

© The author; licensee Universidad Nacional de Colombia.
Revista DYNA, 87(212), pp. 57-62, January - March, 2020., ISSN 0012-7353

DOI: http://doi.org/10.15446/dyna.v87n212.79579

Assembly language and processor design: an integrated project •

Iván de Jesús Deras-Tabora & Nelson Alberto Lizardo-Zelaya

Faculty of Engineering, Universidad Tecnológica Centroamericana, San Pedro Sula, Honduras. ivan.deras@unitec.edu.hn, nelson.lizardo@unitec.edu.hn

Received: May 8th, 2019. Received in revised form: December 3rd, 2019. Accepted: December 13th, 2019.

Abstract
The research describes a project in computer organization class with two groups, one in 2017 and the other in 2018, in a trimester course
of 68.34 hours which integrated both topics assembly language and hardware design. The project involves the implementation of a reduced
version of an embedded MIPS32 system, with a simulated and real hardware implementation using FPGA (Field Programmable Gate
Array). Followed by the development of a game in C and assembly language that runs on the embedded system. The results show that all
students from the first and second group that coursed computer organization class during a 10-week period expressed high levels of interest
and engagement, despite the complexity of the project. With feedback from the first group and with some modifications to the project, all
students from the second group successfully completed the project.

Keywords: assembly language; computer organization; FPGA, simulation.

Lenguaje ensamblador y diseño de procesador: un proyecto
integrado

Resumen
La investigación describe la aplicación de un proyecto en la clase de organización de computadoras con dos grupos, uno en 2017 y otro en
2018, en un curso trimestral de 68.34 horas que integró lenguaje ensamblador y diseño de hardware. El proyecto implica la implementación
de una versión reducida de un sistema MIPS32 embebido, con una implementación simulada y una en hardware utilizando FPGA (Field
Programmable Gate Array). Seguido del desarrollo de un juego en C y lenguaje ensamblador que se ejecuta en el sistema embebido. Los
resultados muestran que todos los estudiantes del primer y segundo grupo que cursaron la clase de organización de computadoras durante
un período de 10 semanas expresaron altos niveles de interés y participación, a pesar de la complejidad del proyecto. Con la
retroalimentación del primer grupo y con algunas modificaciones al proyecto, todos los estudiantes del segundo grupo completaron el
proyecto con éxito.

Palabras clave: lenguaje de ensamble; organización de computadoras; FPGA; simulación.

1. Introduction

Computer organization is one of the classes whose main

objective is to teach students how the world of software and
hardware get together. The software part includes the
learning of assembly language and the hardware part is
mostly about applying digital circuit design to understand the
process carried out by the computer in order to execute the
software. Usually the software part gets more attention and
many simulators [1-3] have been developed with the purpose
of teaching assembly language.

The hardware part is more complicated since it involves

How to cite: Deras-Tabora, I.J. and Lizardo-Zelaya, N.A, Assembly language and processor design: an integrated project. DYNA, 87(212), pp. 57-62, January - March, 2020.

the application of digital design knowledge, which in many
cases is limited for Computer Science students; also, it
requires the investment in hardware that allows the
implementation of digital circuits. Some approaches have
been tried in this regard, like hardware simulation [4,5], using
microcontrollers and FPGAs (Field Programmable Gate
Array) to implement digital circuits [6,7]. The problem with
these approaches is that they work separately, commonly
hardware projects and assembly language projects are not
integrated.

Deras-Tabora & Lizardo-Zelaya/ Revista DYNA, 87(212), pp. 57-62, January - March, 2020.

58

Taking all this into account we decided to try a new
approach by combining the two parts (hardware/software)
into a single project. The project is challenging taking into
account the limited digital design knowledge of students and
timing constraints (the course last only 10 weeks). The
project consists of the development of a MIPS32 SOPC
(MIPS32 System on Chip) and a simple game implemented
using assembly language and C that runs on the SOPC.

This section explains the structure of which the course
was developed and its general guideline. Section 2 describes
the details of the development of hardware and software
requirements and components. In Section 3 laboratory
experiments and specific project design tasks are detailed.
Section 4 explains the implementation of the software and
hardware project. Section 5 emphasizes on the student’s
experience, taking in account their feedback for
improvements and examining their attitude toward the
project. To conclude in Section 6, the difficulties and results
of the project are discussed and in Section 7 we review areas
of improvement for future courses based on the instructor
assessment of the project and student’s comments.

