
   
 

 

© The author; licensee Universidad Nacional de Colombia.  
Revista DYNA, 87(215), pp. 47-56, October - December, 2020, ISSN 0012-7353 

DOI:  http://doi.org/10.15446/dyna.v87n215.85933 

A solution to the university course timetabling problem using a 
hybrid method based on genetic algorithms•  

 
Javier Arias-Osorio & Andrés Mora-Esquivel 

 
Escuela de Estudios Industriales y Empresariales, Universidad Industrial de Santander, Bucaramanga, Colombia. jearias@uis.edu.co, 

andresmorez@outlook.com  
 

Received: March 29th, 2020. Received in revised version: July 17th, 2020. Accepted: August 3rd, 2020. 
 

Abstract 
In this study, we address the current issues that usually manifest during the programming of university courses, classified as University 
Course Timetabling Problem, which is considered as a NP-hard problem due to the high computational demand that it requires.  
To solve the problem, a Mixed Integer Linear Programming model is proposed, which serves as a reference when dimensioning the problem 
and the restrictions that must be considered. Next, a hybrid metaheuristic method is designed based on the HGATS algorithm, Hybrid 
Genetic Algorithm Tabu Search Approach, developed by [16], which combines the diversification capacity of the Genetic Algorithm with 
the strategy of intensification of the Tabu Search Algorithm. Finally, the validation of the proposed algorithm is performed using the data 
from the programming of the classes from the academic periods 2018-1 and 2018-2 for the academic program of Industrial Engineering at 
the Industrial University of Santander, obtaining interesting solutions in a reasonable computational time, being that the process of 
organizing the schedule by the coordinator can last from hours to days, depending on your ability. 
 
Keywords: programming of university courses; metaheuristics; mixed Integer linear programming; HGATS. 

 
 

Una solución al problema de horarios de cursos universitarios 
usando un método híbrido basado en algoritmos genéticos 

 
Resumen 
En el presente estudio, abordamos las consideraciones típicas que se tienen en cuenta en la programación de cursos universitarios, 
clasificado esto dentro de la optimización matemática como el problema de programación de horarios de cursos universitarios, el cual es 
considerado un problema que converge en un tiempo no polinomial debido a la alta demanda computacional que requiere para alcanzar su 
solución óptima. 
Para resolver el problema se propone un modelo de programación lineal entera mixta, el cual sirve como referencia en cuanto a 
dimensionamiento del problema y las restricciones a ser consideradas. Y a paso seguido, un método metaheurístico híbrido es diseñado, el 
cual es basado en el algoritmo HGATS, Algoritmo Híbrido Genético y Búsqueda Tabú, desarrollado por [16], donde combinan la capacidad 
de diversificación del Algoritmo Genético con la estrategia de intensificación de la Búsqueda Tabú. Finalmente, la validación del algoritmo 
propuesto se realiza usando los datos de la programación de horarios realizada para los periodos académicos 2018-1 y 2018-2 del programa 
de ingeniería industrial en la Universidad Industrial de Santander, sobre lo cual se obtienen interesantes resultados en un tiempo 
computacional razonable, siendo que el proceso de organizar el horario por parte del coordinador puede extenderse de horas a días, 
dependiendo de su habilidad. 
 
Palabras clave: programación de cursos universitarios; metaheurísticas; programación lineal entera mixta; HGATS. 

 
 

1.  Introduction 
 
The university course timetabling problem, better known 

by its acronym in English as UCTP, is an activity that allows 

 
How to cite: Arias-Osorio, J. and Mora-Esquivel, A, A solution to the university course timetabling problem using a hybrid method based on genetic algorithms. DYNA, 87(215), 
pp. 47-56, October - December, 2020. 

institutions of higher education to satisfactorily fulfill their 
mission. This is a demanding task, with a high degree of 
difficulty that, if not done properly, could compromise the 
entire process of student training. A deficient schedule might 



Arias-Osorio & Mora-Esquivel / Revista DYNA, 87(215), pp. 47-56, October - December, 2020. 

48 

generate a serious set of issues that could go from discomfort 
in members of the university community (teachers, 
administrators and students) until the waste of resources 
(finances, time, physical and personal exhaustion). Due to 
this, professionals and researchers have studied the dynamics 
of this phenomenon during the last 50 years.  

The UCTP is a problem of combinatorial optimization of 
the NP-hard type [8]. In this problem a set of courses must be 
assigned to a set of classrooms during a period of time, 
considering a series of restrictions predefined by the 
institution. The requirements and needs of each university 
cause a large number of variants of the UCTP, even in 
universities in the same country. As a consequence, different 
methods have been used to address the schedule 
programming issues of universities around the world. As 
described above, this research seeks to address the problem 
of University Course Programming in order to facilitate this 
administrative work. 

The document is organized as follows. Section 2 presents 
a literature review about the UCTP. In section 3 the definition 
of the problem and its corresponding mathematical 
composition in MILP is carried out. Section 4 describes the 
operation of the Hybrid Genetic Algorithm Tabu Search, 
HGATS. Section 5 contains the experimental design carried 
out to define the parameters in each of the instances and the 
corresponding results. Finally, section 6 and 7 present the 
conclusions and recommendations for future research, 
respectively. 

 
2.  Literature review 

 
The university courses programming is part of a wide 

group of programming problems, commonly known as 
"Timetabling". These problems can be defined in a general 
way as the allocation of a set of events to a space and time 
fulfilling a series of restrictions that involve a limited set of 
resources [11].  

The scheduling problems have repercussions in several 
aspects of the study training process such as education, 
transportation, sports, health, etc. Particularly, in the case of 
education, [12] divided the problem into three types: 
scheduling of schedules in schools, programming of exams 
and programming of university courses; We shall concentrate 
in the last type, which is the one that occupies the present 
work. 

The study of this phenomenon began with Gotlieb in 
1963. Since then, professionals and researchers have been 
proposing different methods and procedures to solve the 
UCTP problem. [15] solved the first problem of schedules 
using the graph coloring problem; in their research, they 
reduced the problem to a series of vertices (courses) and arcs 
(conflicts) where the periods were represented by colors; 
however, this approach failed to address large instances of 
the problem. 

In 2002, the first edition of the International Timetable 
Competition (ITC-2002) organized by Metaheuristic 
Networks was held. In this event a typical problem with three 
hard restrictions and three soft constraints was proposed 

together with a set of 20 instances with the objective that 
researchers and professionals apply different methods to 
address the problem. In later years this problem and its 
instances were used as a reference for more researchers to test 
the effectiveness of their own solution techniques.  

In 2005, [6] published what would be the first integer 
formulation that explicitly considered a wide range of 
requirements, which made it a computationally challenging 
problem. The authors worked on the programming university 
courses problem at the Faculty of Engineering of Sannio 
University in Italy as a linear programming problem where 
they implemented two families of cutting planes as relaxation 
methods, Clique and Lifted Odd-Hole inequalities, and 
developed a Branch-and-Cut algorithm capable of finding 
optimal solutions from a set of real-world instances. 

Subsequently, [13] defined a mixed integer multi-
objective programming model to address the UCTP problem 
of the School of Economics and Management of the 
University of Hannover. In this model, the requirements that 
would generally be considered as hard constraints were 
incorporated in the objective function and penalized 
according to the importance of the restriction in order to 
guarantee an "optimal" solution with the least number of 
conflicts.  

