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Abstract 
Multiple correspondence analysis (MCA) in the presence of missing data is usually performed by removing the records that have missing 
or not available (NA) data; sometimes, an entire row or column of a data matrix is removed, which is not ideal because relevant information 
on an individual or variable of the study is lost. In some cases, it is assumed that the missing data are a category of the qualitative variable, 
resulting in a greater variance dispersion in the new axes. Possible solutions to this problem can be the imputation of the missing data or 
using an algorithm suited to the presence of this type of data. This work is focused on performing the MCA method in the presence of 
missing data, without using imputation techniques, by using the available data principle of the nonlinear estimation by iterative partial least 
squares (NIPALS) algorithm [25].   
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Datos faltantes en análisis de correspondencias múltiples bajo el 
principio de datos disponibles del algoritmo NIPALS 

 
Resumen 
El Análisis de Correspondencias Múltiples (ACM) en presencia de datos faltantes usualmente se trabaja eliminando los registros en donde 
exista el dato faltante o no disponible (NA), algunas veces se elimina toda la fila o toda la columna de la matriz de datos, lo cual no es 
adecuado ya que al realizarlo se pierde información relevante sobre algún individuo o variable del estudio. En algunos otros c asos, se 
asume que el dato faltante es una categoría de la variable cualitativa, trayendo como consecuencia mayor dispersión de varianza en los 
nuevos ejes. Una solución para esta situación puede ser la imputación del dato faltante o utilizar un algoritmo que permita trabajar con la 
presencia de éste tipo de datos. Este trabajo se centra en realizar el método ACM en presencia de datos faltantes sin acudir a técnicas de 
imputación, para esto se utiliza el principio de datos disponibles del algoritmo NIPALS [25]. 
 
Palabras clave: análisis de correspondencias múltiples; datos faltantes; NIPALS; principio de datos disponibles. 

 
 
 

1.  Introduction 
 
Currently, when a phenomenon is studied, measurements 

of different variables are taken over many observation units, 
generating large volumes of data. Multivariate statistical 
methods are appropriate in these situations because they 
consider the existing relationships between variables [2]. In 
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some circumstances, these variables are qualitative, and a 
method that is frequently used for extracting information 
from these types of variables is the multiple correspondence 
analysis (MCA) technique. However, this method only works 
with complete information, that is, it does not allow the 
presence of missing data.  

MCA is widely used in the analysis of surveys with 
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 questions that must be answered with only one of several 
options [13]. The answers to these types of questions 
generate qualitative variables (nominal or ordinal), each of 
which are associated with splitting the individuals (disjoint 
groups of individuals). When a question is not answered, 
nonresponse (NR) or missing (NA) data are generated. 

A table, which is the object of MCA analysis, has the 
statistical units in rows and the qualitative variables in 
columns. Each statistical unit, called an “individual”, 
assumes only one category of each variable. A table that is 
analyzed with MCA has as many columns as variables, which 
indicate the categories assumed by the individuals. Because 
this table does not have a numerical meaning, it is 
transformed into a table of individuals by categories, where 
each qualitative variable generates as many columns as it has 
categories. This table is called a complete disjunctive table 
(CDT) because for each row within the columns of each 
variable there is only a single value of one, which indicates 
the category assumed, and the remaining columns are zero 
(see Table 1). The theoretical approach of the MCA starts 
from the CDT. 

The MCA is the correspondence analysis (CA) of the 
CDT, which has very unique properties that are lost in the 
presence of missing data. Van der Heijden and Escofier [23] 
compare several methods including missing passive, missing 
passive modified margin, missing single, and missing 
multiple.  

The missing passive method is equivalent to performing 
a correspondence analysis of the incomplete disjunctive table 
(IDT), which is called that because in the case of a 
nonresponse for a variable, the row has zeros in all the 
columns of the categories of that variable [7,14]. The missing 
passive modified margin method [7] is proposed to recover 
most of the MCA properties. 

The missing single method, one of the most used, consists 
of creating a category for each variable with missing data. 
This option is usually managed by the analyst, who recodes 
the data prior to introducing them into an MCA program [23]. 

Currently, there are other authors working with missing 
data using the nonlinear estimation by iterative partial least 
squares (NIPALS) algorithm in multivariate analysis 
[1,18,19,22], and others working on the data imputation 
approach with the expectation maximation (EM) algorithm 
[3,11,12]. It is not exactly known which approach generates 
better results; however, works have been found that compare 
them to principal component analysis (PCA) [24]. 

In the case of MCA with missing data, authors Josse et al. 
[12] have worked with the EM algorithm approach, 
experiencing difficulties in the imputation process of the 
complete disjunctive table; it assigns one to the higher-
frequency categories and presents some convergence 
problems. However, there are no known works or ideas that 
attempt to work with MCA under NIPALS. For this reason, 
this research proposal will generate more knowledge on how 
to process missing data with MCA. 

In this work, it is proposed to use the NIPALS algorithm 
by Wold et al. [25] to perform MCA with the available data, 
that is, without the imputation of the missing data. The 

proposed method, called multiple correspondence analysis 
under the available data principle (MCAadp), evaluates the 
influence of this type of data on the factorial axes, the 
descriptive power (percentage of applied variance), and the 
inertia generated in each component, among others. This 
procedure can be seen in more detail in [15]. 

The MCAadp method is illustrated with the 
DogBreeds database of the FactoClass library of the R 
software [4,17]. It begins with the complete database and 
missing data are randomly generated in different 
percentages, i.e., 5%, 10% up to 50%.  

The following contains a summary of the MCA, 
NIPALS algorithm, iterative MCA (iMCA), and 
proposed MCAadp methods. 

 
2.  Methodologies  

 
In this section, the MCA method and the NIPALS 

algorithm are theoretically presented. The NIPALS 
algorithm is used to work in the presence of missing data, 
using the available data principle. In addition, each 
method, their optimization processes, the matrix to 
diagonalize, the concept of inertia, the eigenvalues, 
eigenvectors, and additional concepts that are relevant to 
the multivariate analysis are explained. This section also 
refers to the existing relationships between methods, 
especially that the MCA is a PCA of a matrix transformed 
into weighed profiles [13,21]. In the last subsection of 
this section, the method for the imputation of the data 
based on the EM algorithm for the MCA is explained. 
The MCA is presented below.  

