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Abstract 
Within Taguchi methods, robust parameter design is a widely used tool for quality improvement in processes and products. The loss function is 
another quality improvement technique with a focus on cost reduction. Traditional Taguchi methods focus on process improvement or optimization 
with a unique quality characteristic. Analytical approaches for optimizing processes with multiple quality characteristics have been presented in 
the literature. In this investigation, a case of analysis for two quality characteristics in rubber for shoe sole is presented. A methodology supported 
in robust parameter design in combined array is used in order to obtain optimal levels in the vulcanization process. Optimization techniques based 
on the loss function and the use of restricted nonlinear optimization with genetic algorithms are proposed. 
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Diseño robusto de parámetros y optimización multi-objetivo 
económica en la caracterización de hule para suela de calzado 

 
Resumen 
Dentro de los métodos Taguchi, el diseño robusto de parámetros es una herramienta ampliamente utilizada para la mejora de calidad en procesos y productos. 
La función de pérdida es otra técnica de mejora calidad con un enfoque en la reducción de costos. Los métodos Taguchi tradicionales se enfocan en la mejora 
u optimización de procesos con una característica de calidad única. En la literatura se han presentado enfoques de análisis para la optimización de procesos 
con múltiples características de calidad. En esta investigación de presenta un caso de análisis para dos características de calidad en el hule para suela de calzado 
mediante el uso del diseño robusto de parámetros en arreglo combinado, con la finalidad de obtener los niveles óptimos en el proceso de vulcanización. Se 
proponen técnicas de optimización basadas en la función de pérdida y el uso optimización no lineal restringida basada en algoritmos genéticos.  
 
Palabras clave: optimización multiobjetivo; diseño robusto de parámetros; función de pérdida; hule para suela de calzado; vulcanización. 

 
 
 

1. Introduction 
 
Quality engineering involves management in the stages of 

product design, manufacturing process design, manufacturing, and 
customer use. Reduction of the effect of noise factors and part-by-
part variation in manufacturing should be considered within the 
design phases. The main objective of robust parameter design 
(RPD) is obtaining the optimum levels in the control factors, 
with which the average performance of the process is 
improved. At the same time, the variation around the mean 
of the process is reduced [1]. The definition of robustness 
indicates that the solution obtained by means of the RPD is 
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one in which is minimized the effect of noise factors in the 
process. Noise is something difficult to control in the process, 
there is a need to reduce the variation in critical quality 
characteristics. 

In Taguchi's original proposal, a double experimental 
arrangement is used. There is an arrangement for noise factors 
called “internal arrangement” and an arrangement for noise 
factors called “external array” in which noise factors are 
integrated, these factors are expensive or difficult to control. The 
combination of values for each factor is defined in rows and 
consists of a treatment. The experimental region is defined by 
the extreme values of the control factors under study. 
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The RPD methodology has evolved from the advice of areas 
of opportunity by several western statistical authors [2]. One of 
the proposals to streamline the experimental effort is based on the 
use of an experimental matrix in which both the control and noise 
factors are integrated, called the "combined array", which can 
reduce the number of experimental runs. The use of the combined 
array allows working on the response surface scheme with 
several designs, such as factorials, fractional factorials, Box-
Behnken, Box Draper designs, among others [3]. 

Optimization procedures for the double orthogonal array and 
the combined array are found in the literature. In these proposals, 
an approach based of response surface models for the mean and 
models for the variation (variance, standard deviation, signal to 
noise ratio SNR) is managed. Among the optimization proposals 
for the RPD is that of Kim & Lin [4] which is an approach to 
diffuse modeling. Kim & Cho [5] presented a proposal based on 
an RPD model that ponders the point of view of the engineer at 
the product design stage. Del Castillo & Montgomery [6] used 
the nonlinear programming problem for RPD optimization. 
Köksoy & Doganaksoy [7] use a mean squared error (MSE) 
reduction approach and joint optimization of the mean and 
variance. Copeland & Nelson [8] used quadratic nonlinear 
programming techniques for the direct minimization of the 
variance and set the target to a target value as a constraint. Lin & 
Tu [9] presented a definition of the MSE that allows moving a 
little away the mean of the Target value, in addition to the 
minimization of the variance. This approach allows obtaining 
better optimization solutions. All of the above methods are based 
on the analysis of a single process response. 

In this research, a proposal of analysis for a sole vulcanizing 
process is presented. The two quality characteristics are analyzed 
based on tests of tension and hardness in the material. The 
methodology involves the use of the combined array in the 
experiment and the use of optimization techniques based on 
restricted nonlinear optimization by genetic algorithms. The 
objective function of the optimization problem involves the use 
of the Taguchi loss function. In order to use an economic 
approach to reduce the expected cost due to costs of non-
confirming in the product. The main contribution of this work lies 
in the analysis of the multi-objective problem in the RPD and the 
use of a loss function-based scheme. Likewise, there are no 
analyzes in the literature to optimize parameters of the vulcanized 
process in rubber for shoe soles. Due to the high competitiveness 
and quality demands on the part of footwear users, it is important 
to carry out studies to establish standards for the evaluation and 
improvement of quality in the materials used in the product to 
achieve optimal performance. The objective can be achieved by 
using techniques for process optimization. 

 
2. Generalization and approach of the proposal  

 
2.1 Combined array, models for mean and variance  

 
Welch et al [10], presented an alternative to the double 

orthogonal array of Taguchi. In this strategy, the control and 
noise factors are combined in a single experimental matrix. The 
main advantage of this scheme is that the number of runs or 
experimental treatments is significantly reduced, remembering 
that every experiment consumes resources. The experimental 
structure is shown in Table 1. 

Table 1. 
𝑨𝑨    ⋯     𝑲𝑲  𝑷𝑷     ⋯      𝑸𝑸   
𝑥𝑥11    ⋯    𝑥𝑥1𝑘𝑘  𝑧𝑧11    ⋯    𝑧𝑧1𝑞𝑞  𝑦𝑦11 
∙      ⋯      ∙  ∙      ⋯      ∙  ∙ 

𝑥𝑥𝑛𝑛1    ⋯    𝑥𝑥𝑛𝑛𝑘𝑘  𝑧𝑧𝑛𝑛1    ⋯    𝑧𝑧𝑛𝑛𝑞𝑞  𝑦𝑦𝑛𝑛1 
Source: The authors 

 
 
Data generated by this experimental strategy allows the 

generation of a model that is based on the control and noise 
factors obtained, the expression can be represented as eq. (1): 

 
𝑌𝑌𝑥𝑥𝑥𝑥 = 𝛾𝛾0 + 𝐱𝐱′𝛃𝛃+ 𝐱𝐱′𝐁𝐁𝐱𝐱+ 𝐳𝐳′𝛅𝛅+ 𝐱𝐱′𝐂𝐂𝐳𝐳 + 𝜀𝜀           (1) 