In 2010, [4] proposed a Harmonic Search Algorithm 
(MHSA). This metaheuristic was tested with 11 instances of 
'Socha benchmark' achieving the best solutions registered to 
date in two of the most complex instances. In that year, them 
modified their algorithm introducing five new movements in 
tone adjustment (HSA-MPAR), however, this did not exceed 
the performance of the metaheuristics used initially. Later, 
[5] created a new harmonic hybrid search algorithm (HHSA), 
this new algorithm was based on the MHSA, proposed by the 
authors in their previous work, introducing a Hill Climber 
optimizer that is applied every time a new harmony is 
generated. At the time of comparison, it was found that the 
HHSA exceeded the previous proposals made by the authors. 

In 2014, [10] proposed a two-phase algorithm. In the first 
phase a feasible initial solution is generated by assigning 
randomly ordered events to an empty schedule while the hard 
constraints are met. In the second phase, a Partial Random 
Neighborhood Tabu Search algorithm known as RPNS 
(Random Partial Neighborhood Search) is responsible for 
improving the quality of the solution, in this technique two 
structures of variable-sized neighborhoods are used to 
exchange the events of each candidate. In the 
experimentation, the RPSN proved to be highly effective 
when evaluating 5 medium instances and 1 large instance of 
Socha (2002). 

In 2015, [2] designed an Adaptive Acceptance Criterion 
(AAC) algorithm. The author proposed a mechanism similar 
to that used in ARDA to escape local optima. The algorithm 
was evaluated in 11 instances of Socha (2002) and when 
compared with other techniques in the literature it only 
matched them in small instances. 

In 2016, [14] proposed a linear programming model to 
address the UCTP of the Faculty of Economics and Business 
of KU Leuven in Belgium. In this problem it was considered 



Arias-Osorio & Mora-Esquivel / Revista DYNA, 87(215), pp. 47-56, October - December, 2020. 

49 

the displacement between the faces as a goal to be reduced. 
Given the size of the problem, the authors proposed a two-
stage model. In the first phase, a timetable is sought that 
meets the hard constraints of the problem and minimum 
responses in the preferences of the teachers, while the second 
phase uses the schedule of the first stage as the input with the 
objective of minimizing the flow of students through the 
reassignment of events to classrooms. 

In 2017, [7] proposed a multi-objective programming 
model to address the problem CB-CTT of the International 
Competition of Schedules of 2007. Given the complexity of 
the problem and the high execution time, the authors applied 
five cuts as methods of relaxation. When the model was 
evaluated, it was possible to match the best solution in two 
reference instances of Track 3 of ITC-2007 in less than 15 
minutes. 

 
3.  Description and mathematical formulation of the 
     problem 

 
According to [3], in general, the problems of 

programming university courses involve assigning a set of 
courses (events), teachers and students to a fixed number of 
time slots and classrooms attached to various restrictions. 
The restrictions of this problem can be classified as hard and 
soft. The goal of establishing schedules is to fulfill all the 
hard constraints and try to satisfy the soft constraints as much 
as possible (to produce a high quality schedule). A schedule 
can be represented as a two-dimensional matrix where the 
rows correspond to the classrooms and the columns represent 
the time slots. Each pair (classroom-time slot) is a space in 
which a course and a teacher can be assigned. Fig. 1 presents 
the outline of a generic timetable. 

 
3.1.  Subject programming  

 
For this research project, we consider the problem of 

UCTP known as CB-CTT (Curriculum-based Course 
Timetabling). This branch is characterized by planning the 
schedules based on the curriculum of the academic program 
and considering a projection of the number of courses that 
would be required in the next semester. 

The most relevant aspects for this problem are: subjects, 
teachers, classrooms and slots available during a week and 
then replicate this week throughout the current semester. 
Here are some important definitions: 

Academic levels: The subjects of the Industrial 
Engineering program are classified into academic levels; 
these levels range from level 1 to 10. 

Curriculum: A curriculum is a set of courses of the same 
academic level that are expected to be attended by the same 
group of students, this definition is used in order to avoid the 
time interference between the classes, when the students 
enroll to them. 

Courses: The subjects to be programmed are those 
included in the Curriculum for the professional career of 
Industrial Engineering, this includes mandatory courses, 
elective courses and service courses. 

 
Figure 1.  Matrix representation of a timetable 
Source: The Authors 

 
 

• Mandatory courses: Are those that the University 
considers, within the respective curriculum, for 
mandatory registration and approval. 

• Elective courses: These are the ones that the University 
has established in the respective curriculum, in order to 
contribute to professional training. 

• Service courses: These are the subjects of the respective 
curriculum that are required by other academic programs 
and would share resources with the mandatory and 
elective courses. 
Additionally, according to the modality of the teaching-

learning process, the subjects are classified as: 
• Theoretical: Are those in which the teaching-learning 

process is carried out through the teacher's presentations, 
with the participation of the students. 

• Practices: Are those in which the teaching-learning 
process is carried out by the student applying the 
theoretical knowledge, under the guidance of the teacher. 

• Theoretical-practical: Are those in which the teaching-
learning process is carried out combining the two 
previous modalities of class. 
Each class has a number of courses to be programmed. 

Furthermore, each of them has an academic intensity 
measured in weekly hours, which translates into the number 
of events to be scheduled. 

Teachers. They are full-time, part-time or chair staff hired 
by the institution to teach one or more courses. The 
programming of subjects for teachers depends on their 
classification, whether it is a plant type, a chair or a 
Postgraduate student. 
• Full-time professor: Performs the function of direction of 

classes under the modality of full-time professor. 
Regarding the programming of subjects, the Full time 
teacher is allowed to define the subjects and number of 
courses per class that he or she can teach.  

• Part-time professor: Performs the function of direction of 
classes temporarily. His or her employment relationship 
is governed by a labor contract for the time that is 
required. For the programming of subjects, the teacher 
proposes the subjects that he or she can teach. 

• Postgraduate student: Carries out the work of 
consideration under the modality of direct teaching in 
undergraduate, prior agreement with the School Council, 
to teach a course of a class with a maximum weekly 
intensity of 6 hours. 



Arias-Osorio & Mora-Esquivel / Revista DYNA, 87(215), pp. 47-56, October - December, 2020. 

50 

Moreover, it should be taken into consideration that there 
is a maximum number of courses that can be assigned to a 
teacher, which is defined by the Program Management. 
Finally, teachers in general have a weekly hourly availability 
in which they can teach their classes.  

Physical space. It is considered that the program has 
associated a classroom building that is composed of classrooms, 
classroom workshops, laboratories, computer rooms, master's 
room, teachers' lounge and administrative offices.  

Periods and time slots. The periods correspond to the time 
periods in which a day is divided and generally, they have a 
duration of one hour. The slots correspond to the totality of 
the periods available during a week. 

 
3.2.  Restrictions of the problem 

 
The requirements and needs establish the type of schedules 

that are sought to produce. These needs translate into the 
restrictions of the problem, which are summarized in Table 1. 