2. Project description

The primary objective of this project is to allow

students develop their own hardware and then program it
to implement a game that tests the processor in a real
situation and with this reduce the gap between
technologies used in the industry and academia. Previous
approaches to develop similar projects have been done in
longer periods, spanning from 1 semester to 2 semesters.
Some of this projects have a reduced complexity in
programming and in some cases the implementation in
hardware is optional, currently we have no evidence of a
research were they test it with a game applying the
combination of hardware and software in a reduced
timeframe. [8-11].

The hardware part of the project composed by a
MIPS32 SOPC, which includes a reduced version of a
MIPS32 CPU, a VGA (Video Graphics Array) text mode
driver, a timer and a keypad. These components were
chosen taking into account that students will develop and
test a game for this system. The software part involves the
development of a game that runs on the SOPC using C and
MIPS32 assembly language. We decided to use a game
instead of some other software project because games are
engaging for students as pointed by [12].

2.1. Hardware description

The interaction between the hardware components is

shown in Fig.1.
The keypad, timer and the VGA modules are input/output

components, which are available to the software through
MMIO (memory mapped input/output). We decided to use
MMIO because it is simpler than for example interrupt based
IO.

Figure 1. MIPS SOPC hardware component.
Source: The Authors.

2.1.1. The keypad

The keypad provides eight keys; we use the MMIO

address 0xffff0004 to read the states of the keypad. The state
is represented in a byte were each bit represents the status of
an individual key, 0 means the key is released and 1 if the key
is pressed.

2.1.2. The timer

The timer counts the number of milliseconds passed since

the system was started, this value is stored in a 32-bit special
register. We use the MMIO address 0xffff0008 to read the
value of such register.

2.1.3. The VGA module

The VGA module is a text mode driver, which provides a

resolution of 80 columns by 30 rows and a palette of 16
colors. The content of the VGA display can be accessed (read
and write) through the range 0xb800 to 0xcabf, where every
word is a 16 bits value which encode the color attribute and
the symbol to display. The color attribute is an 8-bit value,
where the leftmost 4 bits represents the background color and
the other 4 bits represent the foreground color, which is the
color used to display the symbol. The symbol is displayed
based on a fixed size font that is stored in a read only memory
(ROM).

2.1.4. The CPU module

The CPU module implements 39 instructions from the

MIPS32 instruction set [13]. The implemented instructions
are: nop, sll, srl, sra, sllv, srlv, srav, jr, add, addu, sub, subu,
and, or, xor, slt, sltu, jmp, jal, beq, bne, blez, bgtz, addi,
addiu, slti, sltiu, andi, ori, xori, lui, lb, lh, lw, lbu, lhu, sb, sh,
sw. The CPU includes 16KB of instruction memory to store
programs, 8KB of data memory and 8KB for stack.

2.2. Software part description

The development of the game was divided into two parts:

the development of controllers for the hardware components

CPU

Timer

VGA

Keypad

Deras-Tabora & Lizardo-Zelaya/ Revista DYNA, 87(212), pp. 57-62, January - March, 2020.

59

and the actual game logic. The hardware controllers include
a VGA controller, keypad controller and a timer controller.
The VGA controller was developed in C and the other two
controllers were developed in assembly. For the second part
every student chooses a game, and then implements it using
the code developed in the first part.

The toolchain used in this part was GCC (GNU Compiler
Collection) version 7.1 for MIPS32 with some extra tools
developed for the project, we will discuss this later on the
paper.

3. Project design

Due to the complexity of the project, its implementation

required careful planning. As part of this process, we decided
to implement the project before applying it to the students in
the course. This allows us to get a better understanding of
the tools and manuals needed in order to help students
implement the project themselves.

Two main issues were addressed in the project
implementation: 1) students limited background in hardware
design. 2) time constraints of the project, due to the class
timeframe of 10 weeks taught Monday to Thursday with a
class duration of 1 hour 20 minutes, with a total of
approximately 53.34 hours in total.

We addressed the first issue by having 1 hour and 30
minutes of additional sessions on Friday during the 10 weeks,
adding 15 hours to the project and making it a total of 68.34
hours. Even though the students had already taken a digital
design class, the extra sessions were used to review digital
circuit’s implementation in Verilog and to help students
resolve issues with their project implementation.

The time constraint was addressed by involving the
students with the project since the beginning of the class. We
were able to do this by allowing the students to work on the
software part of project first. For this part they were given a
simulated model of the SOPC, an FPGA configuration file,
and compilation tools. They started using C, because they
have some background on C++ and Java in addition the
students have already coursed 4 programming classes
therefore having some knowledge in this area. Then as the
class advanced they were asked to implement some parts in
assembly.