 
Where 𝐱𝐱′ = (𝑥𝑥1, … ,𝑥𝑥𝑘𝑘) k control factors, 𝐳𝐳 = (𝑧𝑧1, … , 𝑧𝑧𝑞𝑞) 

q noise factors,  𝛾𝛾0 the constant. Parameter vectors, 𝛃𝛃′ =
(𝛽𝛽1 , … ,𝛽𝛽𝑘𝑘),  𝛅𝛅′ = (𝛼𝛼1, … ,𝛼𝛼𝑞𝑞), 𝐁𝐁 = (𝛽𝛽11, … ,𝛽𝛽1𝑘𝑘 ,𝛽𝛽𝑘𝑘1, … ,𝛽𝛽𝑘𝑘𝑘𝑘) 
and 𝐂𝐂 = (𝛼𝛼11, … ,𝛼𝛼1𝑞𝑞 , … ,𝛼𝛼𝑘𝑘1, … ,𝛼𝛼𝑘𝑘𝑞𝑞) are the second order 
parameter matrix, y 𝜀𝜀~𝑁𝑁(0,𝜎𝜎𝑒𝑒2). We have the following 
assumptions for noise factors: 𝐸𝐸(𝐳𝐳) = 0, 𝑉𝑉𝑉𝑉𝑉𝑉(𝐳𝐳) = 𝑉𝑉 and 
𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑(𝑉𝑉) = 𝜎𝜎𝑥𝑥2. 

The expressions for the mean (conditional expectation) 
and variance are shown in eq. (2) and eq. (3) 

 
𝐸𝐸(𝑌𝑌𝑥𝑥𝑥𝑥) = 𝛾𝛾0 + 𝐱𝐱′𝛃𝛃+ 𝐱𝐱′𝐁𝐁𝐱𝐱                        (2) 

 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑥𝑥𝑥𝑥) = (𝛅𝛅+ 𝐱𝐱′𝐂𝐂)′𝑉𝑉(𝛅𝛅+ 𝐱𝐱′𝐂𝐂)′ + 𝜎𝜎𝑒𝑒2           (3) 

 
The model in eq. (1) is fitted by the least squares’ method. 

Subsequently, eq. (2-3) are estimated according to the 
required terms. An important detail is that the model in eq. 
(1) must contain control x noise interactions, in order to 
determine the eq model. (3). Terms 𝛅𝛅 + 𝐱𝐱′𝐂𝐂 are the partial 
derivative with respect to 𝐳𝐳 of the individual elements and 
interactions that contain 𝐳𝐳 in eq. (1).  

 
2.2 Quadratic loss function 

 
This model was introduced by Dr. Taguchi to provide a 

monetary estimate of the loss that the manufacturer causes to 
customer when the performance of their product differs from the 
target value. That is, it is used in cases for quality characteristics 
of the type “Target is the best”. Let 𝑌𝑌𝑐𝑐  the quality characteristic 
of a product and 𝑇𝑇𝑐𝑐 the target value for 𝑌𝑌𝑐𝑐 . According to the 
quadratic loss function, its equation is represented in eq. (4). 

 
𝐿𝐿[𝑌𝑌𝑐𝑐] = 𝑘𝑘𝑐𝑐[𝑌𝑌𝑐𝑐 − 𝑇𝑇𝑐𝑐]2                                 (4) 

 
𝐿𝐿[𝑌𝑌𝑐𝑐] is given by a Taylor series expansion around 𝑌𝑌𝑐𝑐 =

𝑇𝑇𝑐𝑐 neglecting the cubic terms hereafter. Constant 𝑘𝑘𝑐𝑐 is known 
as the coefficient of quality loss for the quality characteristic, 
it is defined as eq. (5). 

 
𝑘𝑘𝑐𝑐 = 𝐴𝐴0

∆02
                                                    (5) 

 
In which 𝐴𝐴0 is the cost r los to repair a product when 

quality is not met, ∆0 refers to the tolerances allowed before 
the product exceeds the functional limits. The quadratic loss 
function is shown in Fig. 1. 
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Figure 1. Taguchi’s Quadratic Loss Function 
Source: The Authors 

 
 
The expected value of the loss is shown in the ec. (6). 
 

𝐿𝐿 = 𝐸𝐸�𝐿𝐿(𝑌𝑌𝑐𝑐)� = 𝐸𝐸(𝑘𝑘𝑐𝑐[𝑌𝑌𝑐𝑐 − 𝑇𝑇𝑐𝑐]2) = 𝑘𝑘𝑐𝑐𝐸𝐸([𝑌𝑌𝑐𝑐 − 𝑇𝑇𝑐𝑐]) 
= 𝑘𝑘𝑐𝑐𝐸𝐸([𝑌𝑌𝑐𝑐 − 𝐸𝐸(𝑌𝑌𝑐𝑐) + (𝐸𝐸(𝑌𝑌𝑐𝑐)− 𝑇𝑇𝑐𝑐)]) 

= 𝑘𝑘𝑐𝑐[𝜎𝜎2 + (𝜇𝜇 − 𝑇𝑇𝑐𝑐)]                             (6) 
 
The eq. (6) is an important part of the objective function 

for the proposed optimization scheme.  
Note that when 𝑌𝑌𝑐𝑐 = 𝑇𝑇𝑐𝑐 the los is zero. The loss 𝐿𝐿(𝑌𝑌𝑐𝑐) 

increases when the quality characteristic 𝑌𝑌𝑐𝑐  moves away from 
𝑇𝑇𝑐𝑐. The loss function is a model that implies that the average 
cost of loss with quality characteristic 𝑌𝑌𝑐𝑐  is 𝐿𝐿[𝑌𝑌𝑐𝑐] and it is 
clear that the loss it will cause to a particular client will 
depend on the operating conditions. 

Some applications of the use of the loss function for 
optimizing RPD problems for a response can be found in 
Sharma & Kumar [11] who submitted an application 
proposal in conjunction with the QFD for provider selection. 
Pandey et al. [12] proposed the use of the loss function for 
the optimization of a preventive maintenance design and 
quality policies. Pi & Low [13] proposed the evaluation of 
suppliers using the loss function as the main weighting. 

 
2.3 Multi- Objective Optimization in RPD 

 
The problem of multi-objective optimization in RPD has 

been influenced by schemes applied to classical 
Experimental Design. The desirability function initially 
proposed by Harrington [14], is emerging as a good option 
for optimization of multiple objectives in the DRP, since the 
minimization of the variance between the desired objectives 
can be focused. Wu & Chyu [15] presented a multi-response 
optimization proposal in the DRP based on the use of Eq. 7, 
which is applied in correlated models. Hsieh [16], proposed 
the use of artificial neural networks in the problem of multi-
objective optimization of DRP using different degrees of 
importance consideration.  

Pal & Gauri [17] proposed the use of multiple regression 
and the Taguchi SNR applied to the RPD for dynamic 
characteristics. Fang et al. [18] applied optimization 
techniques for multi-objective DRP in the analysis of fatigue 
in truck cabins. Le Chau et al. [19] analyzed a leaf compatible 
articulation problem for micro positioning systems. Nejlaoui 
et al. [20] proposed a DRP and multi-objective optimization 
scheme for the analysis of a railway vehicle moving on short 
radius curved tracks according to safety and comfort criteria. 