 
Table 1.  
Restrictions for the UCTP 

Restriction Description 

R1 Schedules must be assigned in such a way that as few 
classrooms as possible are used. 

R2 
The subjects to be programmed and their corresponding 
courses must be assigned according to the weekly hourly 
intensity established for them. 

R3 

The events (weekly hours) of a course must be 
programmed in such a way that there is no conflict 
between them, that is, they must be programmed in 
different time slots.  

R4 The courses assigned to the same teacher cannot cross 
each other, since any of them could be taught. 

R5 
A classroom can only accommodate one course during a 
time slot, that is, you cannot schedule two courses at the 
same time in the same room. 

R6 
 

The courses belonging to the same curriculum must be 
programmed in different time slots in order that there is 
no conflict between them. 

R7 
The subjects that require the Quality Engineering 
Laboratory or the Computer Room should not present 
interferences between them. 

R8 Teachers can only be assigned to subjects / courses that 
have been defined they are capable of teaching. 

R9 Each course must have a single teacher assigned to teach 
each of the course events.  

R10 
Full-time teachers and Postgraduate students must be 
assigned the number of courses per subject that have been 
agreed upon. 

R11 No teacher can teach more than 4 courses. 

R12 No teacher can teach more than 3 courses of the same 
subject. 

R13 The weekly availability defined by each teacher must be 
respected. 

R14 Each course must be assigned in a single classroom. 

R15 The classes must be programmed in daily sessions of 2 or 
3 consecutive hours.  

R16 The sessions of a course assigned on two different days 
must begin at the same hour. 

R17 There must be at least one rest day between sessions of 
the same course. 

R18 
The courses belonging to the class of Industrial Processes 
must be assigned in parallel, that is, in the same time slots, 
but in different classrooms.  

Source: The Authors. 

3.3.  Mathematical formulation for UCTP 
 
Based on what is described in section 3.1 and 3.2, it is 

possible to propose the subject programming of the Industrial 
Engineering program in EEIE as a problem of mixed integer 
linear programming - MILP. Next, the necessary elements to 
solve the problem would be defined. 

Input 
𝑖𝑖 = {1,2,3, … , 𝑐𝑐} Courses (c) that must be programmed. 
𝑗𝑗 = {1,2,3, … , 𝑡𝑡} Available teachers (t). 
𝑘𝑘 = {1,2,3 … , 𝑠𝑠} Available classrooms (s). 
𝑙𝑙 = {1,2,3 … ,𝑑𝑑} Days (d) of the week. 
𝑚𝑚 = {1,2,3 … , 𝑝𝑝} Available Periods (p).  
𝑄𝑄ℎ = {1,2,3, … , ℎ} Currículum. 
𝐺𝐺𝑒𝑒 = {1,2,3, … , 𝑒𝑒} Subjects. 
𝑖𝑖 ∩ 𝑄𝑄ℎ : Subset created from the sets Courses and 

Curricula to identify which courses belong to each 
curriculum  

𝑖𝑖 ∩ 𝐺𝐺𝑒𝑒 : Subset created from the sets Courses and Subjects 
to identify which courses belong to each subject 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 : Subset that contains the courses of the subjects that 
must be programmed in the Quality Engineering laboratory. 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 : Subset that contains the courses of the subjects 
that must be programmed in the computer room. 

𝑁𝑁𝑖𝑖: Number of weekly hours that the course 𝑖𝑖 must be 
programmed. 

𝑖𝑖𝑗𝑗: Number of courses that Full-time teachers must teach.  
𝑖𝑖𝑖𝑖𝑗𝑗: Availability matrix, which has a value of 1 if the 

course 𝑖𝑖 can be taught by the teacher 𝑗𝑗. 
𝑉𝑉𝑗𝑗𝑗𝑗𝑗𝑗: Availability matrix, which has a value of 1 if the 

teacher j is available to teach any course on the day l in the 
period m. Availability matrix, which has a value of 1 if 
teacher 𝑗𝑗 is available to impart day 𝑙𝑙 in period 𝑚𝑚. 

𝑖𝑖𝑘𝑘: Coefficient Vector, which has an integer value that 
varies from 1 to "s" and penalizes if classroom 𝑘𝑘 is assigned. 

Once the elements that stay in the formulation have been 
defined, the variables, the objective function and the 
restrictions that guarantee the feasibility of the schedule are 
defined. 

Variables 
𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗
= �  1 𝑖𝑖𝑖𝑖 𝑡𝑡𝑒𝑒𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑒𝑒 𝑗𝑗 𝑡𝑡𝑒𝑒𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑙𝑙𝑡𝑡𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚 𝑘𝑘 𝑐𝑐𝑖𝑖 𝑑𝑑𝑡𝑡𝑑𝑑 𝑙𝑙 𝑖𝑖𝑖𝑖 𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑐𝑐  

0  𝑖𝑖𝑖𝑖 𝑖𝑖𝑐𝑐𝑡𝑡  

𝑊𝑊𝑖𝑖𝑗𝑗 = �  1 𝑖𝑖𝑖𝑖 𝑡𝑡𝑒𝑒𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑒𝑒 𝑗𝑗 𝑡𝑡𝑒𝑒𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒 𝑖𝑖
0 𝑖𝑖𝑖𝑖 𝑖𝑖𝑐𝑐𝑡𝑡  

𝐻𝐻𝑖𝑖𝑘𝑘 = �  1 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒 𝑖𝑖 𝑖𝑖𝑠𝑠 𝑡𝑡𝑡𝑡𝑐𝑐𝑢𝑢ℎ𝑡𝑡 𝑖𝑖𝑖𝑖 𝑐𝑐𝑙𝑙𝑡𝑡𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚 𝑘𝑘
0 𝑖𝑖𝑖𝑖 𝑖𝑖𝑐𝑐𝑡𝑡     

𝑌𝑌𝑖𝑖𝑗𝑗 = �  1 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒 𝑖𝑖 𝑖𝑖𝑠𝑠 𝑡𝑡𝑡𝑡𝑐𝑐𝑢𝑢𝑡𝑡ℎ 𝑐𝑐𝑖𝑖 𝑑𝑑𝑡𝑡𝑑𝑑 𝑙𝑙
0 𝑖𝑖𝑖𝑖 𝑖𝑖𝑐𝑐𝑡𝑡  

𝐸𝐸𝑖𝑖𝑗𝑗 ∈ 𝑁𝑁 𝐹𝐹𝑖𝑖𝑒𝑒𝑠𝑠𝑡𝑡 𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑐𝑐𝑑𝑑 𝑡𝑡𝑠𝑠𝑠𝑠𝑖𝑖𝑢𝑢𝑖𝑖𝑒𝑒𝑑𝑑 𝑡𝑡𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒 𝑖𝑖 𝑐𝑐𝑖𝑖 𝑑𝑑𝑡𝑡𝑑𝑑 𝑙𝑙 
𝐹𝐹𝑖𝑖𝑗𝑗 ∈ 𝑁𝑁 𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡 𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖𝑐𝑐𝑑𝑑 𝑡𝑡𝑠𝑠𝑠𝑠𝑖𝑖𝑢𝑢𝑖𝑖𝑒𝑒𝑑𝑑 𝑡𝑡𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑠𝑠𝑒𝑒 𝑖𝑖 𝑐𝑐𝑖𝑖 𝑑𝑑𝑡𝑡𝑑𝑑 𝑙𝑙 

Problem model in MILP 
The approach is made considering a mono-objective 

function attached to 25 equations grouped in 18 restrictions. 
R1. The objective of the model is to program the 

schedules in such a way that the minimal possible amount 
classrooms is used 



Arias-Osorio & Mora-Esquivel / Revista DYNA, 87(215), pp. 47-56, October - December, 2020. 