 
2.1.  Multiple Correspondence Analysis (MCA) 
 

The principles of this method can be credited to 
Guttman [8], Burt [5], and Hayashi [9]. MCA is used in 
the analysis of tables of individuals described by 
qualitative variables and to study the associations 
between different categories of variables being studied 
[13,16]. MCA is a generalization of CA, defined as an 
CA of the complete disjunctive table 𝑍𝑍, where the 
number one is assigned to the category assumed by the 
individual, and zero to the category that was not selected, 
as observed in Table 1. 

𝐹𝐹 is obtained from matrix 𝑍𝑍, with the following 
general term: 

 
𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖 /𝑛𝑛𝑛𝑛 , 𝑓𝑓𝑖𝑖. = 1

𝑛𝑛
, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓.𝑗𝑗 = 𝑧𝑧.𝑗𝑗/𝑛𝑛𝑛𝑛 (1) 

 
Table 1: 
Complete Disjunctive Table Zij   

Individual Za Zb Zc Zi. 

1
2
.
.
𝑛𝑛
𝑍𝑍.𝑗𝑗

 

1 0
1 0
. .
. .
1 0
𝑍𝑍.1 𝑍𝑍.2

 

1 0 0
1 0 0
. . .
. . .
0 1 0
𝑍𝑍.3 𝑍𝑍.4 𝑍𝑍.5

 

1 0 0
1 0 0
. . .
. . .
0 1 0
. . 𝑍𝑍.𝑝𝑝

 

𝑠𝑠
𝑠𝑠
𝑠𝑠
𝑠𝑠
𝑠𝑠
𝑛𝑛𝑛𝑛

 

Source: The Authors 
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where 𝑠𝑠 is the number of qualitative variables and 𝑛𝑛 is the 
number of individuals. 
 
2.1.1.  Maximization and matrix to diagonalize 

 
The MCA geometric goal is to find a new system 

of orthogonal axes 𝑢𝑢𝛼𝛼, where the inertia 𝐼𝐼 of the cloud of 
individuals is projected such that the first axes concentrate 
most of the inertia in decrescent order. In this manner, the 
factorial coordinates 𝜓𝜓𝛼𝛼 are obtained; they are the projection 
of the individuals over the space generated by 𝑢𝑢𝛼𝛼, where 𝛼𝛼 =
1,2, … ,𝑝𝑝 − 𝑠𝑠. It is important to mention that the diagonal 
matrices 𝑀𝑀𝑛𝑛 = [⋱ 1 𝑓𝑓𝑖𝑖.⁄ ⋱] and 𝑀𝑀𝑝𝑝 = �⋱ 1 𝑓𝑓.𝑗𝑗⁄ ⋱� correspond 
to the metrics associated with the individuals and the 
categories. The inertia associated with the space of 
individuals is 𝐼𝐼 = 𝜓𝜓′𝑀𝑀𝑛𝑛

−1𝜓𝜓, with 𝜓𝜓 = 𝑀𝑀𝑛𝑛𝐹𝐹𝑀𝑀𝑃𝑃𝑢𝑢, that is, 𝐼𝐼 =
𝑢𝑢′𝑀𝑀𝑝𝑝𝐹𝐹′𝑀𝑀𝑛𝑛𝐹𝐹𝑀𝑀𝑝𝑝𝑢𝑢, which is the amount to maximize under the 
constraint 𝑢𝑢′𝑀𝑀𝑝𝑝𝑢𝑢 = 1.  

The Lagrangian solution leads to the system of 
eigenvalues and eigenvectors 𝑆𝑆𝑆𝑆 = 𝜆𝜆𝜆𝜆, with 𝑆𝑆 = 𝐹𝐹′𝑀𝑀𝑛𝑛𝐹𝐹𝑀𝑀𝑝𝑝 
and 𝑢𝑢′𝑀𝑀𝑝𝑝𝑆𝑆𝑆𝑆 = 𝐼𝐼 = 𝜆𝜆, which correspond to the highest 
eigenvalue. 

Matrix 𝑆𝑆 is not necessarily symmetric; therefore, it does 
not guarantee that the eigenvectors are orthonormal. Observe 
from the previous system that 𝑀𝑀𝑝𝑝

1/2𝑆𝑆𝑆𝑆 = 𝜆𝜆𝑀𝑀𝑝𝑝
1/2 𝑢𝑢, as 

follows: 
 

𝑀𝑀𝑝𝑝
1/2𝐹𝐹′𝑀𝑀𝑛𝑛𝐹𝐹𝐹𝐹𝑝𝑝

1/2𝑀𝑀𝑝𝑝
1/2𝑢𝑢 = 𝜆𝜆𝑀𝑀𝑝𝑝

1/2𝑢𝑢 (2) 

 
Instead of diagonalizing 𝑆𝑆, matrix 𝑆𝑆∗ is diagonalized, as 

follows: 
 

𝑆𝑆∗ = 𝑀𝑀𝑝𝑝
1
2𝐹𝐹′𝑀𝑀𝑛𝑛𝐹𝐹𝑀𝑀𝑝𝑝

1
2 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑤𝑤´𝑤𝑤 = 1 

(3) 

 
The eigenvectors 𝑤𝑤 = 𝑀𝑀𝑝𝑝

1/2𝑢𝑢 are orthogonal and are 
associated with the 𝜆𝜆-eigenvalues of  𝑆𝑆∗. Note the following: 

 
𝑆𝑆∗ = 𝑆𝑆𝑜𝑜′𝑆𝑆𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐 𝑆𝑆𝑜𝑜 = 𝑀𝑀𝑛𝑛

1/2𝐹𝐹𝑀𝑀𝑝𝑝
1/2 ⇒ 

 
𝑆𝑆∗𝑤𝑤 = 𝜆𝜆𝜆𝜆 

(4) 

 
In this way, the relationship MCA has with PCA is 

observed, where MCA is a PCA of the symmetric matrix 𝑆𝑆∗ 
[13,21]. Similarly, matrix 𝑇𝑇∗ = 𝑆𝑆𝑜𝑜𝑆𝑆𝑜𝑜′  is diagonalized in space 
𝑅𝑅𝑛𝑛. 