2.4 Genetic Algorithms and Proposed Optimization Problem  
 
Within meta-heuristic search techniques, genetic 

algorithms are computational techniques widely used for 
solving problems in which it is important to find the global 
optimum. They are particularly useful in the use of highly 
nonlinear, non-differentiable, discontinuous, or stochastic 
functions. The techniques have been extensively analyzed by 
Goldberg [21]. 

Genetic algorithms can be used for solving constrained or 
unconstrained optimization problems. The basis of the 
technique is the imitation of natural selection processes that 
occur in biological evolution. The algorithm repeatedly 
changes a population of individual solutions in an iterative 
process that involves selection, reproduction, mutation, 
crossover, and migration techniques. In their mathematical 
form, populations are matrix arrays, an individual may 
appear on more than one line of the matrix, and they change 
as new generations occur.  

The fitness function is the function to be optimized and is 
equivalent to the objective function of traditional 
optimization schemes. In each iteration, new generation 
sequences are created that evolve according to the 
optimization conditions declared in the problem [22]. The 
evaluation of fitness function defines the most appropriate 
ranges of values called expected values. The new individuals 
with the best fitness values are called elite and move on to the 
new population. For the improvement of the new generations, 
the children of the elite are produced by random changes in 
an individual relative (mutation) or by the combination of 
inputs of a relative pair (crossover), the population is 
replaced with the children to form the next generation. The 
algorithm will stop when a stop condition determined by the 
analyst occurs. 

The proposed optimization problem falls under the 
constrained nonlinear optimization scheme. The objective 
function contemplates the minimization of the total cost. The 
problem involves the use of the superimposed loss function 
in the distribution of the data. The probability areas related to 
the loss function and the normal distribution at the three 
important points are taken: the area before the lower 
specification limit, the area between the specification limits 
and the area after the upper specification limit. The objective 
function is defined in eq. (7) and the restrictions on eq. (10-
11). 

 
𝑀𝑀𝑑𝑑𝑀𝑀 𝐸𝐸[$𝐶𝐶𝑇𝑇] = ∑ [∫ 𝐿𝐿[𝑌𝑌𝑐𝑐] ∙ 𝑓𝑓(𝑌𝑌𝑐𝑐)𝑑𝑑𝑌𝑌𝑐𝑐 +𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐

𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐
∫ $𝑁𝑁𝐶𝐶𝑐𝑐 ∙
𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐
−∞

𝑤𝑤
𝑐𝑐=1    
𝑓𝑓(𝑌𝑌𝑐𝑐)𝑑𝑑𝑌𝑌𝑐𝑐 + ∫ $𝑁𝑁𝐶𝐶𝑐𝑐 ∙ 𝑓𝑓(𝑌𝑌𝑐𝑐)𝑑𝑑𝑌𝑌𝑐𝑐

∞
𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐

]                    (7) 
 
Where 
 

𝑓𝑓(𝑌𝑌𝑐𝑐) = 1
�2𝜋𝜋�̂�𝑠𝑐𝑐2

𝑒𝑒�−
1
2
�[𝑌𝑌𝑐𝑐−𝜇𝜇�𝑐𝑐]2

𝑠𝑠�𝑐𝑐2
��                              (8) 

 
𝐿𝐿[𝑌𝑌𝑐𝑐] = 𝑘𝑘𝑐𝑐[𝑌𝑌𝑐𝑐 − 𝑇𝑇𝑐𝑐]2                                  (9) 

 
𝐿𝐿𝐸𝐸𝐿𝐿𝑐𝑐 ≤ �̂�𝜇𝑐𝑐(x) ≤ 𝑈𝑈𝑈𝑈𝐿𝐿𝑐𝑐                                 (10) 

 
−1 ≤ 𝑥𝑥𝑖𝑖 ≤ 1                                             (11) 
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Where 𝐸𝐸[$𝐶𝐶𝑇𝑇] is the total expected cost (fitness 
function). 𝐿𝐿𝑈𝑈𝐿𝐿𝑐𝑐   y 𝑈𝑈𝑈𝑈𝐿𝐿𝑐𝑐 are the specification limits for lower 
and upper respectively for each of the quality characteristics, 
𝑌𝑌𝑐𝑐  is the quality characteristic (c=1,2 for the analysis case: 1 
for hardness, 2 for maximum load). 𝐿𝐿[𝑌𝑌𝑐𝑐] loss function for 
quality characteristic, $NC the manufacturing cost associated 
with non-conformance to specifications. �̂�𝜇𝑐𝑐(x) the regression 
model fitted for the mean of the quality characteristic c, �̂�𝑠𝑐𝑐2(x) 
is the fitted regression model for the variance of the quality 
characteristic c. 𝑓𝑓(𝑌𝑌𝑐𝑐) the normal distribution function as a 
function of the means �̂�𝜇𝑐𝑐(x) and variances �̂�𝑠𝑐𝑐2(x), 𝑇𝑇𝑐𝑐 is the 
target value for the quality characteristic, 𝑘𝑘𝑐𝑐 is the quality loss 
coefficient for the quality characteristic. In all cases, c 
changes as subscript to Maximum Load or Hardness. 

 
2.5 Characterization of rubber for shoe sole 

 
Footwear sole research presents important opportunity areas, 

as there is currently not much information or study references for 
this specific type of material. Modgil et al [23] presented a study 
on the modeling and duration of the shoe sole. Mares & 
Domínguez [24], presented a study on the optimization of quality 
characteristics in a polyurethane sole process using RPD and 
binomial responses. Derringer & Suich [25] proposed a 
modification in the desirability function and validated with a study 
in one type of rubber, the experiment presents variation in the 
formulation of the components and four quality responses analyzed 
with laboratory tests. On studies available for other types of rubber, 
Nandi et al [26], applied an optimization scheme based on genetic 
algorithms for the development of a silicone rubber reinforced with 
particles for smooth machining processes. Skrobak et al [27] 
analyzed the mechanical properties of rubber samples.  

The experimental tests for the case of analysis consist of 
carrying out tensile tests on rubber and thermoplastic 
elastomers under ASTM D412-06 [28], carried out on the 
universal laboratory machine, and testing hardness tests on 
rubber under the ASTM D2240-15 standard [29], made with 
the use of shore A scale durometer. The first test gives the 
maximum load data in kN and the second one gives the 
hardness data on shore A scale. Both characteristics are of the 
Nominal type and Target-is-the-best type. The main 
objective of the research is to obtain the optimal parameters 
in the vulcanization. Therefore, the best values are obtained 
in the response variables. Another goal is to reduce the effect 
of variability and the noise factor in the process. An example 
of noise is the ambient temperature and can have an effect on 
the temperature of the molds throughout the day. The 
optimization objective is the reduction of the variation and 
the reduction of the mean of the variables from the nominal 
or target values, while reducing the cost for non-compliance 
with quality. 

