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Abstract 
In this paper, the potential of Sentinel-1A and Sentinel-2A satellite images for land cover mapping is evaluated at three levels of spatial 
detail; exploratory, reconnaissance, and semi-detailed. To do so, two different image classification approaches are compared: (i) a 
traditional pixel-wise approach; and (ii) an object–oriented approach. In both cases, the classification task was conducted using the 
“RandomForest” algorithm. The case study was also intended to identify a set of radar channels, optical bands, and indices that are relevant 
for classification. The thematic accuracy of the classifications displays the best results for the object-oriented approach to exploratory and 
recognition levels. The results show that the integration of multispectral and radar data as explanatory variables for classification provides 
better results than the use of a single data source.   
 
Keywords: Sentinel-1A; Sentinel-2A; land cover classification; random forest; object-based analysis. 

 
 

Clasificación de la cobertura del suelo en tres niveles de detalle 
diferentes a partir de datos ópticos y de radar SAR Sentinel: un 

estudio de caso en Cundinamarca (Colombia) 
 

Resumen 
En este documento, se evalúa el potencial de las imágenes satelitales Sentinel-1A y Sentinel-2A para el mapeo de la cobertura del suelo en 
tres niveles de detalle; exploratorio, reconocimiento y semi-detallado. Se compara el rendimiento de dos enfoques diferentes de 
clasificación de imágenes: (i) un enfoque tradicional basado en píxeles; y (ii) un enfoque orientado a objetos. En ambos casos, el proceso 
de clasificación se realizó utilizando el algoritmo “RandomForest”. El estudio también aborda la identificación de un conjunto de canales 
de radar, bandas ópticas e índices relevantes para la clasificación. La exactitud temática de las clasificaciones, muestra los mejores 
resultados en el enfoque orientado a objetos para los niveles de exploración y reconocimiento. Los resultados muestran que la integración 
de datos multiespectrales y de radar como variables explicativas para la clasificación proporciona mejores resultados que el uso de una 
única fuente de datos. 
 
Palabras clave: Sentinel-1A; Sentinel-2A; clasificación de coberturas; bosques aleatorios; análisis basado en objetos. 
 
 
1.  Introduction 
 

Remote sensing image classification is a digital 
process that is frequently used to create thematic 
cartography depicting the terrestrial land surface, as it 
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produces reliable maps of a range of features, at different 
spatial and temporal scales [1]. Biodiversity, urbanization, 
agriculture and risk assessment studies, among others, 
have benefited from remote sensing-based thematic 
cartography [2,3,4]. 
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Globally, thematic cartography became more important at 
the end of the 1980s and the years that followed with the 
inauguration of the European CORINE (Coordination of 
Information on the Environment) program. This resulted in 
the definition of the Corine Land Cover (CLC) methodology, 
a consistent and standardized set of principles, rules and 
procedures for obtaining thematic information for the 
European territories. The CLC methodology relies on the 
interpretation of satellite images, supported by auxiliary 
information, to classify remotely-sensed data into different 
categories at different levels of spatial detail.  Auxiliary 
information from field surveys and secondary sources is 
essential to help identify and confirm the content of certain 
land cover characteristics that have been detected in the 
images [5,6,7]. 

In Colombia, the CLC methodology has been adopted – 
with minor modifications – as the standard methodology for 
land cover mapping by Instituto Geográfico Agustín Codazzi 
(IGAC) and Instituto Colombiano de Estudios Ambientales 
(IDEAM) [8].  The CLC methodology has been applied in a 
series of mapping projects at different scales and levels of 
detail [9]. 

Remote sensors are usually classified as either active 
(optical), which depend on sunlight; or passive (radar), which 
emit their own energy. Of the available information from 
optical sensors, the Landsat satellite mission data has been 
the most used by medium-spatial scale projects for land cover 
mapping, as well as by high spatial scale projects that have 
used their aerial photographs. Optical sensors have some 
important limitations, in particular, data collection can be 
hindered by atmospheric conditions, especially in areas that 
have cloud cover most of the year [10]. 

As a way round this, active sensors such as synthetic 
aperture radar (SAR) instruments can take images of the 
Earth’s surface no matter the atmospheric conditions, and can 
operate in cloudy conditions and in darkness. Furthermore, 
SAR images contain data related to surface texture and 
backscatter properties of land cover and, in the case of sparse 
vegetation, the upper substrate of the soil [10]. In sum, radar 
images provide more information than optical images such as 
the Landsat TM images [11], and their usefulness has been 
demonstrated by several land cover mapping studies that 
have used SAR images [12,13,14]. 