This scheme is very important because it is also followed 
for the solution with missing data, using the available data 
principle.  

 
2.1.2.  Total inertia of the cloud of categories 

 
The inertia of the cloud of categories p is as follows: 
 

𝐼𝐼 = �𝐼𝐼𝑗𝑗 = �𝐼𝐼𝑞𝑞

𝑠𝑠

𝑞𝑞=1

𝑝𝑝

𝑗𝑗=1

=
𝑝𝑝
𝑠𝑠 − 1   (5) 

 
where Ij is the inertia contribution of a category and Iq is 

the inertia associated with a variable, i.e., the inertia of the 
subcloud of its categories. 

 
2.1.2.1.  Inertia contribution of a category 

 
To calculate the inertia contribution associated with a 
category j, its weight is considered, i.e., the marginal column 
f.j = z.j/ns and its distance to the center of gravity. In this 
way, the inertia by modality 𝐼𝐼𝑗𝑗 is as follows: 
 

𝐼𝐼𝑗𝑗 = 𝑓𝑓.𝑗𝑗𝑑𝑑2(𝑗𝑗,𝐺𝐺) =
𝑧𝑧.𝑗𝑗

𝑛𝑛𝑛𝑛 �
𝑛𝑛
𝑍𝑍.𝑗𝑗

− 1� =
1
𝑠𝑠 �1 −

𝑧𝑧.𝑗𝑗

𝑛𝑛 � (6) 

 
The inertia contribution of a category is higher if there is 

low frequency in the data set.  
 

2.1.2.2.  Inertia by variable 
 
The inertia due to a variable (subtable) 𝑞𝑞 is an increasing 

function of its number of categories 𝑝𝑝𝑞𝑞. The inertia by 
variable 𝐼𝐼𝑞𝑞 is calculated as follows: 
 

𝐼𝐼𝑞𝑞 = �𝐼𝐼𝑗𝑗 =
1
𝑠𝑠
�𝑝𝑝𝑞𝑞 − 1�

𝑝𝑝𝑞𝑞

𝑗𝑗

 (7) 

 
In the presentation of the MCAadp method, how to 

calculate the inertia expressions in the presence of missing 
data will be emphasized. 

 
2.2.  Nonlinear Estimation by Iterative Partial Least Square 
       (NIPALS) 

 
The NIPALS was proposed by Wold and is the basis of the 

partial least squares (PLS) regression [20]. It essentially 
performs a decomposition of the data matrix into singular 
values by iterative sequences of orthogonal projections 
(geometric concept of regression) obtained as point products. 
When the database is complete, there is an equivalence with 
the PCA results, and it can also work with missing data and 
obtain estimations from the reconstituted data matrix. 

For the data matrix 𝑍𝑍𝑛𝑛,𝑝𝑝 of range 𝑎𝑎, whose columns 
𝑍𝑍1, . . . ,𝑍𝑍𝑝𝑝 are assumed to be centered or standardized, the 
decomposition derived from the PCA allows the 
reconstitution by 𝑍𝑍 = ∑ 𝜓𝜓𝛼𝛼𝑢𝑢𝛼𝛼′

𝑝𝑝
𝛼𝛼 , where 𝜓𝜓𝛼𝛼 is the 𝛼𝛼-th 

principal component and 𝑢𝑢𝛼𝛼 is the eigenvector associated 
with axis 𝛼𝛼 [1]. Then, it is possible to make the reconstitution 
by individuals or variables, where 𝑍𝑍𝑗𝑗 = ∑ 𝜓𝜓𝛼𝛼𝑢𝑢𝛼𝛼𝛼𝛼

𝑝𝑝
𝛼𝛼  for 𝑗𝑗 =

1, … ,𝑝𝑝 and 𝑍𝑍𝑖𝑖 = ∑ 𝜓𝜓𝛼𝛼𝑢𝑢𝛼𝛼𝛼𝛼
𝑝𝑝
𝛼𝛼  for 𝑖𝑖 = 1, … ,𝑛𝑛. 

The algorithm begins by taking the first column of Z0 as 
the first principal component 𝜓𝜓1. Then, a series of deflated 
tables will be constructed, called 𝑍𝑍𝛼𝛼  =  𝑍𝑍0  −  𝜓𝜓𝛼𝛼𝑢𝑢𝛼𝛼, which 
allow the cycle to restart and the remaining components 
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(orthogonal) 𝜓𝜓2, .., 𝜓𝜓𝑝𝑝, and their respective eigenvectors 
𝑢𝑢1, . . . ,  𝑢𝑢𝑝𝑝 to be obtained. 

Shown in the following subsections is the pseudocode of 
the algorithm when the data matrix is complete. As observed 
in stage 2.2.1, 𝑢𝑢𝛼𝛼𝛼𝛼 represents, prior to the normalization, the 
coefficient (slope) of the regression of Zα−1,j over component 
𝜓𝜓𝛼𝛼. 

 
2.2.1.  NIPALS algorithm pseudocode  

 
Stage 1: 𝑍𝑍𝑜𝑜 = 𝑍𝑍ℎ 
Stage 2: 𝛼𝛼 = 1,2, … ,𝑝𝑝 
Stage 2.1: 𝜓𝜓𝛼𝛼 = 1st first column of 𝑍𝑍𝛼𝛼−1 
Stage 2.2: Repeat until convergence of 𝑢𝑢𝛼𝛼 
Stage 2.2.1: 𝑢𝑢𝛼𝛼 =  𝑍𝑍′𝛼𝛼−1𝜓𝜓𝛼𝛼

𝜓𝜓𝛼𝛼′ 𝜓𝜓𝛼𝛼
 

Stage 2.2.2: Normalize 𝑈𝑈𝛼𝛼  to 1 
Stage 2.2.3: 𝜓𝜓 = 𝑍𝑍𝛼𝛼−1𝑢𝑢𝛼𝛼

𝑢𝑢𝛼𝛼′ 𝑢𝑢𝛼𝛼
 

Stage 2.3: 𝑍𝑍𝛼𝛼 = 𝑍𝑍𝛼𝛼−1 − 𝜓𝜓𝛼𝛼  𝑢𝑢𝛼𝛼′ (ensures orthogonality) 
Next, α 
 

2.2.2.  Available data principle  
 
This principle refers to some operations between vectors, 

omitting the missing data and working with the available 
matched points; that is, if there are two vectors with NA, 
〈𝑥𝑥,𝑦𝑦〉 can be found using the available data principle [15].  

