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Abstract 
The concept of a pedal curve is used in geometry as a generation method for a multitude of curves. The definition of a pedal curve is linked 
to the concept of minimal distance. However, an interesting distinction can be made for ℝ2. In this space, the pedal curve of another curve 
C is defined as the locus of the foot of the perpendicular from the pedal point P to the tangent to the curve. This allows the generalization 
of the definition of the pedal curve for any given angle that is not 90º.  
In this paper, we use the generalization of the pedal curve to describe a different method to generate a limaçon of Pascal, which can be seen 
as a singular case of the locus generation method and is not well described in the literature. Some additional properties that can be deduced 
from these definitions are also described. 
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Generalización del concepto de curva podal en espacios 
bidimensionales. Aplicación a la Limaçon de Pascal 

 
Resumen 
El concepto de curva podal está extendido en la geometría como un método generativo para multitud de curvas. La definición de curva 
podal está ligada al concepto de mínima distancia. Sin embargo, es posible hacer una interesante distinción en el espacios ℝ2. En este caso, 
la curva podal de otra curva C se define como el lugar geométrico de los pies de las perpendiculares desde un punto P a las tangentes a la 
curva. Esto permite generalizar la definición de curva podal a cualquier ángulo que no sea 90º.  
En este artículo utilizamos la generalización de curva podal para describir un método diferente de generación de la Limaçon de Pascal, que 
puede relacionarse como un caso particular del método de generación por lugares geométricos y que no se encuentra bien descrito en la 
literatura. También se describen algunas propiedades que pueden deducirse de estas definiciones. 
 
Palabras clave: geometría; curva podal; distancia; angularidad; Limaçon de Pascal. 

 
 
 

1. Introduction 
 
Traditionally, the concept of a pedal curve is associated 

with minimum distance, and thus with orthogonality. For any 
n-dimensional space (e.g., in ℝ3, see Fig. 1a) given a 
hypersurface C and a fixed point P (named pedal point), the 
pedal hypersurface S is defined as the locus of points Q of the 
minimum distance between the pedal point P and every 
hyperplane tangent to C [1].  

 
How to cite: Sánchez-Ramos, I., Meseguer-Garrido, F., Aliaga-Maraver, J.J. and Raposo-Grau, J.F., Generalization of the pedal concept in bidimensional spaces. Application to 
the limaçon of Pascal.. DYNA, 88(216), pp. 196-202, January - March, 2021 

Minimal distance, associated with a Euclidean norm, is 
intrinsically linked to the concept of perpendicularity. The 
traditional definition of a pedal curve in two-dimensional 
spaces is derived from this, as illustrated in Fig. 1b. Thus, the 
pedal curve of another curve C with respect to a point P, 
called the pedal point, is defined as the locus of the foot of 
the perpendicular from P to a variable tangent to C [2,3].  

As shown in Fig. 1c, this concept is susceptible to 
generalization, only in ℝ2, to any angularity condition [4], 
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Figure 1 Pedal generation concept in three dimensions (a), in two dimensions 
(b), and the generalization of the concept to any angle (c).  
Source: The authors. 

 
 

that is, to any given angle different from 90º. Applying this 
generalization, we can obtain a family of curves of the same 
category related by rotation and homothety. 

The limaçon of Pascal is a curve that emerges from the 
application of the pedal concept to a circle [2]. It is possible 
to use the generalization of the pedal curve to describe a 
different method to generate a limaçon of Pascal that, to the 
best of our knowledge, is not described in the literature. This 
definition can be seen as a singular case of the locus 
generation method proposed as a problem first in [5] (with 
some inaccuracies), and described in further detail in [6,7]. 

 
1.1 Types of Limaçons 

 
The traditional classification of a limaçon is based on its 

morphology. The different types are looped, with a cusp 
(cardioid), dimpled, flat, and convex. However, for the purposes 
of our discussion, a different classification is more convenient. 

As is known, the limaçon of Pascal is the inverse of a 
conic, when the center of inversion is one of the foci of that 
conic [8]. It is easy to check it using the polar equation (eq. 
1) of a conic with a focus as a pole:  

 
𝑟𝑟′ = 𝑑𝑑

𝑒𝑒
1 + 𝑒𝑒 cos𝜃𝜃  

 
(1) 

where e is the eccentricity of the conic, and d is the 
distance to the directrix. 