51 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑒𝑒 𝑍𝑍 = ���� � 𝑖𝑖𝑘𝑘 ∗
𝑃𝑃

𝑗𝑗=1

𝐷𝐷

𝑗𝑗=1

𝑆𝑆

𝑘𝑘=1

𝑇𝑇

𝑗𝑗=1

𝐶𝐶

𝑖𝑖=1

𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗  (1) 

 
Subject to: 
R2. The subjects to be programmed and their 

corresponding courses must be assigned according to the 
weekly hourly intensity established for them. 

 

��� � 𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗

𝑃𝑃

𝑗𝑗=1

𝐷𝐷

𝑗𝑗=1

𝑆𝑆

𝑘𝑘=1

𝑇𝑇

𝑗𝑗=1

= 𝑁𝑁𝑖𝑖                        ∀𝑖𝑖  (2) 

 
R3. The events (weekly hours) of a course must be 

programmed in such a way that there is no conflict between 
them, that is, they must be programmed in different time 
slots. 

 

��𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑆𝑆

𝑘𝑘=1

≤ 1                         ∀𝑖𝑖 ∀𝑙𝑙 ∀𝑚𝑚 (3) 

 
R4. The courses assigned to the same teacher cannot cross 

each other, since any of them could be taught. 
 

��𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗

𝑆𝑆

𝑘𝑘=1

𝐶𝐶

𝑖𝑖=1

≤ 1                         ∀𝑗𝑗 ∀𝑙𝑙 ∀𝑚𝑚 (4) 

 
R5. A classroom can only accommodate one course 

during a time slot, that is, two courses cannot be scheduled at 
the same time in the same room. 

 

��𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝐶𝐶

𝑖𝑖=1

≤ 1                          ∀𝑘𝑘 ∀𝑙𝑙 ∀𝑚𝑚            (5) 

 
R6. The courses belonging to the same curriculum must 

be programmed in different time slots in order that there is no 
conflict between them. 

 

�� � 𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗
𝑖𝑖∩𝑄𝑄ℎ

𝑇𝑇

𝑗𝑗=1

𝑆𝑆

𝑘𝑘=1

                         ∀𝑄𝑄ℎ ∀𝑙𝑙 ∀𝑚𝑚    (6) 

 
R7. The subjects that require the Quality Engineering 

Laboratory or the Computer Room should not present 
interferences between them. 

 

�� � 𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇

𝑗𝑗=1

𝑆𝑆

𝑘𝑘=1

≤ 1                         ∀𝑙𝑙 ∀𝑚𝑚            

�� � 𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗
𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖

𝑇𝑇

𝑗𝑗=1

𝑆𝑆

𝑘𝑘=1

≤ 1                               ∀𝑙𝑙 ∀𝑚𝑚        

(7) 
 
 

(8) 

 
R8. Teachers can only be assigned to subjects / courses 

that have been defined they are capable of teaching. 
 

𝑊𝑊𝑖𝑖𝑗𝑗 ≤ 𝑖𝑖𝑖𝑖𝑗𝑗                        ∀𝑖𝑖 ∀𝑗𝑗                  (9) 
 
R9. Each course must have a single teacher assigned to 

teach each of the course events. 
 

���𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗

𝑃𝑃

𝑗𝑗=1

𝐷𝐷

𝑗𝑗=1

𝑆𝑆

𝑘𝑘=1

− 𝑁𝑁𝑖𝑖 ∗ 𝑊𝑊𝑖𝑖𝑗𝑗 = 0                  ∀𝑖𝑖 ∀𝑗𝑗         

�𝑊𝑊𝑖𝑖𝑗𝑗

𝑇𝑇

𝑗𝑗=1

= 1                                   ∀𝑖𝑖           

(10) 
 
 

(11) 

 
R10. Full-time professor and Postgraduate students 

(PTC) must be assigned the number of courses per subject 
that have been agreed upon. 

 

�𝑊𝑊𝑖𝑖𝑗𝑗

𝐶𝐶

𝑖𝑖=1

= 𝑖𝑖𝑗𝑗                            𝑗𝑗 = {1, … ,𝑃𝑃𝑃𝑃𝑖𝑖}        (12) 

 
R11. No teacher can teach more than 4 courses. 

 

�𝑊𝑊𝑖𝑖𝑗𝑗

𝐶𝐶

𝑖𝑖=1

≤ 4                            𝑗𝑗 = {1,2,3, … , 𝑡𝑡}        (13) 

 
R12. No teacher can teach more than 3 courses of the 

same subject. 
 
�𝑊𝑊𝑖𝑖𝑗𝑗 ≤ 3
𝑖𝑖∩𝐺𝐺𝑒𝑒

                   𝑗𝑗 = {12,13,14, … . , 𝑡𝑡}      ∀𝐺𝐺𝑒𝑒      (14) 

 
R13. The weekly availability defined by each teacher 

must be respected. 
 

��𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗

𝑆𝑆

𝑘𝑘=1

𝐶𝐶

𝑖𝑖=1

≤ 𝑉𝑉𝑗𝑗𝑗𝑗𝑗𝑗                             ∀𝑗𝑗 ∀𝑙𝑙 ∀𝑚𝑚       (15) 

 
R14. Each course must be assigned in a single classroom. 
 

� � �𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑃𝑃

𝑗𝑗=1

𝐷𝐷

𝑗𝑗=1

− 𝑁𝑁𝑖𝑖 ∗ 𝐻𝐻𝑖𝑖𝑘𝑘 = 0                 ∀𝑖𝑖 ∀𝑘𝑘        (16) 

�𝐻𝐻𝑖𝑖𝑘𝑘

𝑆𝑆

𝑘𝑘=1

= 1                                     ∀𝑖𝑖 (17) 

 
R15. The classes must be programmed in daily sessions 

of 2 or 3 consecutive hours. 
 

�� � 𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗

𝑃𝑃

𝑗𝑗=1

𝑆𝑆

𝑘𝑘=1

𝑇𝑇

𝑗𝑗=1

− 2𝑌𝑌𝑖𝑖𝑗𝑗 ≥ 0                     ∀𝑖𝑖 ∀𝑙𝑙     

�� � 𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗

𝑃𝑃

𝑗𝑗=1

𝑆𝑆

𝑘𝑘=1

𝑇𝑇

𝑗𝑗=1

− 3𝑌𝑌𝑖𝑖𝑗𝑗 ≤ 0                     ∀𝑖𝑖 ∀𝑙𝑙          

 

(18) 
 
 

(19) 
 

𝐸𝐸𝑖𝑖𝑗𝑗 − (𝑃𝑃 + 1) + (𝑃𝑃 + 1 −𝑚𝑚) ∗ 𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗 ≤ 0                
                                                                        ∀𝑖𝑖 ∀𝑗𝑗 ∀𝑘𝑘  ∀𝑙𝑙 ∀𝑚𝑚 

(20) 
 
 



Arias-Osorio & Mora-Esquivel / Revista DYNA, 87(215), pp. 47-56, October - December, 2020. 