The simulated model of the SOPC was implemented in
Verilog and C++. We used Verilator [14] to compile Verilog
code into C++ code, which we extended with other C++ code.
The VGA display, the input keys for the keypad and the timer
were implemented using SDL2 (Simple DirectMedia Layer)
library. The simulated implementation was extremely helpful
to debug the logic of the SOPC and for the hardware
implementation we compiled the Verilog code using Xilinx
ISE Webpack 14.7 then loaded the circuit implementation
into a MIMAS V2 FPGA Board, which used a Spartan 6
FPGA.

For the software part, we used a Tetris [15]
implementation available in C using the ncurses library. We
ported the game to our SOPC by using GCC for MIPS. This
process allows us to define the instructions needed in the

Figure 2. The fixed size editor program
Source: The Authors.

Figure 3. The SOPC simulator running a test program
Source: The Authors.

CPU, which we implemented accordingly.

During the planning process we developed three
additional tools (used during the game development part):1)
Fixed Size Font Editor (Fig. 2 shows a screenshot), to edit the
VGA font. 2) Elf2Mif which extracts the machine code and
data from an ELF (executable and link format) file generated
by the GCC compiler and output them into two files in
hexadecimal format, these files are used in simulation and
during compilation of the Verilog code. 3) Elf2Mem does a
similar job to Elf2Mif, but the output format is compatible
with Xilinx tool data2mem [16]. The output is combined
with the FPGA programming file, which allows us to run the
program on the FPGA board.

Additionally, we decided to use a graphical tool for circuit
design, Digital [17], which was useful for students to

Deras-Tabora & Lizardo-Zelaya/ Revista DYNA, 87(212), pp. 57-62, January - March, 2020.

60

understand the data flow of the hardware part. In the second
implementation of the project, we added two features to
Digital, one to export a graphical circuit to Verilog and
another to use a Verilog circuit. This allowed students to
work faster and with fewer errors in the circuit.

4. Project implementation

For the implementation of the project, students had their

own laptop computer with a Linux distribution.
Additionally, they installed GCC for MIPS compiler,
Verilator, the SOPC simulator (Fig. 3 shows a screenshot of
the simulator running a test program), the FPGA
configuration file for the SOPC, Fixed Size Font editor
program, Elf2Mif and El2Mem tools and Digital. The Fixed
Size Font Editor program allows the student to edit characters
from the VGA ROM to create game sprites. The project was
divided into the following parts:
• Software
o VGA controller
o Keypad and Timer controller
o The game

• Hardware
o Single cycle CPU with asynchronous memory.

Supported instructions: lw, sw, add, sub, and, or, slt,
beq, bne, j

o Implement a simple virtual addressing mode for
memory. Added support for instructions: addu, addi,
addiu, andi, ori, lui

o Adding support for memory access instructions: lb, lbu,
sb, lh, lhu, sh.

o Adding support for more branch and bit manipulation
instructions: bgez, bgtz, blez, bltz, nop, sll, srl, sllv,
srlv, sra, srav, xor, xori, sltu, slti, sltiu, jal, jr

o Building the final circuit.
For the VGA controller students were asked to implement

the following functions:
• clear_screen: clear the entire VGA display.
• set_cursor: Set current position identified by row and

column. The current position is the one used to print
something on screen.

• set_color: Set the current color attribute. This is the
background and foreground color.

• print_char: Prints a character using the current position
and color attribute into the VGA display.

• puts: Prints a null-terminated string using the current
position and color attribute into the VGA display.
This part was implemented in C and for the keypad and

timer controller students were asked to implement the
following functions:
• delay_ms: Make a delay for specified milliseconds.
• get_key: Return the current key pressed. Every key is

identified by a number starting at 1. If no key is pressed
0 is returned.
This part was implemented in assembly and for the game

part students were allowed to choose a simple game to
implement, only one level was required. Among the games

chosen by students are: Tetris, Pong, Pacman, Snake,
Adventure. Fig. 7 shows screenshots of some of the games
implemented by students.

For this part, students used C and assembly. The use of
C allowed students to take into account aspects like register
and calling convention, which is important to follow in order
to integrate assembly code with C code.

For the hardware implementation students starts with a
single cycle CPU implementation using asynchronous
memory which is simpler to use than synchronous memory,
in this part students implement the necessary instructions and
test them in Digital. The second part asks students to
implement support for virtual addressing mode for the
instruction and data memory. In this part they add support for
some arithmetic instructions. The third part asks students to
add the synchronous memory modules including the VGA
and Data memory. At the same time, they add support for the
missing memory access instructions from part 1. In the fourth
part students implement the missing branch and bit
manipulation instructions.