The inverse of this curve with regard to the origin, which, as 
previously mentioned, is one of the foci of the conic, will fulfill 
the inversion statement 𝑂𝑂𝑂𝑂 ⋅ 𝑂𝑂𝑂𝑂′ = 𝑟𝑟 ⋅  𝑟𝑟′ = 𝑘𝑘2. Solving for r 
(eq. 2), we obtain the polar equation 𝑟𝑟 = 𝑏𝑏 + 𝑎𝑎 cos(𝜃𝜃) of the 
limaçon.  

 

𝑟𝑟 =
𝑘𝑘2

𝑟𝑟′ =
𝑘𝑘2

𝑒𝑒𝑑𝑑
1 + 𝑒𝑒 cos(𝜃𝜃)

=
𝑘𝑘2

𝑒𝑒𝑑𝑑+
𝑘𝑘2

𝑑𝑑 cos(𝜃𝜃)

= 𝑏𝑏 + 𝑎𝑎 cos(𝜃𝜃) 

(2) 

 
Depending on the type of conic, owing to its eccentricity, 

we obtain a different type of limaçon. It is easy to check, if 
we consider the ratio 𝑏𝑏/𝑎𝑎 in eq. (2), which is 𝑘𝑘

2

𝑒𝑒𝑒𝑒
/ 𝑘𝑘2

𝑒𝑒
= 1

𝑒𝑒
. 

Therefore, we can classify them as shown in Table 1. 
According to this definition, we can distinguish three types of 

limaçons: elliptical (Fig. 2a), parabolic (Fig. 2b), and hyperbolic 
(Fig. 2c). This nomenclature is used in the remainder of this 
paper. Note that the focus that serves as the center of inversion is 
a point of importance in all three types of limaçons. 

 
2. Generalization of the pedal concept in bidimensional 
spaces 

 
As mentioned in Section 1, in ℝ2 spaces, the pedal curve 

of curve C is traditionally defined as the locus of the foot of 
the perpendicular from the pedal point to the tangent to the 
curve Q. Thus, a problem related to distance becomes a 
problem about perpendicularity that is susceptible to being 
generalized to any angularity because perpendicularity is the 
limit case when two elements form a 90º angle between them. 

 
Table 1. 
Types of limaçon according to the eccentricity of the conic to which it is 
inverse.  

Conic ∣ 𝒆𝒆 ∣ ∣
𝟏𝟏
𝒆𝒆
∣ Limaçon 

Ellipse 0 <∣ 𝑒𝑒 ∣< 1 ∞ >∣
1
𝑒𝑒
∣> 1 

Convex, flat, and 
dimpled limaçon 

Parabola 1 1 Cardioid 

Hyperbola 1 <∣ 𝑒𝑒 ∣ 1 >∣
1
𝑒𝑒

 
Limaçon with 

loop 
Source: The authors. 

 
 

 
Figure 2 Three different types [elliptical (a), parabolic (b), and hyperbolic 
(c)] of limaçons according to the inverse conic.  
Source: The authors. 

(b) (c) (a) 

(a) 

(b) (c) 
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Figure 3 Generalization of the pedal concept applied to a hyperbola. 
Source: The authors. 

 
 
As shown in Fig. 3, the result of generalizing the pedal 

concept to any angle is a family of curves of the same nature. In 
most cases, the curves are tangent to curve C, although not always 
for smaller angles, as will be explained in further sections. The 
relationship between the traditional pedal curve (the one that is 
formed by the foot Q0 of the line perpendicular to the tangent) 
and the rest of the curves of the family is a rotation with center P 
and angle ±(90º − α) and a homothety with center P and a 
factor of homothety 𝑃𝑃𝑄𝑄𝑛𝑛

𝑃𝑃𝑄𝑄0
= 1

sin α
. 

 
3.  Limaçon as generalization of the pedal method 

 

Using the traditional pedal concept for 90º, let C be the 
circle with polar equation 𝑟𝑟 = 𝑎𝑎 cos𝜃𝜃 and P be the pedal 
point. The pedal curve obtained is the curve with the equation 
𝑟𝑟 = 𝑏𝑏 + 𝑎𝑎 cos𝜃𝜃 [9,10]. This curve is a limaçon of Pascal. 