 
3. Materials and methods 

 
Fig. 2 shows the proposed methodology for the analysis case. 
Initially, a process analysis is carried out to detect critical 

variables, here the use of operation diagrams and cause and 
effect diagrams are recommended. Once the critical process 
(vulcanization) has been detected, the experimental factors 
and levels are defined according to the experts' knowledge, 

Figure 2. Proposed research methodology.  
Source: The authors 

 
 

the levels are defined based on the conditions of the process. 
Based on the number of factors and levels an experimental 
design is selected, based on the experimental runs the test 
specimens are produced. Once the specimens are identified, 
the experimental tests are carried out in the laboratory for the 
two quality responses, the experimental matrix is filled and 
data is captured in software. 

Normality tests are required on the experimental data because the 
objective function in eq. (8) it is modeled based on the normal 
distribution; it should be noted that other distributions can be worked 
once their own parameters are known. The regression models in eq. 
(1-3) are fitted and substituted in the optimization problem in eq. (7-
11). Finally, optimization is performed through the use of genetic 
algorithms to obtain the optimal levels for the control parameters. 

 
3.1 Process analysis 

 
The rubber sole manufacturing process begins with the 

weighing and mixing of raw materials (raw elastomeric rubber, 
fillers, carbonate base, silicates, oils, acids and chemicals. The 
mixing of materials is done in a mill called "bámbury", which 
works with special blades with temperature. The mixing is 
carried out in a specific time and a mixture of material in the form 
of paste is obtained. Subsequently, color pigments and 
accelerators are added on rotating roller machines. The material 
obtained is in the form of strips, which are taken to a cooling area. 
Then, material is brought to the cutting area by means of soles in 
the shape of the sole. The following process is considered the 
most important for obtaining quality characteristics, which is 
vulcanizing (Fig. 3). 

Here, the sole is shaped into molds with a combination of 
pressure, time and temperature and it is the area where more 
defects can be generated if the process parameters are not 
correct and well controlled. The final processes are carried 
out in the prefinishing area in which the characteristics of the 
sole are detailed through deburring, carding and brushing 
processes. Finally, the batching of the sole is carried out. 

 
3.2 Determination of experimental factors and levels and 

testing of specimens 
 
The experimental control factors are the pressure, time and 

mold temperature. The noise factor is the environmental 
temperature, which is a factor that can interact with the 
temperature of the molds causing variation throughout the day. It 
is desirable to reduce the effect of said factor in the process. 
Factors and experimental levels are shown in Table 2.  

 
Process 
Analysis

Determination 
of factors and 
experimental 

levels

production of 
specimens 

according to 
experimental 

design

Performing 
tensile tests 

on specimens

Performing 
hardess tests 
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Optimization 
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on genetic 
algorithms

Determination of 
the combined 

model and 
models for means 

and variances
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Figure 3. Vulcanization process in the press area  
Source: The authors 

 
 

Table 2.  
Experimental factors and levels  

Level Coded Pressure 
(psi) 

Time 
(min) 

Mold 
temperature 

(°C) 

Environmental 
Temperature 

(°C) 
  𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒛𝒛 
Low -1 1200 2.50 

 
145 Morning 

(25°C) 
Medium 0 1250 3.00 150 Noon     

(30°C) 
High 1 1300 3.50 155 Night        

(20°C) 
Source: The authors 

 
 

 
Figure 4. Box-Behnken design representation for three factors  
Source: The authors 

 
 
To carry out the experiment, a Box-Behnken design was 

selected. The design is applied when there are three or more 
factors and it has good orthogonality and rotatability 
properties, which can be found in [30].  

The design points are located at the edges of the cube 
centered at the origin. This design does not include vertex 
treatments that are sometimes very extreme and cannot be run 
due to process conditions. The representation of the design is 
shown in Fig. 4. 

 
Figure 5. Tensile tests in universal machine  
Source: The authors 

 
 

Table 3.  
Experimental matrix and data obtained 

Run Pressu
- re 

Time Tempe
-rature 

Environ
-mental 
Tempe-
rature 

Max 
Loa

d 

Hard-
ness 

 psi min °C °C kN Shore 
A 

 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒛𝒛 𝑌𝑌1  𝑌𝑌2 
1 -1 -1 0 0 0.42 68.0 
2 1 -1 0 0 0.34 66.0 
3 -1 1 0 0 0.40 65.7 
4 1 1 0 0 0.32 67.2 
5 0 0 -1 -1 0.36 68.7 
6 0 0 1 -1 0.36 69.0 
7 0 0 -1 1 0.30 66.8 
8 0 0 1 1 0.30 69.2 
9 -1 0 0 -1 0.42 68.8 
10 1 0 0 -1 0.38 64.2 
11 -1 0 0 1 0.38 69.5 
12 1 0 0 1 0.42 66.5 
13 0 -1 -1 0 0.36 67.2 
14 0 1 -1 0 0.38 67.3 
15 0 -1 1 0 0.40 69.3 
16 0 1 1 0 0.36 68.0 
17 -1 0 -1 0 0.44 68.2 
18 1 0 -1 0 0.36 68.7 
19 -1 0 1 0 0.40 67.5 
20 1 0 1 0 0.34 68.7 
21 0 -1 0 -1 0.38 66.7 
22 0 1 0 -1 0.38 68.2 
23 0 -1 0 1 0.32 68.2 
24 0 1 0 1 0.38 67.3 
25 0 0 0 0 0.40 67.0 
26 0 0 0 0 0.36 66.2 
27 0 0 0 0 0.32 66.5 

Source: The authors 
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The experimental tests were carried out on a universal 
laboratory machine (Fig. 5). The ASTM D412-06a procedure 
contains the methodology to evaluate the tensile properties of 
thermoplastic rubber and elastomers. The test evaluates the 
residual elongation of a test sample, which consists of 
permanent (plastic) and recovery (elastic) components. It is 
important to take time and burden into account for testing. 
The applied method is the A, in which specimens in halter 
form with standard measurements are used. The response 
variable evaluated in the test is the maximum load, measured 
in kN. 

 
3.3 Testing of specimens 

 
The data obtained through the tests of tension and 

hardness in the rubber specimens are shown in Table 3. 
From the data obtained, the least squares method is used 

to fit the eq models. (1) - (3). 
 

3.4 Normality test in the data  
 
Given that the proposed objective function proposes the 

analysis of the distribution of the variables and normal 
behavior is assumed; it is necessary to verify compliance with 
the assumption in the two response variables. 

 

 
Figure 6. Normal probability plot for Max Load  
Source: The authors 

 

 
Figure 7. Normal probability plot for Hardness  
Source: The authors 

Fig. 6 shows the normal probability graph for the 
maximum load variable. The graph shows a distribution of 
the points around the line and little variation at the ends. The 
Anderson-Darling test indicates a P value = 0.262> α = 0.05, 
which indicates that the idea that the data comes from a 
normal distribution with parameters 𝜇𝜇 = 0.3696 y 𝜎𝜎 =
0.03736 cannot be rejected. 