52 

 
𝐹𝐹𝑖𝑖𝑗𝑗 − 𝑚𝑚 ∗ 𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗 ≥ 0                      ∀𝑖𝑖 ∀𝑗𝑗 ∀𝑘𝑘  ∀𝑙𝑙 ∀𝑚𝑚 
 

(21) 
 

𝐹𝐹𝑖𝑖𝑗𝑗 − 𝐸𝐸𝑖𝑖𝑗𝑗 + 𝑌𝑌𝑖𝑖𝑗𝑗 − � 𝑋𝑋𝑖𝑖𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗

𝑃𝑃

𝑗𝑗=1

≤ 0     ∀𝑖𝑖 ∀𝑗𝑗 ∀𝑘𝑘  ∀𝑙𝑙        (22) 
 

 
R16. The sessions of a course assigned on two different 

days must begin at the same hour. 
 

𝐸𝐸𝑖𝑖𝑗𝑗 − 𝐸𝐸𝑖𝑖,𝑗𝑗+1 = 0                            ∀𝑖𝑖  𝑙𝑙 ∈ {1,2,3,4}         (23) 
 
R17. There must be at least one rest day between sessions 

of the same course. 
 
𝑌𝑌𝑖𝑖𝑗𝑗 + 𝑌𝑌𝑖𝑖,𝑗𝑗+1 ≤ 1                             ∀𝑖𝑖  𝑙𝑙 ∈ {1,2,3,4}          (24) 
 
R18. The courses belonging to the class of Industrial 

Processes 𝑖𝑖𝑃𝑃(𝑖𝑖) must be assigned in parallel, that is, in the 
same time slots, but in different classrooms. 

 

��𝑋𝑋𝐶𝐶𝑝𝑝1𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑆𝑆

𝑘𝑘=1

−��𝑋𝑋𝐶𝐶𝑝𝑝2𝑗𝑗𝑘𝑘𝑗𝑗𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑆𝑆

𝑘𝑘=1

= 0              ∀𝑙𝑙 ∀𝑚𝑚   (25) 

 
4.  HGATS algorithm applied to the described UCTP  
     problem 
 
4.1.  Representation of the solution 

 
In this case, the solution is represented by a list of time 

slot-classroom pairs composed of all possible combinations 
of classrooms and time slots, where the index of the first 𝑖𝑖 
pairs is the identifier of each event and the pairs numbered 
after the event 𝑖𝑖, represent the pairs that have not been 
assigned. 

Regarding the events, the Fig. 2 shows each event 
contains information about the class, the course to which it 
belongs, and the professor who attended the event. 

Being, G the set of subjects, 𝑖𝑖𝐺𝐺 the number of courses per 
subject and 𝑁𝑁𝐺𝐺 the weekly hourly intensity of each subject. 
The total number of events 𝑖𝑖 to be programmed is defined 
by: 

 

𝑃𝑃𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑡𝑡𝑠𝑠 = �𝑖𝑖𝐺𝐺(𝑖𝑖) ∗ 𝑁𝑁𝐺𝐺(𝑖𝑖)
𝐺𝐺

𝑖𝑖=1

         (26) 

 
In the solution presented in Table 2, event 1 has been 

assigned on strip 1 of room 1, event 2 on strip 1 of room 2; 
while, room 6 on strip 4 is unoccupied. In this way, 
compliance with restrictions R2 and R5 is guaranteed. 

 

 
Figure 2. Representation of the gene  
Source: The Authors. 
 

Table 2.  
Representation of the solution 

 𝑃𝑃𝑖𝑖𝑚𝑚𝑒𝑒 𝑠𝑠𝑙𝑙𝑐𝑐𝑡𝑡 𝑖𝑖𝑙𝑙𝑡𝑡𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚 
𝑒𝑒1 1 1 
𝑒𝑒2 1 2 
𝑒𝑒3 2 3 

   𝑒𝑒(𝑖𝑖 − 2) 1 4 
𝑒𝑒(𝑖𝑖 − 1) 5 6 

𝑒𝑒(𝑖𝑖) 2 4 
𝑒𝑒(𝑖𝑖 + 1) 4 6 
𝑒𝑒(𝑖𝑖 + 2) 6 4 

𝑒𝑒(𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒 𝑠𝑠𝑙𝑙𝑐𝑐𝑡𝑡𝑠𝑠 ∗ 𝑐𝑐𝑙𝑙𝑡𝑡𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠) 1 5 
Source: The Authors. 

 
 

4.2.  Fitness function 
 
A Fitness function is established to minimize violations 

of hard and soft restrictions. The fitness function 𝐹𝐹(𝑠𝑠) for 
solution 𝑠𝑠, is defined as the sum of the number of violations 
of hard restrictions #ℎ𝑐𝑐𝑒𝑒 and soft restrictions #𝑠𝑠𝑐𝑐𝑒𝑒. 

 
𝐹𝐹(𝑠𝑠) = #ℎ𝑐𝑐𝑒𝑒 ∗ 𝑖𝑖 + #𝑠𝑠𝑒𝑒𝑐𝑐 (27) 

 
Hard Restrictions: Restrictions classified as hard must be 

satisfied in full to consider that the solution is feasible, these 
constraints are R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, 
R12, R13, R15 and R18. From this group, the restrictions R2 
and R5 are guaranteed in their entirety due to the 
representation of the solution, since it always guarantees that 
all events are programmed and there is no time interference 
among the classrooms. Additionally, the restrictions from R8 
to R12 are fully guaranteed through the Teacher Assignment 
Heuristic which randomly links a course with a teacher, while 
satisfying those restrictions. 

Soft Restrictions: These restrictions measure the quality 
of the solution; the quality of the solutions is appropriated if 
it satisfies these restrictions in the best possible way. The soft 
restrictions are R1, R14, R16 and R17. 

The value of constant C is 1000. In this way, it is 
guaranteed that during the search process, the hard 
restrictions will be prioritized over the soft ones. Finally, the 
aptitude function is expressed as: 

 
𝐹𝐹(𝑠𝑠) = 1000 ∗ #ℎ𝑐𝑐𝑒𝑒 + #𝑠𝑠𝑒𝑒𝑐𝑐 (28) 

 
#ℎ𝑐𝑐𝑒𝑒 = 𝑖𝑖(𝑅𝑅3) + 𝑖𝑖(𝑅𝑅4) + 𝑖𝑖(𝑅𝑅6) + 𝑖𝑖(𝑅𝑅7) + 𝑖𝑖(𝑅𝑅13)

+ 𝑖𝑖(𝑅𝑅15) + 𝑖𝑖(𝑅𝑅18) (29) 

#𝑠𝑠𝑒𝑒𝑐𝑐 = 𝑖𝑖(𝑅𝑅1) + 𝑖𝑖(𝑅𝑅14) + 𝑖𝑖(𝑅𝑅16) + 𝑖𝑖(𝑅𝑅17) (30) 
 

4.3.  Adaptation of the algorithm  
 
It starts by defining the instance and the values of the 

parameters involved. For the first stage of the HGATS 
algorithm, the parameters of population size, number of 
generations, mutation probability and number of steps guide 
the evolution of the GSGA algorithm; whereas, in the second 
phase, the TS algorithm is governed by the parameters of 
neighborhood percentage, size of the Tabu list and number of 
iterations. 