Traditional techniques for the visual interpretation of 
remotely sensed data, be it radar or optical data, are similar 
to a certain degree. However, while several studies reveal that 
for both data types, large amounts of information can be 
extracted by image interpreters, production of thematic 
cartography is time intensive, and requires hard work and 
high-level expertise [15]. 

The visual interpretation of images for land cover 
classification is based on the manual delineation of objects 
and shapes, and the careful observation of spatial features and  
geometric patterns [7]. Recent advances in software and 
hardware technologies, especially the design of advanced 
digital classification techniques, have improved the 
operational performance of the classification task [16]. 
However, several authors argue that human interpreters are 

still key to the land cover mapping process as they possess 
superior classification capabilities. This explains why digital 
classification procedures are heavily guided by human 
interpretation [16,17]. 

The traditional pixel-based classification techniques, 
used from 1980 onwards, aim to establish a quantitative and 
statistical relationship between pixel data and categories of 
interest (14).  Such techniques have limitations when applied 
to high-spatial resolution images, available since 2000, 
because they focus on individual pixels which are smaller in 
size compared to the typical size of the elements being 
studied, and do not take into account spatial features such as 
texture, shape and context patterns [14]. Therefore, the pixel-
based image analysis approach is very limited when it comes 
to land cover mapping using high-spatial resolution images, 
although these limitations can be overcome to some degree if 
object-based techniques are used [14]. 

The object-based approach for land cover classification 
starts by grouping pixels into image-regions, by means of a 
segmentation task [18] that generates discrete objects or 
pseudo-polygons, whose size may vary in compliance with 
several parameters. These include aggregation schemas 
which may differ depending either on image spatial 
resolution or the spatial scale of the final map [19]. 

Gao and Mas [20] compared land cover classification 
results from the traditional pixel-based technique and the 
object-oriented method, using different resolutions of SPOT-
5 multispectral images. Their results showed that the object-
oriented method’s thematic accuracy was 25% more accurate 
than the pixel-based method. Perea et al. [21] used the object-
oriented method to carry out the digital classification of an 
urban-forest area using digital aerial photographs. They 
obtained a thematic accuracy of 90% and showed that image 
objects output from the segmentation task may also be used 
for a further “refined” classification [22]. 

Random forest is among the most efficient of the different 
machine learning algorithms for digital classification [23]. A 
random forest is a collection of hundreds of decision trees 
that collaborate to produce a reliable classification [23]. The 
outstanding feature of the random forest technique is that it 
provides more accurate results than other classification 
techniques, even when there are more variables than 
observations [24]. Random forest generalizes the training 
features well and evaluates the importance of the variables 
for the classification task [25]. It is also very efficient with 
large volumes of data [26,27]. 

This can be seen in the study by Balzter et al. [13], where 
Sentinel-1 radar images and geomorphometric variables were 
input into the random forest algorithm for land cover 
classification. It showed that it is possible to discriminate 
coverages with a thematic accuracy of up to 68.4%, which is 
useful for mapping tropical regions with frequent cloud 
cover. Likewise, Lawrence et al. [28] implemented random 
forest to discriminate two different invasive plant species, 
obtaining thematic accuracies of between 66% and 93%, 
highlighting the potential of random forest for land cover 
mapping. 
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The objective of the present study was to compare the 
accuracy of thematic cartography obtained using two 
different classification approaches, pixel-based and object-
oriented, using the random forest algorithm. In the case 
study, both Sentinel-1 radar and Sentinel-2 optical images 
acquired by the European Space Agency (ESA) were used as 
the main input data. The land cover classifications were 
obtained in compliance with the CLC methodology adapted 
for Colombia at three levels of detail: exploratory (Level 1), 
reconnaissance (Level 2) and semi-detailed (Level 3). The 
overall aim is to evaluate the potential of Sentinel 1 and 
Sentinel 2 images for thematic mapping, and hence, to 
provide empirical evidence to support the work of national 
mapping agencies which are moving towards digital 
techniques to replace traditional mapping methods. 