Depending on the relative position of the pole P with 
respect to the center of the circle O and the radius r of the 
circle, it is possible to obtain a different type of limaçon [1], 
as shown in Fig. 4. If distance 𝑂𝑂𝑂𝑂1 > 𝑟𝑟, the limaçon will be 
hyperbolic, and the double point of that limaçon will coincide 
with pole P1. If distance 𝑂𝑂𝑂𝑂2 = 𝑟𝑟, which means that the pole 
is a point on the circumference, the limaçon will be a 
cardioid, that is, a parabolic limaçon. If distance 𝑂𝑂𝑂𝑂3 < 𝑟𝑟, we 
obtain an elliptical limaçon. 

Consequently, other cases appear. If 𝑂𝑂𝑂𝑂 = ∞, the limaçon 
will be a double circle; if 𝑂𝑂𝑂𝑂 = 2𝑟𝑟, the limaçon will be a trisectrix; 
and if 𝑂𝑂𝑂𝑂 = 0, the limaçon will be a circle. Table 2 presents a 
classification of the limaçon according to 𝑂𝑂𝑂𝑂 for clarity. 

 
Figure 4 Limaçons generated by the pedal method, for three different 
positions of the pedal point.  
Source: The authors. 

 
 

Table 2. 
Types of limaçon according to the pedal definition.  

Type of limaçon Subtype of limaçon 
Relation between 
distance 𝑶𝑶𝑶𝑶 and 𝒓𝒓 

Hyperbolic limaçon 
Double circle 𝑂𝑂𝑂𝑂 = ∞ 

Limaçon with loop 𝑂𝑂𝑂𝑂 > 𝑟𝑟 
Trisectrix 𝑂𝑂𝑂𝑂 = 2𝑟𝑟 

Parabolic limaçon Cardioid 𝑂𝑂𝑂𝑂 = 𝑟𝑟 

Elliptical limaçon 

Dimpled limaçon 𝑟𝑟 > 𝑂𝑂𝑂𝑂 >
𝑟𝑟
2

 

Flat limaçon 𝑂𝑂𝑂𝑂 =
𝑟𝑟
2

 

Convex limaçon 𝑂𝑂𝑂𝑂 <
𝑟𝑟
2

 

Circle 𝑂𝑂𝑂𝑂 = 0 
Source: The authors. 

 
 
Standard classification distinguishes two types of 

elliptical limaçons. If the distance 𝑂𝑂𝑂𝑂3  is between r and 𝑟𝑟
2
, 

that is, 𝑟𝑟 > 𝑂𝑂𝑂𝑂3 > 𝑟𝑟
2
, then we obtain a dimpled limaçon. If 

the distance 𝑂𝑂𝑂𝑂3 < 𝑟𝑟
2
, the limaçon is convex, whereas if it is 

equal, the limaçon is flat.  

As demonstrated in Section 2, changing the angle of the 
pedal does not affect the type of curve; however, it will affect 
the rotation and scale, as shown in Fig. 5. 

 
4. Limaçon as a locus 

 
The locus definition indicates that the limaçon of Pascal 

is the locus of points from which tangent 𝑡𝑡1 to circle 𝐶𝐶1 and 
tangent 𝑡𝑡2 to circle 𝐶𝐶2 form a constant angle, as shown in Fig. 
6. Williamson, in 1899, defined it as the locus of the vertex 
of an angle of given magnitude, whose sides touch two given 
circles [5]. This locus generation method is then, not new, but 
certainly not well known; a review of recent literature 
showed that information on this generation method was 
scattered and incomplete [7,11]. 
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Figure 5 Generalization of the pedal concept applied to the limaçon for a 
given angle 𝛼𝛼, and three different positions of the pedal point.  
Source: The authors. 

 
 
However, the relationship between locus generation 

and pedal definition is less known or even completely 
unknown. The latter is a limit case of the locus definition 
of the limaçon that occurs when the radius of one of the 
circles becomes zero. This circle degenerates at a point that 
is the pedal point. Therefore, we can ensure the 
generalization of the pedal definition because the locus 
definition is valid for any angle, not only for 
perpendicularity. 