Fig. 7 shows the normal probability graph for the 
hardness variable. A distribution of the data is observed 
mainly around the line and little variation in the extreme data. 
The Anderson-Darling test shows a value P = 0.540> α = 
0.05, which indicates that the idea that the data comes from a 
normal distribution with parameters 𝜇𝜇 = 67.58 y 𝜎𝜎 = 1.270 
cannot be rejected. 

 
4.  Results 

 
4.1 Determination of the models  

 
For the determination of the models in eq. (1) it is 

necessary to particularly maintain the control x noise 
interactions to determine the variance model in eq. (3). There 
are no significant elements in the model, but they are 
maintained in order to cover the previous requirement. Only 
terms 𝑥𝑥2,𝑥𝑥1𝑥𝑥2 y 𝑥𝑥3𝑧𝑧  are removed which yielded a value of 
𝛽𝛽 = 0, likewise the interaction 𝑧𝑧2, which is not necessary for 
the variance model. The four terms are eliminated to gain 
degrees of freedom in the error, the model is shown in eq. 
(12). 

 
𝑌𝑌�𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿 =  0.357037− 0.025𝑥𝑥1− 0.00333333𝑥𝑥3− 0.015𝑍𝑍+

0.0277778𝑥𝑥12 + 0.005𝑥𝑥1𝑥𝑥3 + 0.02𝑥𝑥1𝑍𝑍 + 0.00527778𝑥𝑥22 −
0.015𝑥𝑥2𝑥𝑥3 + 0.015𝑥𝑥2𝑍𝑍 − 0.00472222𝑥𝑥32                                 (12) 
 
The model presents a value of 𝑅𝑅2 = 53.2755 %, a 

standard deviation of the residuals = 0.0325569. The analysis 
of the residuals for the model is shown in Fig. 8. 

The assumption of normality is adequately met in the 
residuals. Homoscedasticity is also fulfilled in the absence of 
patterns or funnel shapes in the residual vs. fits plot. The 
assumption of independence is also fulfilled in the absence of 
detectable patterns in the data, indicating the absence of 
autocorrelation in the data. 

 

 
Figure 8. Residual Plots for Max Load   
Source: The authors  
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�̂�𝜇𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿 =  0.357037− 0.025𝑥𝑥1− 0.00333333𝑥𝑥3 +
0.0277778𝑥𝑥12 + 0.005𝑥𝑥1𝑥𝑥3 + 0.00527778𝑥𝑥22 − 0.015𝑥𝑥2𝑥𝑥3 −

0.00472222𝑥𝑥32             (13) 
 
�̂�𝑠𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿
2 = [−0.015 + 0.02𝑥𝑥1 + 0.015𝑥𝑥2]2𝜎𝜎𝑥𝑥1

2 + 𝑠𝑠12    (14) 
 
From the previous model the models for the mean in eq 

are defined. (13)  and the variance in eq. (14). For the 
variance model it is assumed that 𝜎𝜎𝑥𝑥1

2 = 1 and 𝑠𝑠12 it is 
estimated from the central points of the design as 𝑠𝑠12 =
0.001059951738, leaving the model as eq. (15). 

 
�̂�𝑠𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿
2 = [−0.015 + 0.02𝑥𝑥1 + 0.015𝑥𝑥2]2 + 0.001059951738       

(15) 
 
In the model for hardness only the term 𝑧𝑧2 is eliminated to gain 

degrees of freedom in the error, the model is shown in the eq. (16). 
 

𝑌𝑌�𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠  =  67.1444− 0.533333𝑥𝑥1− 0.141667𝑥𝑥2 + 0.4𝑥𝑥3 +
0.158333𝑍𝑍− 0.0791667𝑥𝑥12 + 0.875𝑥𝑥1𝑥𝑥2 + 0.175𝑥𝑥1𝑥𝑥3 +

0.4𝑥𝑥1𝑍𝑍 − 0.0666667𝑥𝑥22 − 0.35𝑥𝑥2𝑥𝑥3 − 0.6𝑥𝑥2𝑍𝑍 + 1.12083𝑥𝑥32 +
0.525𝑥𝑥3𝑍𝑍                   (16) 

 
The model presents a value of 𝑅𝑅2 = 51.55 %, a standard 

deviation value for the residuals = 1,24979. The analysis of 
the residuals for the model is shown in Fig. 9. 

The assumption of normality is adequately met in the residuals. 
Homoscedasticity is also fulfilled in the absence of patterns or 
funnel shapes in the residual vs. fits plot. The assumption of 
independence is also fulfilled in the absence of detectable patterns 
in the data, indicating the absence of autocorrelation in the data. 

 
�̂�𝜇𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠  =  67.1444− 0.533333𝑥𝑥1− 0.141667𝑥𝑥2 + 0.4𝑥𝑥3−

0.0791667𝑥𝑥12 + 0.875𝑥𝑥1𝑥𝑥2 + 0.175𝑥𝑥1𝑥𝑥3 − 0.0666667𝑥𝑥22 −
0.35𝑥𝑥2𝑥𝑥3 + 1.12083𝑥𝑥32                   (17) 

 
�̂�𝑠22 𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 = [0.158333 + 0.4𝑥𝑥1 − 0.6𝑥𝑥2 + 0.525𝑥𝑥3]2𝜎𝜎𝑥𝑥2

2 + 𝑠𝑠22                               
(18) 

 
From the previous model, the models for the mean in eq are 

defined. (17) and the variance in eq. (18). For the variance model it 
is assumed that 𝜎𝜎𝑥𝑥1

2 = 1 and 𝑠𝑠12 it is estimated from the central points 
of the design as 𝑠𝑠12 = 1.561975044, leaving the model as eq. (19). 

 

 
Figure 9. Residual Plots for Hardness   
Source: The authors 

�̂�𝑠22 𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 = [0.158333 + 0.4𝑥𝑥1 − 0.6𝑥𝑥2 + 0.525𝑥𝑥3]2 +
1.561975044            (19) 

 
Once the models for the mean and variance of the 

maximum load and hardness have been obtained, the 
optimization scheme is applied. 

 
4.2 Optimization by genetic algorithms  

 
For the application of the experimental scheme indicated 

in the eq. (8)-(12) the following elements are defined: the cost 
or loss for repairing a product when it does not meet any of 
the quality variables is defined as 𝐴𝐴0 = $50. Tolerances for 
maximum load = 0.35 kN ± 0.01 kN, tolerances for hardness = 
67.5 Shore A ± 3 Shore A. therefore the constant 𝑘𝑘𝑀𝑀𝑉𝑉𝑥𝑥 𝐿𝐿𝐿𝐿𝑉𝑉𝑑𝑑  is 
defined in the eq. (20) and the constant 𝑘𝑘𝐻𝐻𝑉𝑉𝑉𝑉𝑑𝑑𝑀𝑀𝑒𝑒𝑠𝑠𝑠𝑠 is shown in eq. 
(21). 

