configuration that fulfills the function of
a template. Thus, a user could design configurations that are then
used as templates or style guides, in specific domains. Among the
generators mentioned, the possibilities that the generated
applications have usability criteria as SPL-iDTV does, are very
limited, this marks an important difference. The applications
generated with SPL-iDTV do not require subsequent evaluations
of usability. Furthermore there is no need to spend time in the
design of iDTV applications that use usability guidelines, which
means lower costs.

This study offers two main contributions. The first is a model
that enables building an SPL to generate families of iDTV
applications. Three important advantages of this model are as
follows: It is an abstract model because it is independent of the
DTV standard, middleware, and interactivity programming
language used; it is defined and structured based on proven
usability patterns; and it is extensible, as it can easily incorporate
new patterns (features). The second contribution is a tool that
supports deployment of the SPL for the design and creation of
configurations (templates) and automatic generation of Ginga-
NCL code. These capabilities allow development of iDTV
applications with reduced time, cost, and effort.

 The evaluations we conducted indicate that the products
generated with this approach are at a similar level to applications
that were manually produced, even though the tool is not yet a
professional version. The proposed approach promotes the
automatic reuse of design and code, the modular design facilitates
the derivation of products and the evolution of the product line,
and the level of supported variability is high, which enhances the
tool’s ability to design flexible configurations.
Our planned objectives for future work are (1) to incorporate
more patterns in the model and in the tool, in order to implement
the entire catalog of patterns, (2) to add a module to the tool that
will allow configuring different target languages for the
generated code, and (3) to optimize the code generated by the
tool.

References

[1] Rodrigues, R. e Soares, L., Produção de conteúdo declarativo para TV

Digital. Proceedings of SemiSH—XXXIII Seminario integrado de
software e hardware. Campo Grande, Brazil. pp. 287-300, 2006.

[2] Fernández, F. and Goldenberg, S., Aplicaciones interactivas para la
Televisión Digital en Chile. Cuadernos de Información, 22, pp. 6-17.
2008. DOI: 10.7764/cdi.22.86

Miranda & Casas / Revista DYNA, 86(211), pp. 174-183, October - December, 2019.

183

[3] Nielsen, J., Usability engineering. Morgan Kaufmannm, Ed. San
Francisco, CA, USA, 1993.

[4] Solano, A., Rusu, C., Collazos, C., Roncagliolo, V., Arciniegas J. and
Rusu, V., Usability heuristics for interactive digital television.
Proceedings of the 3rd International Conference on Advances in Future
Internet. IARA, Nice, France, 2011.

[5] Dix, A., Finlay, J., Abowd, G. and Beale, R., Human-computer
interaction, 3rd ed., Pearson, Edinburgh, UK, 2003.

[6] Soares, L., Rodrigues, R. and Moreno, M., Ginga-NCL: the declarative
environment of the Brazilian digital TV system. Journal of the Brazilian
Computer Society, 12, pp. 37-46. 2007. DOI: 10.1007/BF03192400

[7] Clements, P. and Northrop, L., Software product lines: practices and
patterns. Addison-Wesley Professional, Boston, MA, USA, 2002.

[8] Kunert, T., User-centered interaction design patterns for interactive
digital television applications. Springer-Verlag, London, UK, 2009. DOI:
10.1007/978-1-84882-275-7

[9] Apel, S. and Kästner, C., An overview of feature-oriented software
development. Journal of Object Technology, 8(5), pp. 49-84. 2009. DOI:
10.5381/jot.2009.8.5.c5

[10] Hevner, A. and Chatterjee, S., Design research in information systems,
theory and practice. Springer, Boston, MA, USA, 2010. DOI:
10.1007/978-1-4419-5653-8.

[11] Kästner, C., Thüm, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F.
and Apel, S., FeatureIDE: a tool framework for feature-oriented software
development. Proceedings of the International Conference on Software
Engineering, IEEE Computer Society, Vancouver, Canada, 2009, pp.
611-614, DOI: 10.1109/ICSE.2009.5070568

[12] Batory, D., AHEAD tool suite. [online]. 2017. Available at:
https://www.cs.utexas.edu/~schwartz/ATS/fopdocs.

[13] Montagud, G., Un método para la evaluación de la calidad de líneas de
productos software basado en SQuaRE. MSc. Tesis. [en línea]. 2009.
RiUnet repository UPV Disponible en:
Http://hdl.handle.net/10251/11923

[14] Guimarães, R., de Resende-Costa, R. and Soares, L., Composer:
authoring tool for iTV programs. European Conference on Interactive
Television, Springer Berlin Heidelberg, pp. 61-71, 2008.

[15] Barboza, D. and Clua, E., Ginga Game: a framework for game
development for the interactive digital television. Proceedings of the VIII
Brazilian Symposium on Games and Digital Entertainment. IEEE
Computer Society, Rio de Janeiro, Brazil, 2009, pp. 162-167. DOI:
10.1109/SBGAMES.26

[16] Pequeno, H., Gomes, G. and Castro, M., FrameIDTV: a framework for
developing interactive applications on digital television environments.
International Journal on Network and Computer Applications, 33(9), pp.
503-511, 2010. DOI: 10.1016/j.jnca.2010.01.002.