To find the locus mentioned in the definition, let us 
consider the construction of such a locus. We begin by 
applying the inscribed angle theorem to find the locus of 
the points from which segment 𝐶𝐶1𝐶𝐶2 is seen under a given 
angle. This locus apparently does not have a name in 
English, so we will use the French term arc capable or 
Spanish term arco capaz. By tracing the tangents parallel 
to the lines that connect each point of the locus, we obtain 
four points, 𝐾𝐾,𝐾𝐾′ ,𝐿𝐿, and 𝐿𝐿′, as shown in Fig. 7, which, in 
pairs, describe the locus in question. 

Therefore, given the data of two circles and an angle, 
we obtain four limaçons: the two shown in Fig. 8 and the 
two symmetrical with respect to the line between the 
centers of the circles to those ones. One of the two limaçons 
shown in Fig. 8 is generated by the two points 𝐾𝐾 and 𝐾𝐾′, 
where the interior tangent of one of the circles meets the 
exterior tangent of the other circle. The other limaçon is 
generated by points 𝐿𝐿 and 𝐿𝐿′, where the two exterior 
tangents or the two interior tangents intersect. 

The limaçon, defined as a locus, might be seen as the 
definition of an isoptic curve of a pair of circles. The 
definition of an isoptic curve is the locus of points where a 
curve, or two in this case, is seen under a given fixed angle 
[12,13]. Extending this definition to the locus definition of 
the limaçon requires two leaps in reasoning: first, 
considering both circles as a single figure, and second, 
ignoring this consideration when the tangent to one circle 
goes over the other circle. 

 
Figure 6. The concept that the points of the limaçon satisfy 
Source: The authors. 

 
 

 
Figure 7 The construction to obtain the points of the limaçon.  
Source: The authors. 

 
 

 
Figure 8 Limaçons generated as the locus of the vertex of the tangents to two 
circles given an angle.  
Source: The authors. 
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5. Additional properties 
 
The locus and pedal generalization definitions allow us to 

deduce two additional properties of the limaçon. 
 

5.1 Circle of similitude 
 
In 1945, Butchart [6] reported a property derived from the 

locus definition. He realized that the double point or pole of 
the limaçon, which coincides with the pedal point in the pedal 
definition, is in the circle of similitude of the two 
circumferences. The diameter of this circle is the segment 
between the two centers of homothety of the two base circles, 
traced as shown in Fig. 9a. It is also defined as the locus of 
points viewing the two circles under equal angles and the 
locus of centers of homothety plus rotation that relate both 
circles. These three circles have the same radical axis [14], 
and therefore belong to the same pencil.  

Because of the definition of the circle of similitude as a locus 
of points viewing the two circles under equal angles, the pole of 
the limaçon will be the only point of the limaçon that fulfills this 
property in addition to the property of the points of the limaçon as 
an isoptic curve of two circles [12, 13, 15], as shown in Fig. 9b. 

 

 

 
Figure 9 (a) Circle of similitude in two circles belonging to an elliptical 
pencil or a hyperbolic pencil. (b) Pole of the limaçon as the point where the 
circle of similitude and the arc capable intersect.  
Source: The authors. 

 
Figure 10 Circle of similitude of the two circles intersecting the arc capable 
in the poles of the two limaçons, 𝑂𝑂1  for the hyperbolic and 𝑂𝑂2 for the elliptic.  
Source: The authors. 

 
 

Because the pole of the limaçon is in the circle of similitude, 
as well as in the arc capable of the locus definition, it is 
possible to find it as an intersection of both circles, as shown 
in Fig. 10. This provides a graphical construction to 
determine the pole of elliptic limaçons, defined as a locus. 

 
5.2 Bitangent circles 

 
Using the locus definition, any pair of circles with an 

angle provides four limaçons. The family of circles that 
generates the same limaçon has the same radical center; thus, 
they are all orthogonal to a circle 𝑐𝑐𝑂𝑂, and that circle contains 
the pole of the limaçon.  

We call the family of circles the bitangent circles of the 
limaçon, because for hyperbolic and parabolic limaçons, all 
the circles of the family are tangent at two points to the 
limaçon. For an elliptic limaçon, a portion of the family is 
bitangent, while the rest do not touch the limaçon at all (as 
the tangency point is imaginary).  