 
𝑘𝑘𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿 = 𝐴𝐴0

∆02
= $50

0.022
= 125000                   (20) 

 
𝑘𝑘𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 = 𝐴𝐴0

∆02
= $50

62
= 1.39                     (21) 

 
The specification limits for Maximum Load are defined as 

𝐿𝐿𝑈𝑈𝐿𝐿𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿 = 0.25 𝑘𝑘𝑁𝑁 and 𝑈𝑈𝑈𝑈𝐿𝐿𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿 = 0.45𝑘𝑘𝑁𝑁. Target 
value is 𝑇𝑇𝑀𝑀𝑉𝑉𝑥𝑥 𝐿𝐿𝐿𝐿𝑉𝑉𝑑𝑑 = 0.35 𝑘𝑘𝑁𝑁. The specification limits for 
hardness are defined as 𝐿𝐿𝑈𝑈𝐿𝐿𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 = 64.5 𝑈𝑈ℎ𝐿𝐿𝑉𝑉𝑒𝑒 𝐴𝐴 and 
𝑈𝑈𝑈𝑈𝐿𝐿𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 = 70.5 𝑈𝑈ℎ𝐿𝐿𝑉𝑉𝑒𝑒 𝐴𝐴, Target value is 𝑇𝑇ℎ𝑉𝑉𝑉𝑉𝑑𝑑𝑀𝑀𝑒𝑒𝑠𝑠𝑠𝑠 =
67.5 𝑈𝑈ℎ𝐿𝐿𝑉𝑉𝑒𝑒 𝐴𝐴. 

The loss function for maximum load is defined in eq. (22), 
the model 𝜇𝜇�𝑀𝑀𝑉𝑉𝑥𝑥 𝐿𝐿𝐿𝐿𝑉𝑉𝑑𝑑 is the one shown in eq. (13). The loss 
function for hardness is shown in eq. (23), the model �̂�𝜇𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 
is the one shown in the eq. (17).  

 
𝐿𝐿[𝑌𝑌𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿] = 125000[�̂�𝜇𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿 − 0.35]2      (22) 

 
𝐿𝐿[𝑌𝑌𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠] = 1.39[�̂�𝜇𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 − 67.5]2       (23) 

 
The model for the normal distribution based on the 

estimated means and variances is shown in the eq. (24-25). 
 

𝑓𝑓(𝑌𝑌𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿) = 1

�2∗𝜋𝜋∗�̂�𝑠𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿𝐿𝐿𝑀𝑀𝐿𝐿
2

𝑒𝑒
�−1

2
��𝑌𝑌𝑐𝑐−𝜇𝜇

�𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿𝐿𝐿𝑀𝑀𝐿𝐿�
2

𝑠𝑠�𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿𝐿𝐿𝑀𝑀𝐿𝐿
2 ��

     (24) 

 

𝑓𝑓(𝑌𝑌𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑒𝑒𝑠𝑠𝑠𝑠) = 1

�2∗𝜋𝜋∗𝑠𝑠�𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠
2

𝑒𝑒
�−1

2
��𝑌𝑌𝑐𝑐−𝜇𝜇

�𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠�
2

𝑠𝑠�𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠
2 ��

      (25) 

 
The cost of non-compliance $𝑁𝑁𝐶𝐶𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿 =

$𝑁𝑁𝐶𝐶𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 = $50. Once all the terms are known, we proceed to 
substitute all the elements in the objective function shown in eq. (26). 

 
𝑀𝑀𝑑𝑑𝑀𝑀 𝐸𝐸[$𝐶𝐶𝑇𝑇] = �∫ 𝐿𝐿[𝑌𝑌𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿] ∙0.36

0.34

𝑓𝑓(𝑌𝑌𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿)𝑑𝑑𝑌𝑌𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿 +∫ $50 ∙0.34
−∞ 𝑓𝑓(𝑌𝑌𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿)𝑑𝑑𝑌𝑌𝑀𝑀𝑀𝑀𝑥𝑥 𝑙𝑙𝐿𝐿𝑀𝑀𝐿𝐿 +

∫ $50 ∙ 𝑓𝑓(𝑌𝑌𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿)𝑑𝑑𝑌𝑌𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿
∞
0.36 �+ �∫ 𝐿𝐿[𝑌𝑌𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠] ∙70.5

64.5

𝑓𝑓(𝑌𝑌𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠)𝑑𝑑𝑌𝑌𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 +∫ $50 ∙64.5
−∞ 𝑓𝑓(𝑌𝑌𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠)𝑑𝑑𝑌𝑌𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 +

∫ $50 ∙ 𝑓𝑓(𝑌𝑌𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠)𝑑𝑑𝑌𝑌𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠
∞
70.5 �                 (26) 
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The constraints for the optimization problem are defined 
as eq. (27-31). 

 
0.34 𝑘𝑘𝑁𝑁 ≤ �̂�𝜇𝑀𝑀𝑀𝑀𝑥𝑥 𝑈𝑈𝐿𝐿𝑀𝑀𝐿𝐿(x) ≤ 0.36 𝑘𝑘𝑁𝑁               (27) 

 
64.5 𝑈𝑈ℎ𝐿𝐿𝑉𝑉𝑒𝑒 𝐴𝐴 ≤ �̂�𝜇𝐻𝐻𝑀𝑀𝐻𝐻𝐿𝐿𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠(x) ≤ 70.5 𝑈𝑈ℎ𝐿𝐿𝑉𝑉𝑒𝑒 𝐴𝐴     (28) 

 
−1 ≤ 𝑥𝑥1 ≤ 1                                         (29) 

 
−1 ≤ 𝑥𝑥2 ≤ 1                                         (30) 

 
−1 ≤ 𝑥𝑥3 ≤ 1                                         (31) 

 
The initial parameters for the genetic algorithm are shown 

in Table 4. 
Fig. 10 shows the scoring histogram obtained with the genetic 

algorithm. The algorithm converges in iteration five with 
approximately 40 individuals on the optimal value. The coded 
values obtained for 𝑥𝑥1 = −0.007, 𝑥𝑥2 = 0.904 and 𝑥𝑥3 = 0.632. 
The value obtained for the function 𝐸𝐸[$𝐶𝐶𝑇𝑇] = 38.79277383. 

Fig. 11 shows the graph of the distribution of the hardness 
variable with the optimal values obtained in superposition 
with the loss function. It can be seen that the area of the 
distribution that exceeds the specification limits is the 
minimum possible under the experimental conditions. 

The mean is very close to the Target value where the loss is 
zero. It is observed that the optimization objective is met by 
minimizing the variation and reducing the distance from the 
mean to the Target value. The expected cost is a function of the 
distribution area that goes beyond the specification limits.  

Fig. 12 shows the distribution with optimal parameters 
and the loss function for the variable maximum load. It is 
observed that the variation of the distribution is little and the 
specification limits are not exceeded. The mean value is close 
to the Target value where the loss is zero. 