Part 1 through 4 were developed and tested in Digital. We
used automated testing supported by Digital, which proved
to be very useful to ensure circuits were working correctly
before reaching the last phase. The fifth is the last part, here
students have to first simulate the whole system using
Verilator and implement their project in hardware using
Xilinx ISE and the FPGA. They generated the Verilog code
from Digital, then changed the code to add modules like:
clock manager to generate the input clock for the processor
and the VGA module, synchronous memory modules to be
able to implement the circuit in hardware and pin mapping.
Finally, students run the game using their own SOPC
implementation.

5. Student experience

We implemented this project with two generation of
students of computer organization class, the first group in
2017 on a class with 6 students and the second group in 2018
with 7 students. Since the beginning of the class we
explained clearly to them what was the project about, this
makes them realize that the project will require time and
dedication.

For the 2017 group all the students finished the game, but
nobody finished the MIPS32SOPC at all. One student
completed the circuit, but could not implement it on the
FPGA, it worked only in simulation. Therefore, to identify
the issue we requested from the students what where the
limitations on completing the task and we got two main
issues: 1) At the moment of the circuit construction they had
double workload, graphically in a tool called Digital then
manually translate the circuit to Verilog. 2) They mentioned
that implementing pipelining was too complex.

In the case 2018 group, we used the feedback of the
previous group for improving the project. The modification
of Digital to generate Verilog to prevented double workload
and the new multicycle processor version excluded
pipelining. The addition of a detailed scheduled task delivery

Deras-Tabora & Lizardo-Zelaya/ Revista DYNA, 87(212), pp. 57-62, January - March, 2020.

61

with automated tests for the hardware part. This helped
students to ensure that every part of the circuit was working
correctly before moving to the next part. The results show
that successfully all 7 students could implement the circuit in
simulation and in the FPGA also all of them were able to run
their game.

For the 2018 group we handed a survey with 8 questions
to the seven students: 1) How difficult was the project? 2)
What was the most difficult part? 3) Contribution level of the
project, 4) How engaging and entertaining the project was?
5) Do you recommend this project for future classes? 6) How
do you consider the instructions? 7) About the tools? 8)
External factors that influence the development of the
project. Questions 1, 3, 4 and 6 used a Likert scale, question
5 required a yes/no answer. The other questions (2, 5, 7) were
open questions. Figs. 4, 5 and 6 shows a chart for the answer
to questions 1, 3 and 4. From that, we can conclude that even
though students consider the project difficult, it contributed
to the learning and was engaging and entertaining.

Figure 4. Level of difficulty of the project
Source: The Authors.

Figure 5. Project contribution to learning process
Source: The Authors.

Figure 6. Level of engagement and entertaining
Source: The Authors.

Figure 7. Games implemented by students
Source: The Authors.

6. Conclusion

Learning assembly language and applying Digital Circuit
Design to Computer Hardware Organization are two crucial
topics of a Computer Organization class. As far as we know

Deras-Tabora & Lizardo-Zelaya/ Revista DYNA, 87(212), pp. 57-62, January - March, 2020.

62

this is the first attempt to combine the two topics with this
level of integration.

The paper shows that is possible to get students involved
not only with hardware implementation but also with
assembly language programming, which helps them get a
better understanding of how the hardware and software
integrates in building complex computational systems.

With the feedback from the first group of computer
organization class in 2017 and with improved pedagogical
techniques, the 2018 group manage to complete the software
and hardware successfully in the short time period of 10
weeks.

The results show that is possible to get students involved
not only with hardware implementation but also with
assembly language programming, which aids in getting a
better understanding of how the hardware and software
integrates in building complex computational systems.

7. Future work

We are pleased with how the project was implemented,

however in future courses we want to test the use of C++
instead of C in the software phase. This brings certain
challenges since C++ is difficult to integrate with assembler
compared to C, due to features like: inheritance,
polymorphism and other object oriented programming
characteristics. On the other hand, we have been working
with the author of Digital to integrate the changes to generate
Verilog code from a graphical representation of a circuit and
also be able to use components with descriptions in Verilog
as part of a circuit in Digital. At the time of elaboration of
this article, now Digital includes all the contributions of this
project. Therefore, is possible to generate Verilog code from
Digital and also the use of a Verilog circuit on Digital.