 

𝑋𝑋 =

⎝

⎜
⎛
𝑥𝑥1
𝑁𝑁𝑁𝑁
𝑥𝑥3
⋮
𝑥𝑥𝑛𝑛 ⎠

⎟
⎞

   𝑌𝑌 =

⎝

⎜
⎛
𝑁𝑁𝑁𝑁
𝑦𝑦2
𝑦𝑦3
⋮
𝑦𝑦𝑛𝑛 ⎠

⎟
⎞

 (8) 

 
Then: 
 〈𝑥𝑥,𝑦𝑦〉 = ∑ 𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖𝑥𝑥𝑥𝑥 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑥𝑥3𝑦𝑦3 + 𝑥𝑥4𝑦𝑦4 + ⋯+ 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛 
Note that the same result is obtained if the NA are 

replaced with zeros. 
 

2.2.3.  NIPALS missing data algorithm pseudocode 
 
Stage 1: Z0 = Zh 
Stage 2: 𝛼𝛼 = 1,2, … ,𝛼𝛼 
Stage 2.1: 𝜓𝜓𝛼𝛼 = 1𝑠𝑠𝑠𝑠 first column of Zα-1 
Stage 2.2: Repeat until convergence of uα 
Stage 2.2.1: For j=1,2,...,p 
 

𝑢𝑢𝛼𝛼𝛼𝛼 =
∑ 𝑍𝑍𝛼𝛼−1,𝑗𝑗𝑗𝑗  𝜓𝜓𝛼𝛼𝛼𝛼𝑖𝑖:𝑍𝑍𝑗𝑗𝑗𝑗𝑒𝑒𝑒𝑒𝜓𝜓𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

∑ 𝜓𝜓𝛼𝛼𝛼𝛼
2

𝑖𝑖:𝑍𝑍𝑗𝑗𝑗𝑗𝑒𝑒𝑒𝑒𝜓𝜓𝛼𝛼𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (9) 

 
Stage 2.2.2: Normalize 𝑢𝑢𝛼𝛼 to 1 
Stage 2.2.3: For i = 1,2,...,n 
 

𝜓𝜓𝛼𝛼𝛼𝛼 =
∑ 𝑍𝑍𝛼𝛼−1,𝑗𝑗𝑗𝑗 𝑈𝑈𝛼𝛼𝛼𝛼𝑖𝑖:𝑍𝑍𝑗𝑗𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

∑ 𝑢𝑢𝛼𝛼𝛼𝛼2𝑖𝑖:𝑍𝑍𝑗𝑗𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (10) 

 

Stage 2.3: 𝑍𝑍𝛼𝛼 = 𝑍𝑍𝛼𝛼−1 − 𝜓𝜓𝛼𝛼𝑢𝑢𝛼𝛼′  
The main characteristic of NIPALS is that it works with 

a series of point products as a sum of products of the matched 
elements. This allows it to work with missing data by adding 
the available data in each operation. Geometrically, the 
procedure considers the omitted elements falling over the 
regression straight line; they are not leverage points [20]. 

The pseudocode of the NIPALS algorithm with missing 
data contains stages 2.2.1 and 2.2.3, where the slopes of the 
lines of the least squares from the origin of the point cloud 
over the available data are calculated. 𝑢𝑢𝛼𝛼𝛼𝛼 and 𝜓𝜓𝛼𝛼𝛼𝛼 must 
capture, in their positions 𝑗𝑗 and 𝑖𝑖, the missing data 
characteristic given by 𝑍𝑍𝑖𝑖𝑖𝑖 [1]. 

 
2.3.  Iterative MCA for missing data (MCA-EM) 

 
The iterative MCA via EM (iMCA or EM-MCA) was 

proposed by Josse [11]. This method is based on the EM-
PCA, where the missing data are estimated by average 
values, and then the distances between the original data 𝑆𝑆𝑜𝑜 
and the estimated data 𝜓𝜓𝜓𝜓 are minimized, such that the iMCA 
uses the following loss function: 
 

ℓ =∥ 𝑤𝑤(𝑆𝑆0 − 𝜓𝜓𝑢𝑢′) ∥2= ��𝑤𝑤𝑖𝑖𝑖𝑖(
𝑝𝑝

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

𝑆𝑆0𝑖𝑖𝑖𝑖 − 𝜓𝜓𝑖𝑖𝑖𝑖𝑢𝑢𝛼𝛼𝛼𝛼′ )2 (11) 

 

where 𝑆𝑆0 = 𝑀𝑀𝑛𝑛
1
2� 𝐹𝐹𝑀𝑀𝑝𝑝

1
2� , 𝑍𝑍𝑛𝑛.𝑝𝑝 is the complete disjunctive 

table, 𝜓𝜓𝑛𝑛.𝑞𝑞 is the factorial coordinates, 𝑢𝑢 𝑝𝑝.𝑞𝑞 is the eigenvector 
in 𝑅𝑅𝑝𝑝,𝛼𝛼 =  1, 2, . . . , 𝑞𝑞 (𝑞𝑞 <  𝑝𝑝 − 𝑠𝑠), and 𝑤𝑤 is an indicator 
variable (0 = NA; 1 = observed value). As in EM-PCA, this 
method minimizes the loss function associated with the 
complete data [12]. Presented in the following subsection is 
the pseudocode associated with the iMCA method. 