Arias-Osorio & Mora-Esquivel / Revista DYNA, 87(215), pp. 47-56, October - December, 2020. 

53 

In GSGA, initially, the Teacher Assignment Heuristic is 
executed, which links teachers and courses; then, the Genetic 
Algorithm constructs the population of initial solutions using 
the Initialization of Individuals algorithm and the Local 
Search operators 1 and 2; then, the process of evolution is 
passed, there, the Crossing and Mutation operators generate 
a new solution, which is improved by Local Search operators 
1 and 2; then, the worst solution of the population is selected 
and replaced with the recently generated solution. This 
procedure is repeated until the defined number of generations 
is reached. Finally, the Room Stability Heuristic is applied on 
the best solution obtained and its aptitude is evaluated. If the 
solution is optimal, the algorithm stops. 

The TS algorithm is executed only if the best solution 
generated in the first phase is not optimal, that is, if 𝐹𝐹(𝑠𝑠) >
0. In this phase, a Taurus Search heuristic is applied, using of 
N1 and N2 as neighborhood structures to move the solution 
in the search space. During each iteration, the penalty of each 
of the possible movements is calculated and the best of them 
is made. With each movement the tabu list is updated and 
some movements are restricted for future iterations. Once the 
defined number of iterations is fulfilled, the Tabu Search 
heuristic shows the best solution found so far and applies the 
Salon Stability Heuristic on the solution.  

 
4.3.1.  Teacher assignment heuristics 

 
This heuristic is in charge of randomly assigning the 

professors to the courses while guaranteeing the 
fulfillment of the restrictions R8, R9, R10, R11 and R12. 

The algorithm starts by ordering the subjects according 
to the number of teachers available for each one of them; 
then, the algorithm selects the list of possible teachers who 
can teach the subject. If there is a Full-time professor or 
Postgraduate Student who can teach the subject, we 
proceed to assign the number of courses required by the 
teacher for that subject. If there are more courses to be 
assigned, it will be linked to the Chair professors, 
guaranteeing that they cannot teach more than 3 courses 
of the same subject, neither allowing them to teach more 
than 4 courses in total. 

 
4.3.2.  Blocks. 

 
In order to limit the search space in feasible regions, we 

have chosen to introduce the concept of blocks. To do this, it 
has been determined that the events should be grouped in 
blocks of 2 or 3 consecutive events, depending on the number 
of events in each course. If a course must be assigned 3 
events, a block of three consecutive events is built, if it has 4 
events, it is grouped in 2 blocks of two consecutive events 
and if there are 5 events a block of 2 events is created and one 
of 3. 

Additionally, when an allocation or movement of 
classroom-time slot pairs is made, these should be grouped in 
blocks of consecutive strips. This in order to facilitate the 
fulfillment of the hard restriction R15. 

 

4.3.3.  Initialization of individuals 
 
Each individual represents a solution to the problem. To 

create an individual, two matrices are generated, the first 
matrix, called chromosome which contains the information 
related to the events and the second matrix, called pairs 
classroom-time slot, which contains the combinations of 
classrooms and time slots as described in section 4.2. 

Then, each pair classroom-time slot is assigned to each 
event. To accomplish this, it starts with the teachers, for each 
teacher a vector of assigned courses and a weekly availability 
vector are generated. Now, for each course around the vector, 
the events that have not been assigned are identified, as long 
as the events of a course are not assigned in their entirety, the 
algorithm tries to assign a random block of classroom-time 
slot pairs of two or three consecutive events, if possible, 
within the availability of the teacher. 

 
4.3.4.  Neighborhood structures 

 
To carry out the movements within each individual, 4 

neighborhood structures are used: 
N1: An operator that exchanges classroom-time slot pairs 

already assigned to a block of events for unassigned 
classroom-time slot pairs. 

N2: An operator that exchanges the classroom-time slot 
pairs of two blocks of events, of the same size, between them. 

N3: An operator that exchanges the classroom-time slot 
pairs of three blocks of events, of the same size, with each 
other. 

N5: An operator that takes blocks of unassigned 
classroom-time slot pairs that share the same fringes and 
exchanges them with the classroom-time slots pairs of the 
blocks of events that must be programmed in parallel. 

 
4.3.5.  Local search operator 1. 

 
The Local search operator 1 (LS1) works on all the blocks 

of events of the solution. This algorithm works in two phases, 
in the first stage, it uses the structures N1, N2 and N3 to 
exchange blocks of events in order to obtain a feasible 
solution. If a feasible solution is found in this phase, the 
second phase is executed. The second phase operates in a 
similar way to the first; however, in this stage, the violations 
of soft restrictions are considered. In this way we seek to 
obtain a feasible good quality solution. 

The algorithm starts by verifying the feasibility of each 
block of events (a block of events is infeasible if one of them 
violates any hard restriction). If a block is infeasible, the 
structures N1, N2 and N3 are applied in order to find an 
improvement or to reach a certain number of steps. To verify 
if there is an improvement, a Delta Evaluation is used, as 
described by the authors of the algorithm in their work. Once 
all the blocks are evaluated, the feasibility of the solution is 
calculated, if the obtained solution is still infeasible, the 
algorithm ends, otherwise the quality of each block of events 
is verified. If a block has a penalty in its quality, the structures 
N1, N2 and N3 are applied as previously done. Once all the 



Arias-Osorio & Mora-Esquivel / Revista DYNA, 87(215), pp. 47-56, October - December, 2020. 

54 

blocks have been evaluated, LS1 finishes by showing a 
potentially improved Individual. 
 
4.3.6.  Local search operator 2 

 
The Local Search operator 2 (LS2) tries to meet the 

parallelism restriction R18 by making use of the 
neighborhood structure N5 and makes the movements as long 
as there is an improvement in the aptitude of the solution. 

 
4.3.7.  Crossing operator 

 
This operator starts by selecting two people from the 

solution population as parents P1 and P2 through the 
selection tournament method. In the crossing process, the 
parent P1 is initially selected, selected as the descendant. 
Then, for each block, a neighbor solution is created, 
exchanging the classroom-time slot pairs of the current 
descendant with parent P2 (ensuring that restrictions R5 and 
R15 are not violated). Finally, the descendant is updated with 
the classroom-time slot pairs of parent P2, if there is an 
improvement in the aptitude of the solution.  

 
4.3.8.  Mutation operator 

 
The mutation operator is in charge of randomly moving 

each block of events with a probability Pm using the 
neighborhood structures N1, N2 and N3 to make the 
movements within the solution. 

 
4.3.9.  Room stability heuristic 

 
If the solution generated by the GSGA phase of the 

algorithm fails to meet the minimums related to the stability 
of classrooms. This heuristic is executed to try to satisfy the 
soft restriction R14 as best as possible. In this case, the 
movements are made between rooms assigned to the same 
time slots, as a consequence, only the classrooms are 
exchanged. The procedure starts with the teachers. For each 
teacher, the courses assigned to him or her are identified; then 
for each assigned course, the time slots are identified. If there 
is more than one classroom assigned to these fringes, they are 
located in a single room and the classroom-time slot pairs of 
said course are blocked so that they are not exchanged in 
future movements. If it is not possible to assign all the fringes 
in a single classroom, the time slots of the course's blocks of 
events will be assigned and once their classrooms are linked, 
their classroom-time slot pairs are blocked. 