 
Table 4.  
Start parameters for the algorithm 

Parameter Value 
Elite count 2.5 
Initial Population Size 50 
Crossover fraction 0.8 
Migration fraction 0.2 
Migration interval 20 
Generations limit 300 
Time limit No 
Function tolerance 1x10^6 
Restriction tolerance 1x10^-3 

Source: The authors 
 
 

 
Figure 10. Average Distance Between Individuals   
Source: The authors 

 
Figure 11. Loss Function and distribution with Optimal parameters for Hardness   
Source: The authors 

 
 

 
Figure 12. Loss Function and distribution with Optimal parameters for Max Load   
Source: The authors 

 
 
Optimization objectives are considered met by reducing 

the variance and reducing the distance between the mean and 
the Target value. It is observed that this variable contributes 
very little to the expected cost because it is under control. 

 
4.3 Discussion 

 
The analysis of results yielded the optimal levels for the 

vulcanization process. The main objectives of the multi-objective 
RPD are to reduce the variation around the mean and to reduce 
the distance of the Target value from the mean. The mentioned 
objectives must be satisfied for all the quality variables involved. 

 
Table 5.  
Parameter performance comparison 

Parameter Usual Optimum 
Pressure -coded level- 0 -0.007 

Time -coded level- 0 0.904 
Temperature -coded level- 0 0.632 

Pressure -real level- 1250 psi 1249.6 psi 
Time -real level- 3 min 3.45 min 

Temperature -real level- 150 °C 153.16°C 
𝝁𝝁𝑴𝑴𝑴𝑴𝒙𝒙 𝒍𝒍𝒍𝒍𝑴𝑴𝒍𝒍 0.3570370 kN 0.3489415 kN 

𝝁𝝁𝑯𝑯𝑴𝑴𝑯𝑯𝒍𝒍𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 
67.144400 
Shore A 

67.4597918 
Shore A 

𝑯𝑯𝑴𝑴𝑴𝑴𝒙𝒙 𝒍𝒍𝒍𝒍𝑴𝑴𝒍𝒍 0.0012849 kN 0.0010624 kN 

𝑯𝑯𝑯𝑯𝑴𝑴𝑯𝑯𝒍𝒍𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 
1.5870443 
Shore A 

1.5650074 
Shore A 

Combined Loss 882.8381103 -132.162049 
𝑬𝑬[$𝑪𝑪𝑪𝑪] $40.8585 $38.7927 

Source: The authors 
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Performing a comparison of the optimum levels obtained 
with the usual levels of the process, the values indicated in 
Table 5 are obtained. 

Defining the combined loss as ∑ 𝑘𝑘𝑐𝑐[𝜎𝜎2 + (𝜇𝜇− 𝑇𝑇𝑐𝑐)]𝑐𝑐
𝑐𝑐=1 . 

Table 5 shows a comparison of the usual parameters used in 
the process and the optimal parameters obtained, a reduction 
in the variation in both the Maximum Load and the hardness 
is observed. The mean value is closest to the Target value in 
the two variables. The combined loss is significantly reduced 
with the use of the optimal parameters. The total expected 
cost value is reduced with the use of optimal parameters.  

All the reviewed indicators indicate the fulfillment of the 
objectives of the proposed optimization scheme; with which 
the efficiency of the scheme is verified to obtain the optimal 
parameters of the process for the fulfillment of the quality 
characteristics.   

 
5. Conclusions 

 
RPD is a technique for quality improvement with 

application in various industrial processes. The evolution of 
the methodology allows the analysis of more complex 
processes in which more than one characteristic or objective 
of quality improvement is involved. The multi-objective 
analysis of the RPD allows obtaining compromise solutions 
that adequately meet various objectives in a process. 

The sole manufacturing process is an area that requires 
research, as there is currently not much information in the 
state of the art. It is required to define the standards for the 
definition of a high-quality product that can compete in the 
market according to world quality requirements. The 
proposal presented allows knowing the best parameters in the 
vulcanization process of rubber for sole assuming that the 
formulation variables are ideal. 

Future research plans include sequential experimentation 
schemes that include formulation elements. The parameters 
obtained in the rubber sole manufacturing process are 
feasible to apply in the real process and represent a potential 
improvement in quality and savings in the process. 

Based on the present proposal, the aim is to work with the 
schemes with characteristics of the type: the smallest is better 
and the largest is better, in order to make comparisons with 
other existing optimization schemes and the analysis of their 
effectiveness. 

The use of an evaluation criterion is important in the use 
of optimization problems. The economic criterion is the most 
important indicator to use and represents an efficient starting 
point for continuous quality improvement. It was noted that 
the way in which the expected cost can be reduced is to either 
reduce the variation; or reduce the distance from the mean to 
the Target value. 

 
References 

 
[1] Taguchi, G., Chowdhury, S. and Wu, Y., Taguchi’s Quality 

Engineering Handbook. John Wiley & Sons, Inc. 2004. DOI: 
10.1002/9780470258354 

[2] Nair, V.N., Abraham, B., MacKay, J., Nelder, J.A., Box, G., Phadke, 
M.S., Kacker, R.N., Sacks, J., Welch, W.J., Lorenzen, T.J., 
Shoemaker, A.C., Tsui, K.L., Lucas, J.M., Taguchi, S., Myers, R.H., 
Vining, G.G. and Wu, C.F.J., Taguchi’s Parameter design: a panel 

discussion. Technometrics, 34(2), pp. 127-161, 1992. DOI: 
10.2307/1269231 

[3] Myers, R.H., Khuri, A.I. and Vining, G., Response surface 
alternatives to the Taguchi Robust Parameter Design approach. 
American Statistician, 46(2), pp. 131-139, 1992. DOI: 
10.1080/00031305.1992.10475869 

[4] Kim, K.J. and Lin, D.K.J., Dual response surface optimization: a 
fuzzy modeling approach. Journal of Quality Technology, 30(1), pp. 
1-10, 1998. DOI: 10.1080/00224065.1998.11979814 

[5] Kim, Y.J. and Cho, B.R., Development of priority-based robust 
design. Quality Engineering, 14(3), pp 355-363, 2002. DOI: 
10.1081/QEN-120001874 

[6] Del Castillo, E. and Montgomery, D.C., A Nonlinear programming 
solution to the dual response problem, Journal of Quality Technology. 
25(3), pp. 199-204, 1993. DOI: 10.1080/00224065.1993.11979454 

[7] Köksoy, O. and Doganaksoy, N., Joint optimization of mean and 
standard deviation using response surface methods. Journal of Quality 
Technology, 35(3), pp. 239-252, 2003. DOI: 
10.1080/00224065.2003.11980218 

[8] Copeland, K.A.F. and Nelson, P.R., Dual response optimization via 
direct function minimization. Journal of Quality Technology, 28(3), 
pp. 331-336, 1996. DOI: 10.1080/00224065.1996.11979683 

[9] Lin, D.K.J. and Tu, W., Dual response surface optimization. Journal 
of Quality Technology, 27(1), pp. 34-39, 1995. DOI: 
10.1080/00224065.1995.11979556 