 
2.3.1.  iMCA algorithm pseudocode 

 
1. Initiation L = 0: Z0 
 

The missing data are replaced by the proportion of ones 
in the complete disjunctive table 𝑍𝑍𝑖𝑖𝑖𝑖. The replacement of the 
missing data must add one per variable, which makes the 
marginal per row equal to 𝑠𝑠, as in the complete data. 

Example: A = 0.4, B = 0.3, C = 0.3 
2. Step L 
2.1 Perform a singular decomposition of matrix 𝑆𝑆0 =

𝑀𝑀𝑀𝑀1 2⁄ 𝐹𝐹𝑀𝑀𝑀𝑀1 2⁄  (𝜓𝜓 and 𝑢𝑢 are obtained here). 
2.2 Perform the reconstitution of matrix 𝑆̂𝑆𝑜𝑜 = 𝜓𝜓𝑢𝑢′� , using the 

𝑞𝑞 dimensions (𝑞𝑞 < 𝑝𝑝 − 𝑠𝑠) found by generalized cross-
validation. 

2.3 Perform the reconstitution of the complete disjunctive 

table 𝑍̂𝑍 = 𝑀𝑀𝑛𝑛
−1

2� (𝑆𝑆𝑜𝑜� ∗ 𝑛𝑛𝑛𝑛)𝑀𝑀𝑝𝑝
−1

2� . Here, the missing 
values are imputed with the reconstitution and the 
observed values of Z are the same. 
Steps 2.1, 2.2, and 2.3 are repeated until convergence, 

where one is assigned to the highest-frequency category in 𝑍̂𝑍  
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Table 2: 
Example of a complete disjunctive table Z*n.p with NA 

Individual Gender Religion Race 
1 1 0 1 0 0 0 0 1 
2 1 0 NA NA NA 1 0 0 
3 NA NA 0 1 0 NA NA NA 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
n 1 0 0 1 0 0 1 0 

Source: The Authors 
 
and zero is assigned to the remaining categories. 
 
3.  MCAadp: Multiple Correspondence Analysis under 
     the available data principle 

 
The MCAadp method in the presence of missing data is 

presented in this section. Methods to obtain the eigenvalues 
and eigenvectors in spaces 𝑅𝑅𝑛𝑛 and 𝑅𝑅𝑝𝑝 are shown. From these 
results, the transition relations are considered for finding the 
components in each space. In addition, the expressions of 
Total Inertia, Inertia by question, and Inertia by category are 
presented. With this method, the proposal by Wold [25] and 
the multiple correspondence analysis are adapted to work 
with missing data [15]. The MCAadp method is presented 
below.  

 
3.1.  Presentation of the MCAadp Method 

 
To perform MCAadp, first, a disjunctive table with 

missing data 𝑍𝑍𝑛𝑛.𝑝𝑝
∗  is constructed, as presented in Table 2. 

 

Zij = �
1 if row 1 assumes category j 

0 otherwise
NA if the cell has missing data

 

 
Second, the relative frequency matrix 𝐹𝐹𝑛𝑛.𝑝𝑝

∗ = 𝑍𝑍𝑛𝑛.𝑝𝑝
∗ /𝑘𝑘∗ is 

calculated. In this process, it is important to consider that 
when building 𝐹𝐹∗, 𝑍𝑍

∗
𝑘𝑘∗�  is performed, where 𝑘𝑘∗ = 𝑛𝑛𝑠𝑠∗ =

∑𝑍𝑍𝑖𝑖∗ = ∑𝑍𝑍.𝑗𝑗
∗ (𝑠𝑠∗ = ∑𝑍𝑍𝑖𝑖∗/𝑛𝑛); it is obtained by adding by rows 

or columns to obtain the corresponding marginals, this time 
with the available data.  

Note that if the NA are replaced with zeros, the same 
result is obtained in the marginals and in the sum of the table. 
 
3.2.  MCAadp in space 𝑹𝑹𝒑𝒑 
 

Based on the relationship between MCA and PCA, the 
matrix to diagonalize is as follows: 

 
𝑆𝑆∗ = 𝑀𝑀𝑝𝑝

∗1 2� 𝐹𝐹∗′𝑀𝑀𝑛𝑛
∗𝐹𝐹∗𝑀𝑀𝑝𝑝

∗1 2�  with the constraint 

𝑢𝑢′𝑀𝑀𝑝𝑝
′∗1 2� 𝑀𝑀𝑝𝑝

∗1 2� 𝑢𝑢 = 1 
 

𝑤𝑤 = 𝑀𝑀𝑝𝑝
∗1 2� 𝑢𝑢; 𝑤𝑤′𝑤𝑤 = 1 

(12) 

 
In the diagonalization process of matrix S* is the 

following system of eigenvalues and eigenvectors:  
 

𝑆𝑆∗𝑤𝑤 = 𝜆𝜆𝜆𝜆 (13) 

Then, S* contains the submatrices 𝑆𝑆𝑜𝑜∗ = 𝑀𝑀𝑛𝑛
∗1 2⁄ 𝐹𝐹∗𝑀𝑀𝑝𝑝

∗1 2⁄ , 
such that 𝑆𝑆∗ = 𝑆𝑆𝑜𝑜′∗𝑆𝑆𝑜𝑜∗. It is important to mention that 𝑀𝑀𝑛𝑛

∗  and 
𝑀𝑀𝑝𝑝

∗ are obtained with the available data and correspond to the 
metric matrices for the row and columns, respectively. These 
are diagonal matrices that contain said weights in their 
diagonal. In detail, the matrices have the following structure:  

 
𝑀𝑀𝑝𝑝
∗ = �⋱ 1 𝑓𝑓.𝑗𝑗

∗⁄ ⋱�; 𝑀𝑀𝑛𝑛
∗ = [⋱ 1 𝑓𝑓𝑖𝑖.∗⁄ ⋱] (14) 

 
Thus, matrix 𝑆𝑆𝑜𝑜 

∗ = 𝑀𝑀𝑛𝑛
∗1 2⁄ 𝐹𝐹∗𝑀𝑀𝑝𝑝

∗1 2⁄  is obtained, which 
does not contain missing data, since the available data 
principle is considered when performing the point products. 