 
2.  Materials and methods 
 
2.1.  Study Area  

 
The study area is located in the department of 

Cundinamarca, comprising the municipalities of Facatativá, 
El Rosal, Madrid, Bojacá, Mosquera and Funza (see Fig. 1). 
Elevation ranges between 2300 and 2900 masl, with an 
average height of 2500 meters. Slope varies between 0% and 
25% with an average of 18%. The study area covers approx. 
30,000 hectares. This area was selected due to the availability 
of high-quality land cover information, obtained by the 
Colombian national geographic institute at three different 
spatial levels, using well-established visual techniques of 
image analysis. 

 
2.2.  Data 

 
2.2.1.  Images 

 
The European Space Agency (ESA) Copernicus program 

is comprised of satellite missions Sentinel 1 and Sentinel 2 
[29], offering operational satellite data that is useful for land 
cover mapping, land change detection and estimation of 
physical-geochemical variables [30]. 

Sentinel 1A operates a C-band synthetic aperture radar 
(SAR) instrument (5.404 GHz) which is not affected by 
cloud cover or lack of light. The IW (Interferometric Wide) 
swath mode combines a large scan width (250 km) with a 
moderate geometric resolution (5 m x 20 m).  The IW mode 
is the most commonly used mode for land cover studies [31]. 

The   Sentinel-1A (Ground Range Detecting) single-level 
image used was acquired on September 16, 2015. The 
specifications of the image (Fig. 2) are summarized in Table 1.  

Sentinel-2A consists of two polar-orbiting satellites each 
with a multispectral MSI sensor (Multi Spectral Imager) of 
high-medium spatial resolution, characterized by a 290-
kilometer wide strip and a high revisit capacity (5 days with 
two satellites) [32].  

The Sentinel-2A MSI images used in this study (Fig. 2) 
are summarized in Table 2 [31]. 

 
Figure 1. Study Area (Image Sentinel 2 A combination of bands 4-3-2) 
Source: The Authors. 

 
 

Table 1.  
Specifications of the Sentinel 1A Radar Image. V denotes vertical 
polarization, H denotes horizontal polarization. 

Specifications Sentinel image - 1A 
Acquisition date September 16 2015 
Orbit Descendant 
Image mode IW 
Frequency Band C (5.4 GHz) 
Polarization VV – VH 
Kind of product Level -1 GRD 
Resolution 10 m 

Source: The Authors. 
 
 

Table 2. 
Specifications of the Sentinel 2A Optical Image. 

Bands 
Spatial 

resolution 
(m) 

Spectral 
resolution 

(nm) 

Bandwid
th (nm) 

Band 1 (Aerosol) 60 443 20 
Band 2 (Blue) 10 490 65 
Band 3 (Green) 10 560 35 
Band 4 (Red) 10 665 30 
Band 5 (Near Infrared 
- NIR) 20 705 15 

Band 6 (Near Infrared 
- NIR) 20 740 15 

Band 7 (Near Infrared 
- NIR) 20 783 20 

Band 8 (Near Infrared 
- NIR) 10 842 115 

Band 8a (Near Infrared 
- NIR) 20 865 20 

Band 9 (Water vapor) 60 945 20 
Band 10 (Cirrus) 60 1375 30 
Band 11 (Short Wave  
Infrared - SWIR) 20 1610 90 

Band 12 (Short Wave  
Infrared - SWIR) 20 2190 180 

Source: The Authors. 
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Figure 2. Study Area. Left: Sentinel 1A radar image – polarization 
combination VV-VH- (VV-VH). Right:  Sentinel 2A optical image – color 
composition RGB  432. 
Source: The Authors. 
 
 
2.2.2.  Reference data  

 
The thematic information used as reference for training 

and validation is a vector data produced by Instituto 
Geografico Agustin Codazzi (IGAC) and Corporacion 
Autonoma Regional de Cundinamarca (CAR). The reference 
dataset comprises thematic cartography in accordance with 
CLC methodology at scale 1:25,000, semi-detailed level, for 
the inter-administrative contract CAR-IGAC (1426 / 4705-
2016). The reference dataset was obtained using Sentinel-2A 
images from 2015 and includes land cover classifications 
from level 1 to level 6, obtained from visual image 
interpretation conducted by expert cartographers at IGAC. 

The CAR reference data for the study area has 41 land 
cover classes in level 3, 13 land cover classes in level 2, and 
5 land cover classes in level 1. For the training step, 
approximately 10% of the total area for every class was used 
in order to avoid both over-training and under-training. Then, 
for the validation step, the remaining 90% of the area was 
used.  
 