[10] Welch, W.J., Yu, T.-K., Kang, S.M. and Sacks, J., Computer 
experiments for quality control by parameter design. Journal of 
Quality Technology, 22(1), pp. 15-22, 1990. DOI: 
10.1080/00224065.1990.11979201 

[11] Sharma, S.K. and Kumar, V., Optimal selection of third-party 
logistics service providers using quality function deployment and 
Taguchi loss function. Benchmarking, 22(7), pp. 1281-1300, 2015. 
DOI: 10.1108/BIJ-02-2014-0016 

[12] Pandey, D., Kulkarni, M.S. and Vrat, P., A methodology for 
simultaneous optimisation of design parameters for the preventive 
maintenance and quality policy incorporating Taguchi loss function. 
International Journal of Production Research, 50(7), pp. 2030-2045, 
2012. DOI: 10.1080/00207543.2011.561882 

[13] Pi, W.N. and Low, C., Supplier evaluation and selection via Taguchi 
loss functions and an AHP. International Journal of Advanced 
Manufacturing Technology, 27, pp. 625-630, 2006. DOI: 
10.1007/s00170-004-2227-z 

[14] Harrington, E.C. The desirability function. Industrial Quality Control, 
21, pp. 494-498, 1965. 

[15] Wu, F.C. and Chyu, C.C., Optimization of robust design for multiple 
quality characteristics. International Journal of Production Research, 
42(2), pp. 337-354, 2004. DOI: 10.1080/0020754032000123605 

[16] Hsieh, K.L. Employing Artificial Neural Networks into achieving 
parameter optimization of multi-response problem with different 
importance degree consideration. Information Technology Journal, 
9(5), pp. 918-926, 2010. DOI: 10.3923/itj.2010.918.926 

[17] Pal, S. and Gauri, S.K., Optimization of multi-response dynamic 
systems integrating multiple regression and Taguchi’s dynamic 
signal-to-noise ratio concept. International Journal of Engineering, 
Science and Technology, 9(1), pp. 16-33, 2017. DOI: 
10.4314/ijest.v9i1.2 

[18] Fang, J., Gao, Y., Sun, G., Xu, C. and Li, Q., Multiobjective robust 
design optimization of fatigue life for a truck cab. Reliability 
Engineering and System Safety, 135, pp. 1-8, 2015. DOI: 
10.1016/j.ress.2014.10.007 

[19] Le Chau, N., Dang, V.A., Le, H.G. and Dao, T.P., Robust parameter 
design and analysis of a leaf compliant joint for micropositioning 
systems. Arabian Journal for Science and Engineering, 42, pp. 4811-
4823, 2017. DOI: 10.1007/s13369-017-2682-0 

[20] Nejlaoui, M., Houidi, A., Affi, Z. and Romdhane, L., Multiobjective 
robust design optimization of rail vehicle moving in short radius 
curved tracks based on the safety and comfort criteria. Simulation 
Modelling Practice and Theory, 30, pp. 21-34, 2013. DOI: 
10.1016/j.simpat.2012.07.012 

[21] Goldberg, D.E., Genetic algorithms in search, optimization, and 
machine learning. Addison-Wesley Longman Publishing Co., Inc. 



Mares-Castro / Revista DYNA, 88(216), pp. 160-169, January - March, 2021 

169 

Boston, United States, [online]. 1989, 372 P. Available at: 
https://dl.acm.org/citation.cfm?id=534133 

[22] Ziegel, E., Genetic algorithms and engineering optimization. 
Technometrics, 2002. DOI: 10.1198/tech.2002.s675 

[23] Modgil, V., Sharma, S.K. and Singh, J., Simulation, modeling and 
availability analysis of sole lasting unit in shoe making industry: a 
case study. International Journal of Industrial Engineering: Theory 
Applications and Practice, [online]. 19(2), pp. 80-89, 2012. Available 
at: https://journals.sfu.ca/ijietap/index.php/ijie/article/view/664 

[24] Mares, A. and Dominguez, J., Robust Design in generalised linear 
models for improving the quality of polyurethane soles. The South 
African Journal of Industrial Engineering, 26(3), pp. 152-166, 2015. 
DOI: 10.7166/26-3-1181 

[25] Derringer, G. and Suich, R., Simultaneous optimization of several 
response variables. Journal of Quality Technology, 12(4), pp. 214-
219, 1980. DOI: 10.1080/00224065.1980.11980968 

[26] Nandi, A.K., Deb, K. and Datta, S., Genetic algorithm-based design 
and development of particle-reinforced silicone rubber for soft tooling 
process. Materials and Manufacturing Processes, 28(7), pp. 753-760, 
2013. DOI: 10.1080/10426914.2013.773022 

[27] Skrobak, A., Stanek, M., Manas, D., Ovsik, M., Senkerik, V. and 
Reznicek, M., Mechanical properties of rubber samples. Key 
Engineering Materials, 606, pp. 249-252, 2014. DOI: 
10.4028/www.scientific.net/KEM.606.249 

[28] ASTM Int. D412-06: Standard test methods for vulcanized rubber and 
thermoplastic Elastomers-Tension. ASTM International, West 
Conshohoken, PA, USA, 2016. DOI: 10.1520/D0412-06AR13.2 

[29] ASTM Int. D2240-15: Standard test method for rubber property — 
Durometer hardness. ASTM International, West Conshohoken, PA, 
USA, 2015. DOI: 10.1520/D1415-06R12.2 

[30] Box, G.E.P. and Behnken, D.W., Some new three level designs for 
the study of quantitative variables. Technometrics, 2(4), pp. 455-475, 
1960. DOI: 10.1080/00401706.1960.10489912 

 
 

A. Mares-Castro, graduated from the Instituto Tecnológico de León of 
León, Mexico in 2001. He has experience in companies in the manufacturing 
branch in the areas of quality, production and engineering. He obtained his 
MSc. in 2011 and his Dr. in 2016. Both by the inter-institutional science and 
technology postgraduate course (PICYT) of the national science and 
technology council CONACYT of Mexico at the CIATEC -Center for 
Applied Innovation in Competitive Technologies-. He is currently a titular 
professor at the Instituto Tecnológico Superior de Purísima del Rincón at the 
Industrial Engineering department. He has the desirable profile by Prodep 
and is a representative of the academic body "Engineering of Quality, 
Productivity and Innovation" recognized by the TecNM and Prodep. His 
research interests are quality engineering, process optimization, simulation 
and design of experiments. 
ORCID ID: 0000-0003-3884-958X 


	1. Introduction
	2. Generalization and approach of the proposal
	2.1 Combined array, models for mean and variance
	2.2 Quadratic loss function
	2.3 Multi- Objective Optimization in RPD
	2.4 Genetic Algorithms and Proposed Optimization Problem
	2.5 Characterization of rubber for shoe sole

	3. Materials and methods
	3.1 Process analysis
	3.2 Determination of experimental factors and levels and testing of specimens
	3.3 Testing of specimens
	3.4 Normality test in the data

	4.  Results
	4.1 Determination of the models
	4.2 Optimization by genetic algorithms
	4.3 Discussion

	5. Conclusions
	References