Finally, for matrix 𝑆𝑆𝑜𝑜 
∗ , a decomposition into singular 

values is executed iteratively, as performed by the NIPALS 
algorithm. 

 
3.3.  MCAadp pseudocode 
 
1. The disjunctive table is constructed with NA (Zij

*) 
2. 𝐹𝐹∗ = 𝑧𝑧∗

𝑘𝑘∗
 is constructed (𝑘𝑘∗ = 𝑛𝑛𝑠𝑠∗; available. 𝑠𝑠∗ = ∑𝑍𝑍𝑖𝑖

∗

𝑛𝑛
) 

3. Matrix S0
* is constructed using the available data 

principle as follows: 
 

𝑆𝑆0∗ = 𝑀𝑀𝑛𝑛
∗1 2� 𝐹𝐹∗𝑀𝑀𝑝𝑝

∗1 2�  (15) 

 
where 𝑀𝑀𝑝𝑝

∗ = [⋱ 1 𝑓𝑓𝑖𝑖.∗⁄ ⋱] 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑛𝑛
∗ = [⋱ 1 𝑓𝑓𝑖𝑖.∗⁄ ⋱]. 

4. An NIPALS (nonstandardized) is applied to matrix S0
*. 

 
3.4.  MCAadp in space 𝑹𝑹𝒏𝒏 

 
In section 3.2, the method was presented in the space 

associated with the variable 𝑅𝑅𝑝𝑝; this same scheme can be 
identified in the cloud of individuals where matrix 𝑇𝑇𝑛𝑛.𝑛𝑛

∗  is 
constructed, which is the matrix to diagonalize in this space. 
The construction of matrix 𝑇𝑇∗ is performed considering the 
available data principle, given that 𝐹𝐹𝑛𝑛.𝑝𝑝

∗  contains NA records.  
If 𝑇𝑇 is diogonalized, then we have the following system 

of eigenvalues 𝜆𝜆 and eigenvectors v: 
 

𝑇𝑇𝑇𝑇 = 𝜆𝜆𝜆𝜆 (16) 
 
Because 𝑇𝑇 is not necessarily symmetric, it does not have 

orthonormal eigenvectors. The following transformation is 
performed: 

 
𝑟𝑟 = 𝑀𝑀𝑛𝑛

∗1 2⁄ 𝑣𝑣, such that 𝑟𝑟′𝑟𝑟 = 1.  (17) 
 
Then: 

𝑀𝑀𝑛𝑛
∗1 2⁄ 𝑇𝑇∗𝑣𝑣 = 𝜆𝜆𝑀𝑀𝑛𝑛

∗1 2⁄ 𝑣𝑣 (18) 
 

𝑀𝑀𝑛𝑛
∗1 2⁄ 𝐹𝐹∗𝑀𝑀𝑝𝑝

∗𝐹𝐹∗′𝑀𝑀𝑛𝑛
∗1 2⁄ 𝑀𝑀𝑛𝑛

∗1 2⁄ 𝑣𝑣 = 𝜆𝜆𝑀𝑀𝑛𝑛
∗1 2⁄ 𝑣𝑣 (19) 

 
𝑇𝑇∗𝑟𝑟 = 𝜆𝜆𝜆𝜆; 𝑟𝑟′𝑟𝑟 = 1 (20) 
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It is important to mention that matrix 𝑇𝑇𝑛𝑛.𝑛𝑛
∗  is constructed 

considering the available data principle and that from this 
matrix, the eigenvalues 𝜆𝜆 and eigenvectors 𝑟𝑟 are found. 

A more important situation in this procedure is that the 
eigenvalues λ in spaces 𝑅𝑅𝑝𝑝 are 𝑅𝑅𝑛𝑛 are equivalent, which 
makes the transition relations valid and provides coordinates 
𝜓𝜓 and 𝜑𝜑. 

 
3.5.  Transition relations  

 
As mentioned above, the MCAadp method guarantees 

that the eigenvalues in spaces 𝑅𝑅𝑛𝑛 and 𝑅𝑅𝑝𝑝 are equivalent; in 
this way, we can relate the coordinates of one space with the 
coordinates of another, considering the following 
expressions: 

 

𝜑𝜑𝛼𝛼 =
1
√𝜆𝜆

𝑀𝑀𝑃𝑃
∗𝑆𝑆0∗′𝜓𝜓𝛼𝛼;  𝜓𝜓𝛼𝛼 =

1
𝑆𝑆∗�𝜆𝜆𝛼𝛼

𝑆𝑆0∗𝜑𝜑𝛼𝛼 (21) 

 
3.6.  Components in 𝑹𝑹𝒏𝒏 and 𝑹𝑹𝒑𝒑 

 
To perform the calculations of components 𝜓𝜓𝑛𝑛.𝑝𝑝 in 𝑅𝑅𝑝𝑝, 

the point product of matrix 𝑆𝑆𝑜𝑜∗ with the eigenvector associated 
with the space of variables 𝑤𝑤 = 𝑀𝑀𝑝𝑝

∗1 2⁄ 𝑢𝑢 is performed. To 
calculate components 𝜑𝜑𝑝𝑝.𝑝𝑝 in Rn, the point product of matrix 
𝑇𝑇𝑜𝑜∗ with the eigenvector associated with the space of 
individuals 𝑟𝑟 = 𝑀𝑀𝑛𝑛

∗1 2⁄ 𝑣𝑣 is performed. Based on these 
calculations, the following expressions are obtained: 

 
𝜓𝜓 = 𝑀𝑀𝑛𝑛

∗1 2⁄ 𝑆𝑆0∗𝑤𝑤 = 𝑀𝑀𝑛𝑛
∗𝐹𝐹∗𝑀𝑀𝑝𝑝

∗𝑢𝑢 (22)  
 
𝜑𝜑 = 𝑀𝑀𝑝𝑝

∗1 2⁄ 𝑇𝑇0∗𝑟𝑟 = 𝑀𝑀𝑝𝑝
∗𝐹𝐹∗′𝑀𝑀𝑛𝑛

∗𝑣𝑣;  where 𝑇𝑇0∗ = 𝑆𝑆0∗′ (23) 

 
3.7.  Inertia expressions for available data 

 
Presented in this section are the expressions of Total 

Inertia, Inertia by category, and Inertia by question, such that 
these expressions consider that the available data principle 𝑠𝑠∗ 
is used; it is the marginal estimated by row and is replaced in 
each Inertia expression. The new expressions are presented 
as follows: 

Total Inertia: This inertia depends on the existing 
number of data with NA. If there are more, then s* is smaller 
and thus the Total Inertia increases. 