2.3.  Methods 

 
The workflow diagram  shown in Fig. 3 consists of  four 

stages: in Stage 1, radiometric and geometric corrections 
were conducted on  radar and optical images, and the spectral 
variables to be analyzed were prepared; in Stage 2,  training 
areas were established in levels 1, 2, 3; in Stage 3, the random 
forest algorithm was used to classify land cover in the study 
area, using the pixel and object-oriented techniques and 
identifying  relevant variables to perform the integration of 
optical and radar data in the classifications for levels 1, 2, 3; 
in Stage 4,  thematic accuracy was assessed for each image 
analysis technique implemented and for each level of 
classification. 

 
Figure 3. Workflow for this study.  
Source: The Authors. 

 
 

2.3.1.  Stage 1. Preprocessing of images 
 
The Sentinel-1A image was calibrated in the Sigma angle 

of incidence, the multilooking process was applied to two 
ranges in order to obtain square pixels, the "speckle" or noise 
was corrected with the Lee Sigma filter  in a 5x5 window and 
topographic distortion was removed using the SRTM 1 arc 
sec digital elevation model [14]. The digital level (DN) 
values of the SAR image were converted to backscattering 
values on the decibel scale (db). All processes were carried 
out in the SNAP software [14].  

The polarimetric data of the Sentinel-1A image (VV - 
VH) were combined using the method outlined in Abdikan et 
al. [14], where the most accurate scenario is given using the 
VV, VH, (VV-VH) polarizations, and (VV / VH) and [(VV 
+ VH) / 2] as training variables for the classification, and four 
additional combinations were calculated for a total of nine 
variables. 

The variables, obtained from the pre-processing of the 
polarizations (VV - VH) of the Sentinel-1A radar data and 
used to carry out the classification of coverages, are shown 
in Table 3. Here we present the operations and combinations 
of each variable. 

A Sentinel-2A image, obtained on 2015-12-21, was 
obtained using the Google Earth Engine platform [33]. The 
data from Sentinel-2A have 13 spectral bands that represent 
the top-of-atmosphere (TOA) reflectance values, these values 
were scaled by 10000.  

The bands used have resolutions of 10 m and 20 m (B2 - 
B3 - B4 - B5 - B6 - B7 - B8 - B8a) and were implemented to  

 
 

Table 3. 
Operations and combinations with radar image 

Variable Band Combination 
1 VH VH 
2 VV VV 
3 B1 VV-VH 
4 B2 VV/VH 
5 B3 (VV+VH)/2  
6 B4 VH/VV 
7 B5 (VV-VH)/2 
8 B6 VV+VH+(VV/VH) 
9 B7 VV*VH 

Source: The Authors. 
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calculate the Normalized Difference Vegetation Index 
(NDVI) [34]. The NDVI index can be used to produce a 
spectral index that separates the green vegetation from the 
ground [16]. It is expressed as the difference between the 
infrared and red bands, normalized by the sum of these bands: 
as show it in eq. (1). 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑏𝑏 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑏𝑏 𝑁𝑁𝑅𝑅𝑁𝑁
𝑏𝑏 𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑏𝑏 𝑁𝑁𝑅𝑅𝑁𝑁 (1) 

 
where b NIR is the infrared band TOA reflectance and b 

RED is the red band TOA reflectance. 
The NDVI values range from -1 to 1, 1 being mature or 

high-density vegetation and -1 surfaces without vegetation 
[16]. 

The Enhanced Vegetation Index (EVI) optimizes the 
vegetation signal, improving sensitivity in regions of high 
biomass and reducing atmospheric influences [35]. This 
index is expressed as shown in eq. (2). 

 

𝑅𝑅𝑁𝑁𝑁𝑁 =  𝐺𝐺 
𝑏𝑏 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑏𝑏 𝑁𝑁𝑅𝑅𝑁𝑁

𝑏𝑏 𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐶𝐶1 ∗  𝑏𝑏 𝑁𝑁𝑅𝑅𝑁𝑁 −  𝐶𝐶2 ∗ 𝑏𝑏 𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅 + 𝐵𝐵 

 

(2) 

 
Where b is band on TOA reflectance,  L is the background 

setting of the canopy that addresses the non-linear differential 
NIR and the red radiant transfer through a canopy, and C1, 
C2 are the coefficients of aerosol resistance, which use the 
blue band to correct the influence of aerosols in the red band. 
The coefficients adopted in the EVI algorithm are, L = 1, C1 
= 6, C2 = 7.5 and G (gain factor) = 2.5 [36,37,35]. Table 4 
summarizes all bands and variables implemented from the 
optical data. 
 