 
4.3.10.  Tabu search procedure 

 
Once the GSGA phase of the algorithm is finished, if the 

obtained solution is not optimal, a tabu search heuristic 
operates on the best obtained solution so far. The TS algorithm 
makes use of the neighborhood structures N1 and N2 to 
generate the possible movements of the solution. Also, it 
considers a movement that involves an event that has moved a 
certain number of iterations tabu (tabu size list). In addition, it 

applies a variable neighborhood that randomly chooses a 
certain percentage of neighborhood V, defined by N1 and N2.  

The algorithm ends when the defined number of iterations 
is completed and yields the best solution obtained so far. 
Finally, the Heuristic Room Stability is executed again. 

 
5.  Experimentation and analysis of results 

 
The algorithm for the UCTP solution was programmed in 

the Matlab® tool in its R2107a version, while the factorial 
design was developed in the Minitab® 18 statistical software. 
Both were run on a computer with an Intel Core i7 2700 @ 
3.6 GHz processor and 8 Gb of RAM. 

The instances to be processed are those generated from 
the programming of classes of the academic periods 2018-1 
and 2018-2 of the Industrial Engineering program of the UIS. 

The HGATS algorithm has seven parameters that guide 
its performance. In order to set the parameters, a fractional 
design 2𝑘𝑘−3 with 5 replicas was designed. The factors and 
levels considered are presented in Table 3. These values were 
selected from tests with the specific instance looking for the 
computation time to be less than 1800 seconds. 

When the adjustment of the parameters is done using a 
fractional factorial design, it must be taken into account that, 
although this design allows to evaluate the performance of 
the algorithm with few treatments, it is possible to fall into 
errors due to the confusion between factors and interactions 
due to the low resolution of the design. Finally, the following 
parameters were obtained for each of the instances, which are 
recorded in Table 4. 
 
5.1.  Results evaluation 
 

Table 5 shows the results of the best obtained solution 
after 10 runs of the Adapted HGATS algorithm and the 
computational time used in each instance. The obtained value 
(less than 1000) in the suitability of the solution shows that 
the solution is feasible. On the other hand, Table 6 presents 
in detail the penalty values associated with each described 
restriction in the aptitude function of section 4.2. 

 
Table 3.  
Factors and levels of the experimental design 

Factors id Low Level 
(-) 

High Level 
(+) 

population size pob 50 100 
number of generations  gen 20 40 
mutation probability  mut 0,1 0,5 
number of steps  steps 50 100 
neighborhood percentage vec 0,01 0,05 
size of the Tabu list tabu 5 10 
number of iterations ite 20 40 

Source: The Authors. 
 
 

Table 4. 
Definition of parameters for instances 2018-1 and 2018-2 

Instance pob gen mut steps vec tabu ite 
2018-1 50 40 0,1 50 0,05 5 20 
2018-2 50 20 0,1 100 0,05 10 20 

Source: The Authors. 



Arias-Osorio & Mora-Esquivel / Revista DYNA, 87(215), pp. 47-56, October - December, 2020. 

55 

Regarding the computational time used, it can be 
classified as acceptable considering that the time dedicated 
exclusively to the programming of classes usually takes 
between 3 and 4 hours, according to the Academic 
Coordinator. Restrictions R2, R5, R8, R9, R10, R11 and R12 
are not considered in the previous table, because these 
restrictions are guaranteed throughout the iteration process of 
the algorithm. 

The restrictions considered within the problem are part of 
the current reality of the process of programming classes in 
EEIE, however, it is not possible to carry out a direct 
comparison between the proposed algorithm and the manual 
programming performed for the instances in question, due to 
the fact that the Academic Coordinator in charge, at the time, 
did not necessarily use these criteria during the programming 
time. Considering the previous situation, it is interesting to 
observe the obtained result in both techniques using the 
Weekly Percent Use (UPS) of the classrooms, applied by [1]  

 
Table 5.  
Results obtained by the Adapted HGATS algorithm 

Instance Aptitude Time (s) 
2018-1 4,01428571 1089,94856 
2018-2 3,25714286 652,307742 

Source: The Authors. 
 
 
Table 1.  
Rating by restrictions of the aptitude function 

Instances 
Hard Restrictions Soft Restrictions 

R
3 

R
4 

R
6 

R
7 

R
13 

R
15 

R
18 R1 R

14 
R
16 

R
17 

2018-1 0 0 0 0 0 0 0 3,01
42 1 0 0 

2018-2 0 0 0 0 0 0 0 3,25
71 0 0 0 

Source: The Authors. 
 
 
Table 7.  
Compatarive of UPS for intances 

   Instance 2018-1 Instance 2018-2 

Classroom Type of 
room 

UPS 
HGATS 

UPS 
manual 

UPS 
HGATS 

UPS 
manual 

1 Classroom 50,0% 58,6% 67,1% 31,4% 
2 Classroom 50,0% 51,4% 48,6% 34,3% 
3 Classroom 40,0% 44,3% 48,6% 52,9% 
4 Classroom 51,4% 60,0% 40,0% 48,6% 
5 Classroom 57,1% 37,1% 32,9% 51,4% 
6 Classroom 45,7% 42,9% 48,6% 31,4% 
7 Classroom 42,9% 34,3% 48,6% 45,7% 
8 Classroom 31,4% 22,9% 34,3% 62,9% 
9 Classroom 51,4% 35,7% 51,4% 61,4% 

10 Classroom 37,1% 55,7% 42,9% 50,0% 
11 Classroom 40,0% 45,7% 28,6% 44,3% 
12 Classroom 27,1% 35,7% 48,6% 35,7% 
13 Classroom 34,3% 27,1% 40,0% 34,3% 
14 Classroom 22,9% 34,3% 34,3% 40,0% 
15 Classroom 22,9% 20,0% 40,0% 31,4% 
16 Classroom 17,1% 15,7% 20,0% 18,6% 

17 computer 
Room 48,6% 48,6% 40,0% 40,0% 

18 Quality 
Laboratory 17,1% 17,1% 28,6% 28,6% 

UPS average 38,2% 41,3% 
Source: The Authors. 

as an indicator, without pretending to make a direct 
comparison between them. Table 7 summarizes the 
information of the indicator for each of the instances to be 
treated. 

The UPS indicator represents the percentage of slots in 
which a classroom is occupied in comparison to the total slots 
in which it is available to be programmed during a week. 

 
6.  Conclusions 

 
As noted in the literature review, the majority of works 

and research found tend to focus on the evaluation of 
algorithms on reference instances, so the application of these 
algorithms in real-world instances, such as this project, 
serves as reference to future research that focuses on the use 
of metaheuristics to solve the UCTP in educational 
institutions with similar conditions. 