 
𝐼𝐼∗ = 𝑝𝑝

𝑠𝑠∗
− 1; where 𝑠𝑠∗ = ∑𝑧𝑧𝑖𝑖

∗

𝑛𝑛
 (24) 

 
Inertia by category: 

𝐼𝐼𝑗𝑗∗ =
1
𝑠𝑠∗ �1 −

𝑍𝑍.𝑗𝑗
∗

𝑛𝑛 � 

(25) 

 
Inertia by variable: 

𝐼𝐼𝑞𝑞∗ =
1
𝑠𝑠∗ �𝑝𝑝𝑞𝑞 − �

𝑍𝑍.𝑗𝑗
∗

𝑛𝑛 ��  

(26) 

 

where 𝑝𝑝𝑞𝑞 is the number of categories per question 𝑞𝑞. 
 

4.  Equivalence between the results of the MCAadp and 
     the MCA of incomplete tables  

 
In the MCAadp proposal, the sums of the rows of the 

disjunctive table with missing data are replaced by the 
constant 𝑠𝑠∗ = ∑𝑍𝑍𝑖𝑖

∗

𝑛𝑛
 to calculate the inertias. In addition, the 

sums and point products of the disjunctive table with missing 
data are equivalent to the same operations with the 
incomplete disjunctive table (i.e., with 0 instead of NA). 
Thus, the MCAadp coincides with the MCA method for an 
incomplete disjunctive table [7]. 

In these methods, the MCA properties are retained. The 
advantage of the MCAadp is derived from the NIPALS 
algorithm, which sequentially obtains the factors, leading to 
shorter calculation times if only the axes that will be analyzed 
are obtained.  

 
5.  Application 

 
The DogBreeds database contains 27 breeds and six 

qualitative variables: Size (SIZ), Weight (WEI), Speed 
(SPE), Intelligence (INT), Affection (AFF), and 
Aggressiveness (AGR). Each variable has two or three 
categories, as illustrated in the FactoClass package [17]. SIZ 
has three categories: big, medium (med), and small. WEI has 
three categories: heavy, medium (med), and light. VEL has 
three categories: fast, medium (med), and slow. Variable INT 
has three categories: high, medium (med), and low. AFF and 
AGR each have two categories: high and low. It is important 
to mention that these qualitative variables are used as 
indicator variables. In this manner, the study is performed in 
a data matrix 𝒁𝒁𝒊𝒊𝒊𝒊, which contains one, zero, or NA, depending 
on if the category is present or absent or if there are missing 
data. It is important to mention that matrix 𝒁𝒁𝒊𝒊𝒊𝒊 is of dimension 
𝒏𝒏 ∗ 𝒑𝒑, where n represents individuals and p represents 
categories. 

 
5.1.  Missing data simulation in the study case 

 
The work is performed with the first six variables and 

missing data will be randomly assigned to the matrix. In the 
following structure of the R software, m corresponds to the 
position where the missing data is located and a corresponds 
to the percentg of missing data values of the total 

 
fmd <- function(Xo,a) 
{ 
      X. <- as.matrix(Xo) 
      n <- nrow(X.); p <- ncol(X.); N <- n*p 
      m <- sample(N, round(a*N,0)) ; d <- length(m) 
for(j in 1:d){ 
      X.[m[j]] <- NA 
} 
return(X.) 
} 
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5.2.  Simulation study 
 
Table 3 shows the proposed simulation scenarios, which 

have a missing completely at random (MCAR) mechanism. 
At the same time, the scenarios when the entire data matrix 
has 1, 2, or 3 NA per row are considered. In the first three 
scenarios, the marginal per row 𝒁𝒁𝒊𝒊 is constant for every 𝒊𝒊. 
However, when there are from 0 to 1, 0 to 2, and 0 to 3 NA 
per row, the marginal per Zi is not constant for every 𝒊𝒊. It is 
important to mention that the marginal per column is not 
constant for the 𝒋𝒋 categories. 

It is also important to mention that the NA percentage is 
calculated based on the total number of records (27 ∗ 6). In 
this article, the work is performed with a maximum of 50% 
of missing data; the NA percentage in the last three scenarios 
is randomly generated. To study the presence of NA in a more 
general and random manner, different simulations were 
performed, as shown in Table 4, where the records per 
individual will have a maximum of three NA per row (not 
exceeding 50%). One thousand matrices are generated for 
each NA percentage: 5%, 10%... 50%, i.e., there will be 7000 
simulated matrices and they are compared with the complete 
data case. 

 
5.3.  Statistical analysis of the simulation scenarios 

 
First, the matrix with complete data must be analyzed to 

see how each of the following indicators behave: 
• Eigenvalues 𝜆𝜆 and eigenvectors 𝑢𝑢 
• Components 𝜓𝜓 and 𝜑𝜑 in 𝑅𝑅𝑛𝑛 and 𝑅𝑅𝑝𝑝 
• Total Inertia, Inertia by category, and Inertia by question 
• Descriptive power (𝜆𝜆1  +  𝜆𝜆2)/ 𝛴𝛴 𝜆𝜆 
• Factorial planes 
• Orthogonality in the components and orthonormality in 

the eigenvectors 
With this starting point, the same indicators are analyzed 

for each of the scenarios proposed in Table 3. In each of these 
analyses, it is identified if the inertia expressions agree with  

 
Table 3: 
Simulation scenarios.  