2.3.2.  Stage 2. Training 
 

The training areas for the algorithm were extracted from 
the CAR 1:25000 vector information, at classification levels 
1, 2, and 3. We assigned 10% of the area per class for training 
and the remaining 90% area for validation, as was 
mentioned in Section 2.2.2. 

The supervised classification was implemented using the 
random forest learning algorithm, which uses an ensemble of 
decision trees as base classifiers [23]. The trees are 
constructed from successive binary partitions of the training 

 
Table 4. 
Bands and variables with optical image 

Bands Variables  
Band 2 (Blue) B2 
Band 3 (Green) B3 
Band 4 (Red) B4 
Band 5 (Near Infrared - NIR) B5 - NDVI B5 - EVI B5 
Band 6 (Near Infrared - NIR) B6 - NDVI B6 - EVI B6 
Band 7 (Near Infrared - NIR) B7 - NDVI B7 - EVI B7 
Band 8 (Near Infrared - NIR) B8 - NDVI B8 - EVI B8 
Band 8a (Near Infrared - NIR) B8a - NDVI B8a - EVI B8a 
TOTAL  18 

Source: The Authors. 

data set which form subsets of homogeneity [25]. This 
algorithm requires predictive variables and the number of 
classification trees be used as input parameters; the value of 
500 trees is established by default [27]. Cánovas [38] 
mentions that using a larger number of trees does not have a 
significant impact on classification accuracy.  

This classification was carried out in the statistical 
package R using the libraries randomForest, rgdal, rgeos, sp 
and raster. As stated in Section 2.2.2, the CAR reference data 
used for the training and validation zones was produced by 
IGAC in 2016. 

 
2.3.3.  Stage 3. Implementation of the algorithm 

 
The random forest algorithm can evaluate predictor 

variables with two parameters: the average decrease in 
accuracy (Mean Decrease Accuracy) and the average decrease 
in Gini (Mean Decrease Gini). The former measures the 
precision given by a variable in each random tree [25]. The 
latter measures the homogeneity of the variables in the random 
trees and is calculated each time an input variable is used to 
divide a node [27,39].  

The classification process was carried out by implementing 
the random forest algorithm in two phases. In the first phase, 
the classification was conducted with the three levels of detail 
in both the pixel and object-oriented approaches, taking the 
optical and radar data individually. In the second phase, the 
parameters of (Mean Decrease Accuracy) and the average 
decrease of Gini (Mean Decrease Gini) were evaluated, in 
order to identify the best optical and radar variables, and thus, 
the classification was repeated with the joint data and their 
accuracy was compared with the individual data. 

The pixel approach processing was undertaken in the 
statistical package R. The object-oriented approach was 
carried out in the ENVI 5.3 program, from which the 
segmentation vectors were obtained, and then classified in the 
statistical package R. 
 
2.3.4.  Stage 4. Thematic accuracy Assessment 
 

For assessing thematic accuracy by classification level and by 
class, a vector layer of point type covering the whole study area 
was created using a spacing equal to the spatial resolution of the 
Sentinel-2A radar image (10 m) for a total of 2,699,648 points. 
This layer carries one attribute that represents visually identified 
land cover categories for the   CAR-IGAC_2016 project as well 
as the random forest classifications at  levels 1, 2, and 3. Confusion 
matrices were created in order to calculate  Kappa indices.  This 
stage was implemented using the fmsb, psych, foreign libraries in 
the statistical package R. 
 
3.  Results  

 
3.1.  Implementation of the algorithm 

 
The algorithm evaluates the best variables using the 

aforementioned indices. A frequency graph was prepared 
(Fig. 4), in which the variables with the best index values for  
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Figure 4. Variables with the best index values  
Source: The Authors. 
 
 

 
Figure 5. Training accuracy for three classification levels, L1, L2, and L3. 
(O.I = Optical Images, R.I = Radar Images, O.I + R.I = Optical Images with 
Radar Images.) 
Source: The Authors. 
 
 
optical and radar data in pixel and object-oriented approaches 
are recorded. 5 variables of the optical data and 3 of the radar 
data were taken into account, these variables were those that 
presented the best indices according to the algorithm 
valuation and these data were integrated into the 
classifications of the pixel and object-oriented approaches. In 
this manner, the algorithm’s potential as a variable evaluator 
was measured and the accuracy obtained from the integrated 
optical and radar data was compared to the data when used 
individually in each of the implemented approaches. 