[17] Honorato, G. and Barbosa, S., NCL-inspector: towards improving NCL
code. Proceedings of the ACM Symposium on Applied Computing,
ACM. Sierre, Switzerland, 2010, pp. 1946-1947. DOI:
10.1145/1774088.1774500

[18] Segundo, R., da Silva, J. and Tavares, T., ATHUS: a generic framework
for game development on Ginga middleware. Proceedings of Brazilian
Symposium on Games and Digital Entertainment. IEEE, Florianopolis,
Brazil, 2010, pp. 89-96. DOI: 10.1109/SBGAMES.2010.28

[19] Neto, S., Bezerra, P. and Dias, D., ITV-Learning: a prototype for
construction of learning objects for interactive digital television.
Proceedings of the International Conference on the Future of Education,
Pixel. Florence, Italy, 2012, pp. 486-490.

[20] Arroyo, M., Schwartz, S., Cardozo, S. and Tardivo, L., CreaTVDigital:
Composición Visual de Aplicaciones Interactivas para TV Digital.
Proceedings of the 41st Jornadas Argentinas de Informática, SADIO, La
Plata, Argentina, 2012, pp. 305-321.

[21] Bernal, I., Cabezas, G. and Quezada, M., Sistema de generación de
aplicaciones interactivas para TV Digital para la evaluación de servicios
masivos. Revista Politécnica, 32(2), pp. 11-22, 2013

[22] Gutiérrez-Duarte, S., Guía para el desarrollo de aplicaciones interactivas
en TDT para Colombia. Bdigital Repository. Universidad Nacional de
Colombia, Bogota, 2013.

[23] Cevallos-Salas, D., Cevallos-Salas, F., Bernal-Carrillo, I. and Mejía-
Navarrete, R., Generación automática de contenido para aplicaciones
interactivas de Televisión Digital con Ginga-NCL. Proceedings of the III
Jornadas iberoamericanas de difusión y capacitación sobre aplicaciones
y usabilidad de la TVD, SBC, João Pessoa, Brazil, 2014, pp. 114-121.

[24] Oyarzo, F., Herrera, F. and Casas, S., API TVD: a wizart for interactive
applications for Digital TV. Proceedings of the XL Latin American
Computer Conference, IEEE. Montevideo, Uruguay, 2014, pp. 1-8.

[25] De Souza, V., Galabo, A., Fernándes-Pinto, R., Araujo, F. e De Salles
Sores, C., Plataforma online orientada a templates para a criação de
aplicativos de telejornalismo. Proceedings of JAUTI, RedAUTI 2014,
Palma de Mallorca, Spain, 2014, pp. 102-108.

[26] Ochoa, S., Pillajo, A., Acosta, F. and Olmedo, G., Template generator:
software para la generación de aplicaciones interactivas para la televisión
digital terrestre a partir de plantilla Ginga y LUA. Proceedings of III
Jornadas iberoamericanas de difusión y capacitación sobre aplicaciones
y usabilidad de la TVDi, Palma de Mallorca, Spain, 2014, pp. 109-113.

[27] Casas S., Herrera F., Oyarzo F. and Trinidad F., Dr. Nau, a Web
generator of interactive applications for Digital TV. In: Abásolo, M.,
Silva, T. and González, N., Eds., Applications and usability of interactive
TV. Communications in Computer and Information Science, vol. 1004.
Springer, 2019. DOI: 10.1007/978-3-030-23862-9_6

[28] Pohl, K., Böckle, G. and van der Linden, F., Software product line
engineering: foundations, principles and techniques. Springer-Verlag,
New York, USA, 2005. DOI: 10.1007/3-540-28901-1

[29] Batory, D., Feature models, grammars, and propositional formulas.
NAMES (Eds.), LNCS: Vol. 3714. Proceedings of Software Product
Lines, 9th International Conference, Springer. Rennes, France, 2005, pp.
7-20. DOI: 10.1007/11554844_3

[30] Kang, K., Cohen, S., Hess, J., Novak, W. and Peterson, A., Feature-
oriented domain analysis (FODA) feasibility study (Technical Report
CMU/SEI-90-TR-021, SEI/CMU). [online]. 1990. SEI Digital Library.
Available at: https://resources.sei.cmu.edu/asset_files/technicalreport/
1990_005_001_15872.pdf. 1990.

[31] Dammagh, M. and Troyer, O., Feature modeling tools: evaluation and
lessons learned. In: De Troyer, O., Bauzer-Medeiros, C., Billen, R.,
Hallot, P., Simitsis, A. and Van Mingroot, H., Eds., LNCS, Vol. 6999.
Advances in conceptual modeling: recent developments and new
directions: ER 2011, Springer, Berlin, Germany: 2011, pp.120-129. DOI:
10.1007/978-3-642-24574-9_17

[32] Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A. and Hincheyd, M.,
An overview of Dynamic Software Product Line architectures and
techniques: observations from research and industry. Journal of Systems
and Software, 91, pp. 3-23, 2014. DOI: 10.1016/j.jss.2013.12.038

[33] Borchers, J., A pattern approach to interaction design. Wiley Eds., New
York, USA, 2001.

[34] Tidwell, J., Common ground: a pattern language for human-computer
interface design. [online]. 1999. Available at:
http://www.mit.edu/~jtidwell/common_ground.html

[35] van Welie, M., A pattern library for interaction design. [online]. 2000.
Available at: http://www.welie.com/patterns.

M. Miranda, is an assistant at the Institute of Applied Technology of the
National University of Southern Patagonia, Argentina. She received her MSc.
from the same university at 2018. Her research interests include software
development for Digital TV applications.
ORCID: 0000-0001-7240-167X.

S. Casas, is an associate professor at the Institute of Applied Technology of
the National University of Southern Patagonia, Argentina. She received his
PhD from the University of Vigo of Spain at 2008. Her research interests
include the study and application of software development improvement
techniques.
ORCID: 0000-0002-8289-6132

	1. Introduction
	References