NA structure Number of NA % NA 
MCAR 
MCAR 
MCAR 
MCAR 
MCAR 
MCAR 

1 NA per row 
2 NA per row 
3 NA per row 
0:1 NA per row 
0:2 NA per row 
0:3 NA per row 

16.70% 
33.30% 
50.00% 
9.26% 
13.58% 
27.16% 

Source: The Authors 
 
Table 4: 
Simulation scenarios for the descriptive power analysis 

NA structure Methods % NA m 
 
 
0:3 NA per row 

 
 
MCAadp 
iMCA 

5% 
10% 
15% 
20% 
25% 
30% 
50% 

1000 
1000 
1000 
1000 
1000 
1000 
1000 

Source: The Authors 

Table 5: 
Results of inertia and descriptive power 

Source: The Authors 
 
 
the theory with complete data. Then, in section 6, a 
comparison is performed between the MCAadp and the 
imputation method, where the scheme of Table 4 is used and 
where 𝑚𝑚 is equal to the number of matrices to simulate the 
structure. 

The code developed in the R software using the MCAadp 
method can be viewed at the following website:  

https://github.com/AndresOchoaRSA/MCAapd 
To perform the factorial planes, the s.label() function of 

the ade4 library was used [6]. For the analysis with the 
imputation method, the missMDA library was used [10]. The 
R software version used is 3.6.1. 

 
6.  Results 

 
Presented in Table 5 is a comparison of the previous 

scenarios with the imputation method proposed by Josse, J. 
et al. [12]. It is observed that the Total Inertia with the 
MCAadp is higher compared to the complete data. With the 
imputation method (iMCA), the Total Inertia is the same as 
in the complete data. This occurs because the imputation 
delivers an imputed complete matrix, where the inertia 
expressions are the same. However, it is observed that the 
descriptive power in the MCAadp method decreases, 
whereas with the imputation method it increases as a function 
of the number of NA. This may be considered a drawback of 
the imputation method, since an increase in descriptive power 
implies that having more NA records would be a favorable 
situation; however, it is expected that by having more NA in 
a data matrix, the representation performed will lose its 
descriptive power. 

Figure 1 illustrates four first factorial planes of these 
analyses: MCA with complete data and MCAadp with 10%, 
20% and 30% of NA. It is observed how as the missing data 
increase, some typologies and features that were found in the 
complete data are lost. However, Figure 2 shows the 
comparison between the complete data and matrices with 
missing data where the iMCA was used. It is observed that 
some typologies are also lost when the number of missing 

 
 

Number of 
NA per 

row 
�λα Total 

Inertia 
Descriptive 

power 

Method Complete 
data 1.667 1.667 0.519 

MCAadp 

1 NA 2.200 2.200 0.409 
2 NA 3.000 3.000 0.347 
3 NA 4.333 4.333 0.286 

0:1 NA  1.936 1.938 0.476 
0:2 NA  2.065 2.086 0.437 
0:3 NA 2.670 2.661 0.375 

iMCA 

1 NA  1.667 1.667 0.538 
2 NA  1.667 1.667 0.607 
3 NA  1.667 1.667 0.668 

0:1 NA  1.667 1.667 0.541 
0:2 NA  1.667 1.667 0.501 
0:3 NA  1.667 1.667 0.539 
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data points increases. This type of analysis with the factorial 
planes becomes more difficult because it is a visual analysis 
and there should be an indicator describing the characteristics 
of the variables and individuals in these two axes. The 
proposed indicator is the descriptive power (𝜆𝜆1 + 𝜆𝜆2)/∑𝜆𝜆; 
with such an indicator, the percentage of variance explained 
in those two axes is found. 

For this simulation case, Figure 3 shows that as the 
amount of missing data increases, the descriptive power 
decreases with the MCAadp method. Conversely, with the 
iterative MCA, as the missing data percentage increases, the 
descriptive power decreases. The previous situation is 
considered to be inconsistent because when there is a larger 
amount of missing data, the inertia relationships present in 
the data set should be more difficult to explain. It is important 
to mention that the line of reference corresponds to the 
descriptive power with complete data, which is 0.5198.   

Note that for the case of MCA with complete data, the 
marginal per row is equal to 𝑠𝑠 and in the case of MCAadp it 
is 𝑠𝑠∗, where 𝑠𝑠 > 𝑠𝑠∗ → 𝐼𝐼 <  𝐼𝐼∗, i.e., the inertia 𝐼𝐼∗ in the 
MCAadp is higher than in MCA; however, as observed in 
Figure 3, the inertia in the first factorial plane decreases as a 
function of the NA percentage. 

 

 
Figure 1. Factorial plane comparison: complete data, MCAadp with 10%, 
20%, and 30% of NA. 
Source: The Authors 
 
 

 
Figure 2. Factorial planes comparison: complete data, iMCA with 10%, 
20%, and 30% of NA. 
Source: The Authors 

 
Figure 3. Behavior of the descriptive power as a function of the NA 
percentage with MCAadp and iterative MCA (iMCA) 
Source: The Authors 
 
 
7.  Conclusions  
 
Based on the results, the MCAadp presents a practical and 
efficient solution because its programming is simple and it 
has the interesting properties of orthogonality in the 
components, orthonormality in the eigenvectors, and 
equivalence in the eigenvalues in 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑛𝑛, among others 
[15].  
The MCAadp is an alternative solution to the missing data 
problem. It resorts to imputation techniques, but the user can 
use the method to perform imputation via the reconstitution 
of the matrix. In comparison with the iterative MCA method, 
the MCAadp presents higher consistency in terms of 
descriptive power, because at a higher number of NA, the 
descriptive power is expected to decrease. However, it is 
important to consider comparisons with other methods such 
as the regularized iterative MCA method [11] or the MCA 
with multiple imputations [3]. 
In a Masters thesis [15], work was also done with a higher-
dimension data set (tea consumption data), and the same 
results were found regarding the simulation process, i.e., the 
descriptive power decreases as the missing data percentage 
increases when using MCAadp. For future works, it would 
be interesting to perform a cluster analysis and a multiple 
factorial analysis for qualitative variables, both with missing 
data via PLS, and adapt them to current libraries of the R 
software.  
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