As shown in Fig. 4, optical and radar data were merged 
as variables; B2 (Band 2 "Blue"), B3 (Band 3 "Green"), B5 
(Band 5 "Near Infrared - NIR"), B8A (Band 8a "Near 
Infrared - NIR"), EVI_B5 (EVI calculated with Band 5) 
obtained from the optical data and the variables VH, ("VV - 
VH" / 2), (VV*VH) corresponding to the radar data. 

Fig. 5 shows the results of training accuracy for the two 
classification approaches at levels 1, 2, and 3. 

 

3.2.  Best Classification Variables  
 
The Sentinel-2A sensor channels that improved thematic 

accuracy were Band 2, Band 3, Band 5, Band 8A, and the 
variables that were calculated with this sensor. The study 
identified that the EVI calculated with Band 5 and EVI 
calculated with the Band 8A contributed more than the other 
variables and improved the classification. 

Of the Sentinel-1A sensor radar data, it was clear that the 
VH polarization channel was the most suitable for 
classification, likewise, the variables obtained from this 
channel that improved accuracy in the resulting classification 
were the variable calculated from the difference between the 
VV and VH polarization (VV-VH) and the variable 
calculated from the mean of the difference between the 
polarization VV and VH [(VV-VH) / 2]. 

 
3.3.  Thematic accuracy 

 
The results obtained for thematic accuracy at level 1 are 

shown in Table 5 and Fig. 6, using the 90% of the CAR dataset, 
reveal that, firstly, the best global thematic accuracy is obtained 
from integrated radar and optical images, implementing  
 
Table 5.  
Accuracy level 1 

Bands / Variables  Kappa Level 1 
Pixels  Objects 

Optical images 0.83 0.84 
Radar images 0.79 0.82 
Optical + Radar Images 0.83 0.85 

Source: The Authors. 
 
 

 
Figure 6. Thematic Accuracy for level 1. (O.I + R.I = Optical Images with 
radar images.) 
Source: The Authors. 
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the object-oriented approach resulting in a kappa index of K 
= 0.85. Secondly, we observed that the object-oriented 
approach applied to optical images presents with K = 0.84. 
Thirdly, it was found that the pixel-based approach from both 
optical images and integrated optical and radar images share 
the same accuracy at K = 0.83. 

The results obtained from the classification at level 2 are 
shown in Table 6 and Fig. 7. These results reveal that the best 
global thematic accuracies are obtained from, firstly, the 
implementation of the integrated radar and optical images 
using the object-oriented approach, resulting in K = 0.62. 
Secondly, the pixel approach which used the integrated 
optical and radar images together with the object-oriented 
approach using optical images resulted in K = 0.60. Thirdly, the 
pixel approach using optical images produced K = 0.59. The 
remaining classifications obtained from the object-oriented 
approach with radar and pixel images show lower kappa 
indexes, K = 0.57 and K = 0.49 respectively. 

The results obtained from the classification for Level 3 are 
shown in Table 7 and Fig. 8. The combinations that 
demonstrated the best global thematic accuracies were, in first 
place, the integration of radar and optical images using an 
object-oriented approach resulting in K = 0.60. In second, the 
use of a pixel approach with optical images produced K = 0.58. 
In third place, the pixel approach applied to integrated optical 
and radar images gave K = 0.57. Fourth, applying the object-
oriented approach to radar images and the pixel approach to 
optical images both resulted in K = 0.56. Finally, the pixel-wise 
approach with radar images produced K = 0.47. 
 

 
Figure 7. Thematic Accuracy for level 2. (O.I + R.I = Integration optical and 
radar images.) 
Source: The Authors. 

Table 6. 
Accuracy level 2 

Bands / Variables Kappa Level 2 
Pixels Objects 

Optical images 0.59 0.6 
Radar images 0.49 0.57 
Optical + Radar Images 0.6 0.62 

Source: The Authors. 
 
 
Table 7. 
Accuracy level 3 

Bands / Variables Kappa Level 3 
Pixels Objects 

Optical images 0.56 0.58 
Radar images 0.47 0.53 
Optical + Radar Images 0.57 0.6 

Source: The Authors. 
 