The versatility of metaheuristic techniques has expanded 
the possibility of finding good solutions to problems of a high 
level of complexity. Among these, the Genetic Algorithm 
and the Tabu Search Algorithm have been widely 
documented in the area of university schedules, which 
facilitates extending its application to specific problems, such 
as our research. 

The use of a hybrid algorithm has been proposed given 
the advantages when balancing the ability to explore and 
exploit solutions during the search process. 

Since the obtained schedules were feasible in all the runs 
made, the HGATS algorithm has proven to be effective for 
the proposed problem. In addition, the maximum 
computational time spent has not exceeded 25 minutes, 
which is considered a reasonable time. 

The definition of parameters was made considering a 
Fractional Factorial Design of resolution IV, which generates 
confusion between the factors and interactions, however, 
with the parameters used, good (feasible) results were 
obtained in the final solutions. 

The UPS indicator was defined in order to observe the 
way in which the allocation of classrooms is made within the 
programming made by HGATS. From this indicator, it can 
be seen that, for instance 2018-1, only 38,2% of the available 
spaces are used, while for instance 2018-2, this value is 
41,3%. These values indicate that classrooms are not being 
used efficiently.  

 
7.  Recommendations 

 
Expand the reach of the problem by including student 

enrollment data and the capacity of the classrooms. 
Program the MILP model defined in chapter 3, using 

GAMS, in order to obtain the optimal solution of the problem 
and compare the performance of the HGATS metaheuristics 
with that solution. 

Given that the HGATS hybrid algorithm works in 
separate phases, it is convenient to evaluate the performance 
of the Genetic Algorithm and Tabu Search independently, in 
order to adequately exploit the capacities of each one of them 
in reasonable computing times. 



Arias-Osorio & Mora-Esquivel / Revista DYNA, 87(215), pp. 47-56, October - December, 2020. 

56 

Due to the low average UPS in both instances it is 
recommended to reduce the number of classrooms available 
for programming. In this way, the algorithm is forced to look 
for good solutions, taking advantage of available classrooms 
better and, consequently, improving that indicator. 

 
References  

 
[1] Abdelhalim, E. and El Khayat, G., A Utilization-based genetic 

algorithm for solving the University Timetabling Problem. 
Alexandria Engineering Journal, 55(2), pp. 1395-1409, 2016. DOI: 
10.1016/j.aej.2016.02.017 

[2] Abuhamdah, A., Adaptive Acceptance Criterion (AAC) algorithm for 
optimization problems. Journal of Computer Science, 11(4), pp. 675-
691, 2015. DOI: 10.3844/jcssp.2015.675.691   

[3] Abuhamdah, A. and Ayob, M., Adaptive randomized descent 
algorithm for solving course timetabling problems, International 
Journal of the Physical Sciences, [online]. 5(16), pp. 2516-2522, 
2010. Avaliable at: https://academicjournals.org/journal/IJPS/article-
full-text-pdf/0F9AE6934683 

[4] Al-betar, M.A. and Khader, A.T., A harmony search algorithm for 
university course timetabling. Annals of Operations Research, 194, 
pp. 3-31, 2012. DOI: 10.1007/s10479-010-0769-z 

[5] Al-Betar, M.A., Khader, A.T. and Zaman, M., University course 
timetabling using a hybrid harmony search metaheuristic algorithm. 
IEEE Transactions on Systems, Man and Cybernetics Part C: 
Applications and Reviews, 42(5), pp. 664-681, 2012. DOI: 
10.1109/TSMCC.2011.2174356 

[6] Avella, P. and Vasil’ev, I., A computational study of a cutting plane 
algorithm for university course timetabling. Journal of Scheduling, 8, 
pp. 497-514, 2005. DOI: 10.1007/s10951-005-4780-1 

[7] Burke, E.K., Mareček, J., Parkes, A.J. and Rudová, H., A branch-and-
cut procedure for the Udine Course Timetabling problem, Annals of 
Operations Research, 194, pp. 71-87, 2012. DOI: 10.1007/s10479-
010-0828-5 

[8] Cruz-Chávez, M.A., Flores-Pichardo, M., Martínez-Oropeza, A., 
Moreno-Bernal, P. and Cruz-Rosales, M.H., Solving a real constraint 
satisfaction model for the university course timetabling problem: a 
case study, Mathematical Problems in Engineering, 2016, Article ID 
7194864, 14 pages, 2016. DOI: 10.1155/2016/7194864 

[9] Jat, S.N. and Yang, S., A hybrid genetic algorithm and tabu search 
approach for post enrolment course timetabling, Journal of 
Scheduling, 14, pp. 617-637, 2011. DOI: 10.1007/s10951-010-0202-
0 

[10] Nagata, Y. and Ono, I., Random partial neighborhood search for 
university course timetabling problem. In: Bartz-Beielstein, T., 
Branke, J., Filipič, B. and Smith, J., (Eds.), Parallel problem solving 
from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer 
Science, vol 8672. Springer, Cham., 2014. DOI: 10.1007/978-3-319-
10762-2_77 

[11] Obit, J.H., Developing novel meta-heuristic, hyper-heuristic and 
cooperative search for course timetabling problems, PhD Thesis, 
School of Computer Science, University of Nottingham, Nottingham, 
U.K., 2010. 

[12] Schaerf, A. and Di Gaspero, L., Local search techniques for 
educational timetabling problems. Proc. of the 6th International 
Symposium on Operations Research in Slovenia (SOR-01), [online]. 
2001, pp. 13-23.  Available at: http://citeseerx.ist.psu.edu/ 
viewdoc/citations;jsessionid=1379FD25B42F9EE05916B7D334966
60A?doi=10.1.1.24.343 

[13] Schimmelpfeng, K. and Helber, S., Application of a real-world 
university-course timetabling model solved by integer programming. 
OR Spectrum, 29(4), pp. 783-803, 2007. DOI: 10.1007/s00291-006-
0074-z 

[14] Vermuyten, H., Lemmens, S., Marques, I. and Beliën, J., 
Developing compact course timetables with optimized student 
flows. European Journal of Operational Research, 251(2), pp. 651-
661, 2016. DOI: 10.1016/j.ejor.2015.11.028 

[15] Welsh, D.J. and Powell, M.B., An upper bound for the chromatic 
number of a graph and its application to timetabling problems. The 

Computer Journal, 10, pp. 85-86, 1967. DOI: 
10.1093/comjnl/10.1.85 

[16] Yang, S. and Jat, S.N., Genetic algorithms with guided and local 
search strategies for university course timetabling, IEEE 
Transactions on Systems, Man and Cybernetics Part C: 
Applications and Reviews, 41(1), pp. 93-106, 2011. DOI: 
10.1109/TSMCC.2010.2049200 

 
 
J. Arias-Osorio, received the BSc. Eng in Systems Engineering in 1998, 
from the Universidad Industrial de Santander, Colombia. MSc. of 
Administration in 2005 from the UNAB-TEC. He is currently full-time 
professor in Universidad Industrial de Santander, Colombia. 
ORCID: 0000-0001-6149-556X 
 
A.J Mora-Esquivel, received the BSc. Eng in Industrial Engineering in 
2019, from the Industrial University of Santander, Colombia. He is currently 
engineering assistant in a company dedicated to the manufacture of 
mattresses. 
ORCID: 0000-0002-4087-6897 


	1.  Introduction