References

[1] Vollmar, K. and Sanderson, P., MARS: an education-oriented MIPS

assembly language simulator. In: SIGCSE '06 Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science Education,
New York, USA, 2006. DOI: 10.1145/1121341.1121415

[2] Zilles, C., SPIMbot: an engaging, problem-based approach to
teaching assembly language programming. In: SIGCSE '05
Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education, New York, USA, 2005. DOI:
10.1145/1047124.1047391

[3] Black, M.D. and Komala, P., A full system x86 simulator for teaching
computer organization. In: SIGCSE '11 Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education, New York,
USA, 2011. DOI: 10.1145/1953163.1953272

[4] Norris, C. and Wilkes, J., YESS: a Y86 pipelined processor simulator.
In: ACM-SE 45 Proceedings of the 45th annual southeast regional
conference, New York, USA, 2007. DOI: 10.1145/1233341.1233369

[5] Black M. and Waggoner, N., Emumaker86: a hardware simulator for
teaching CPU design. In: SIGCSE '13 Proceeding of the 44th ACM
Technical Symposium on Computer Science Education, New York,
USA, 2013. DOI: 10.1145/2445196.2445294

[6] Black, M. Export to arduino: a tool to teach processor design on real
hardware, Journal of Computing Sciences in Colleges, 31(6), pp. 21-
26, 2016.

[7] Jipping, M.J., Henry, S., Ludewig, K. and Tableman, L., How to
integrate FPGAs into a computer organization course,. In: SIGCSE
'06 Proceedings of the 37th SIGCSE Technical Symposium on
Computer Science Education, New York, USA, 2016. DOI:
10.1145/1121341.1121414

[8] Black, M., A processor design project for a first course in computer
organization.in: Annual Conference & Exposition, Pittsburgh,
Pennsylvania, USA. [online]. 2008, 12 P. Available at:
https://peer.asee.org/4444

[9] Jung, Y.-K., An innovative rapid processor platform design for early
engineering education. In: Proceedings of the 2005 American Society
for Engineering Education Annual Conference & Exposition,
Fayetteville, AR, USA, 2005

[10] Matos, J.S., Alves, J.C., Mendonça, H.S. and Araújo, A.J., From
Boolean algebra to processor architecture and assembly programming
in one semester. In: Design of Circuits and Integrated Systems,
Madrid, 2014, pp. 1-5. DOI: 10.1109/dcis.2014.7035605

[11] Patt, Y., Introduction to computer systems from bits and gates to C
and Beyond, McGraw-Hill Education, 1999, 656 P.

[12] C.A. Bodnar, Anastasio, D., Enszer, J.A. and Burkey, D.D., Engineers
at Play: games as teaching tools for undergraduate engineering
students, Journal of Engineering Education, 105(1), pp. 1-200, 2016.
DOI: 10.1002/jee.20106

[13] MIPS, MIPS32 Architecture for programmers. Vol. II: The MIPS32
Instruction Set, MIPS Technologies, Inc., California, USA2001.

[14] Snyder, W., Galbi, D. and Wasson, P., Verilator, Veripool.org,
[Online]. 2017. [Accessed August 31th of 2017]. Available at:
https://www.veripool.org/wiki/verilator.

[15] Brennan, S., Tetris, [Online]. [Accessed August 31th of 2017].
Available at: https://github.com/brenns10/tetris.

[16] Xilinx, Data2MEM User Guide, Xilinx, 2007.
[17] Neemann, H., Digital, [Online]. [Accessed August 31th of 2017].

Available at: https://github.com/hneemann/Digital.

I. de J. Deras-Tabora, received the BSc. Eng in Computer Systems in 2002
from the Universidad Tecnologica Centroamericana, Tegucigalpa,
Honduras, and MSc. in Computer Science in 2017 from the Stony Brook
University, Nueva York, USA. Since 2003 has been working as a teacher in
the Universidad Tecnologica Centroamericana, in 2018 he started working
as a research teacher. His research interests are Computer Science Education
and Computers Applied to Education.
ORCID: 0000-0001-8094-843X

N.L. Lizardo-Zelaya, received the BSc. Eng in Logistics Engineering in
2009, the MSc. in Finance in 2011, and MBA in 2012, all of them from the
Universidad Tecnologica Centroamericana, Honduras. He finished a PhD in
Economics and Finance in 2018 from Hanyang University, Republic of
Korea with focus in risk management and financial engineering. Since 2018
has been working in the Universidad Tecnologica Centroamericana, San
Pedro Sula, Honduras, he is working as a researcher and professor in the
Faculty of Engineering. His research interest are risk management and
logistic systems.
ORCID: 0000-0002-3963-5690

	1. Introduction