 

 
Figure 8. Thematic Accuracy for level 3. (O.I + R.I = Integrated Optical and 
Radar Images.) 
Source: The Authors. 
 
 
4.  Discussion  
 

From the thematic accuracy values shown in Fig. 9, it is 
evident that the most informative variables are obtained from 
the integration of optical and radar data. Overall thematic 
accuracy is higher when both the pixel-based and the object-
oriented approaches are applied to integrated images rather 
than the optical or radar datasets by themselves. The model’s 
accuracy when integrated data is used is approximately 10% 
higher than with the single datasets. 
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The most relevant variables were: B3 (Band 3 "Green"), 
B5 (Band 5 "Near Infrared - NIR"), EVI_B5 (EVI calculated 
with Band 5) obtained from the optical data and the variables 
VH, ("VV - VH" / 2), (VV*VH) corresponding to the radar 
data. This set of variables confirm results previously obtained 
by Balzter [13] and Abdikan [14]. They claim that the 
combination of radar data with other types of variables or 
data can lead to greater accuracy in the classifications. The 
results of this study ratify the potential of RandomForest as a 
classification algorithm and its ability to evaluate the 
importance of explanatory variables [40,23]. 

Regarding the best approach for thematic accuracy of 
land cover classification, here the object-oriented technique 
was superior to the traditional pixel-based technique by 
approx. 5%, as shown in Fig. 9. This shows that the 
classifications obtained by applying the object-oriented 
technique produces higher thematic accuracy than traditional 
per-pixel methods [41,42,43,44]. 

In this study, the volume of processed data was huge, as 
it combined the optical data and the radar data (20 
Gigabytes). Thus, it was a suitable scenario to test the high-
level processing capacity of the random forest machine 
learning algorithm. Our results reaffirm the suitability of this 
algorithm for image classification, as was suggested by 
Balzter [13] and Abdikan [14]. 

The results of the classification for level 1 confirm the 
findings of Vargas [45,46], indicating that, for exploratory 
detail level where land cover is mapped on a scale of 1: 
100,000, Kappa indices greater than K = 0.81 are outstanding 
classifications (Fig. 10). 

At level 2, i.e., mapping at reconnaissance level at a scale of 
1:50,000 to 1:25,000, in general, the best results were obtained by 
integrating radar and optical images using the object-oriented 
approach. Thematic accuracy corresponding to Kappa = 0.62 
represents an acceptable quality (Fig. 10). 

At level 3, for mapping studies at a semi-detailed level, 
corresponding to scales of 1:25,000 to 1:10,000, the best results 
were obtained with the combination of optical and radar images 
using an object-oriented approach. Thematic accuracy with 
Kappa = 0.62 represents moderate quality (Fig. 10). 
 

 
Figure 9. Thematic accuracy vs. Training (O.I = Optical Images, R.I = Radar 
Images, O.I + R.I = Optical Images with Radar Images.)  
Source: The Authors. 
 
 

 
Figure 10. Thematic accuracy for level. (O.I = Optical Images, R.I=Radar Images, 
O.I + R.I = Optical Images with Radar Images.)  
Source: The Authors. 
 
 
5.  Conclusions 

 
This study ascertained the performance of digital 

classification techniques for land cover classification. 
Sentinel-1 A optical data and Sentinel-2 radar data were used, 
both individually and in combination, for discrimination of 
land cover.  Two different image analysis techniques, the 
pixel-based and object-oriented approaches, as well as the 
random forest algorithm, were applied to obtain land cover 
classes at three different spatial scales as specified by the 
Corine Land Cover methodology. 

We obtained the best accuracy at level 1, combining 
optical and radar data with the object-oriented approach, and 
obtaining Kappa indexes greater than 0.80. This showed that 
the combination of optical and radar data with object-
oriented classification is ideal for the identification of land 
cover at level 1. 

Thematic accuracies decrease by an average of 19% as 
the level of detail and classes increases, with the 
“exploratory” level 1 presenting the best results for thematic 
mapping using the techniques, data and methods presented in 
this work. The thematic accuracies obtained using the object-
oriented approach are superior to the pixel-based approach 
by 5%.   In addition, it was shown that the integration of radar 
and optical images improves the quality of land cover 
mapping. To conclude, the results of this study show the 
potential and the limitations of using available optical and 
radar satellite data, as well as different digital image analysis 
techniques, for land cover classification at several spatial 
scales.  
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