The locus of the centers of all the circles of the family is 
another circle, 𝑐𝑐𝐶𝐶 , which is tangent to the pole of the limaçon to 
𝑐𝑐𝑂𝑂. The tangent points (𝑇𝑇1 and 𝑇𝑇2) for each member 𝑐𝑐𝑖𝑖 of the 
family to the limaçon are those where 𝑐𝑐𝑖𝑖 intersects another circle, 
𝑐𝑐𝑗𝑗 . The second circle, 𝑐𝑐𝑗𝑗 , is defined as passing through the center 
of 𝑐𝑐𝑖𝑖 and belonging to the orthogonal pencil of circles to the one 
formed by 𝑐𝑐𝐶𝐶  and 𝑐𝑐𝑂𝑂. Examples of both hyperbolic and elliptic 
limaçons of this family of circles are shown in Fig. 11. 

As can be observed in the figure, for hyperbolic limaçons, 
the pole is exterior to all 𝑐𝑐𝑖𝑖 of the family, and consequently 
there is always an intersection with 𝑐𝑐𝑗𝑗 . On an elliptic limaçon, 
the pole is interior; therefore, when 𝑐𝑐𝑗𝑗  is small enough, it does 
not have a real intersection with 𝑐𝑐𝑖𝑖, and the circle is not a 
tangent to the curve, which is not mentioned in [7], where this 
topic is treated as the solution to the problem proposed in 
[16]. Note that the pole of the limaçon belongs to this family 
as a degenerate case in which the radius is 0, which makes 
the pedal definition a particular case of the locus definition. 

(b) 

(a) 
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Figure 11 Example of bitangent circles with tangency points for hyperbolic 
(a) and elliptic (b) limaçons.  
Source: The authors. 

 
 
The family of bitangent circles has the following 

properties. Taking any two given circles from the family, it 
is possible to trace tangent lines from any point of the 
limaçon to those circles. The angle of two of those tangents 
(one for each circle) will be constant regardless of the point 
of the limaçon from which they are traced. Note that this is 
true only for one of the four possible combinations of 
tangents. 

In addition, the angle between the two tangents to any of 
the circles of the family from the pole is always the same for 
any given limaçon, as shown in Fig. 12. For an elliptical 
limaçon, the tangents do not exist, whereas for a parabolic 
one, they form an angle of 180º. 

Figure 12 Circles of the bi-tangent family viewed under the same angle from 
the pole of the limaçon.  
Source: The authors. 

 
 
There is an additional property in the singular case of a 

parabolic limaçon, that is, a cardioid. In a cardioid, the cusp 
is the same point as the pole, and all the bitangent circles are 
tangent to the curve at that point, as well as another. In 
addition, for any given two circles of the family, the angle 
between the tangents described above is the same as the angle 
between the two circles. This property is described in [6]. 

 
6. Conclusions 

 
It is possible to generalize the pedal concept to any angle, 

generating a family of pedal curves that are related by 
rotation and homothety in which the pedal point is the center 
of both transformations, and the angle and factor of 
homothety are ±(90º-α) and k=1/sin α, respectively. In this 
manner, we can relate all the curves of the same family. 

This definition is also applicable to the limaçon of Pascal 
because of its nature as a pedal curve. Thus, we can conclude, 
throughout its study as a locus, that the pedal definition of 
this curve is a limit case of the generalized pedal definition, 
which is also a limit case of the locus definition. This locus 
definition is not sufficiently described in the literature and 
neither are its implications; when observed through the 
perspective of the angular generalization of the pedal curve, 
it allows us to deduce some additional properties such as the 
relation between the circle of similitude, the arc capable, both 
being locus with angularity conditions, and the definition of 
the limaçon as an isoptic curve. In addition, it is possible to 
obtain a family of circles that are bitangent to the limaçon 
with interesting properties. 

These properties are not only relevant to metric geometry 
but can also provide applications in the design and 
engineering fields owing to the extrapolation of the 

(b) 

(a) 
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orthogonal property to general angularity, which allows 
greater flexibility in its applications. In addition, this research 
might lead to the generalization of other methods for 
generating pedal curves, with the possibility of obtaining and 
classifying the properties of these curves, which might have 
important implications in the field of metric geometry. 
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