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Abstract 
This review describes the use of Unmanned Aircraft Systems (UAS) for bridge inspection, with an emphasis on Multi-rotor UAS. It depicts 
the different levels of automation and autonomy during UAS operation and what levels are achieved during inspections. A description of 
the payload of UAS consisting of the equipment required to acquire data and images is included. It also contains a compendium of the 
techniques used to create models from images in order to detect failures and perform Structural Health Monitoring (SHM) through 
techniques, such as: 3D reconstruction, infrared thermography, Structure From Motion (SFM), Convolutional Neural Network (CNN) and 
others. The software required to apply the mentioned techniques is also mentioned. It subsequently explains the generation of mathematical 
models to characterize the multirotor and generate efficient trajectories. Finally, the review concludes by describing the operational 
limitations of UAS and future challenges. 
 
Keywords: bridges; unmanned aircraft system; 3D reconstruction; infrared thermography; structural health monitoring. 

 
 

Uso de sistemas de aeronaves no tripuladas para la inspección de 
puentes: una revisión 

 
Resumen 
Esta revisión describe el uso de los Unmanned Aircraft Systems (UAS) para la inspección de puentes, haciendo énfasis en los UAS 
Multirrotor. Relaciona los diferentes niveles de automatización y autonomía durante la operación de los UAS y cuáles de esos niveles se 
logran durante la inspección. Hay una descripción de la carga paga del UAS compuesta por los equipos requeridos para adquirir datos e 
imágenes. Se incluye un compendio de las técnicas que se usan para la creación de modelos a partir de imágenes, con el propósito de 
detectar fallas y realizar Structural Health Monitoring (SHM) mediante técnicas como: reconstrucción 3D, termografía infrarroja, Structure 
From Motion (SFM), Convolutional Neural Network (CNN) entre otras, así como el software requerido para aplicarlas. Posteriormente 
explica la generación de modelos matemáticos para caracterizar los multirrotores y generar trayectorias eficientes. Finaliza describiendo 
las limitaciones operacionales de los UAS y los retos futuros. 
 
Palabras clave:  puentes; sistema de aeronave no tripulada; reconstrucción 3D; termografía infrarroja; monitoreo de salud estructural. 

 
 
 

1. Introduction 
 
Bridge inspection plays an important role in the 

construction and infrastructure sector, since it is required to 
maintain the structures’ safe operation, extend their useful 
life and ensure reliability through sustainable processes that 
guarantee efficiency of resources [1]. Inspections consist of 
periodically checking the bridges to perform Structural 
Health Monitoring (SHM) with Non-Destructive Testing 
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(NDT) techniques, which seek to detect failures and 
discontinuities in structure materials and components without 
physically affecting the examined components. This is in 
order to repair and refurbish the bridge if required, ensuring 
its continuous operation under safety standards.  

Currently, SHM of bridges is mostly accomplished 
through visual inspection supported by using sensors and 
specialized cameras. Its objective is to obtain data and images 
that allow accurately determining the variations of physical 
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characteristics, possible defects, and discontinuities in the 
structural components of bridges. The described inspections 
are performed by inspectors using manual techniques, 
accessing the bridge with ladders, scaffolding, vehicles with 
lifts, or climbing while using ropes and harnesses. These 
activities create potentially unsafe conditions for people. 
According to [1,2], during visual inspections, the exhaustive 
studies and detailed evaluations of bridge conditions are 
expensive, technically complex, and require a great deal of 
time. This is especially true during image acquisition and 
data processing, which are the most demanding activities. 
The purpose of visually inspecting a bridge is to detect 
defects, such as cracks, fractures, corrosion, pores, 
delaminations and others. High-resolution images are 
required in order to precisely detect these defects. The images 
must be taken at a distance determined by the specifications 
and characteristics of the cameras and sensors that are used, 
also considering the geometric and physical characteristics of 
the bridge’s structure. These aspects, according to [2], 
occasionally restrict, make difficult, or prevent inspectors’ 
access or approximation to specific parts of the bridge, 
affecting the quantity, quality and clarity of the images an 
inspector can obtain. Such a scenario produces subjectivity 
in the results, which leads to decision-making based on the 
analysis of one or a few images. Considering the mentioned 
limitations, using Unmanned Aircraft Systems (UAS) as 
platforms for observing and acquiring data and high-
resolution images is applicable, turning them into an 
innovative, simple, cheap, efficient and safe choice for inspecting 
and monitoring bridge conditions. These are significant 
advantages compared to traditional methods and using manned 
aircraft. This review provides useful information to better 
understand using UAS by contributing elements to develop future 
research projects, academic processes, equipment selection and 
appropriate techniques for inspecting and evaluating the structural 
conditions of bridges. In the last decade, the use of UAS for 
structure inspections has increased, but significant technological 
development has not been evident. In addition, the mathematical 
and scientific literature that covers the subject is scarce in 
comparison with that of traditional techniques, which makes this 
field a relevant subject for researching and analyzing potential 
applications.  

According to [3], the most common name for these 
vehicles is drones, referring to the drone bee, since the bee’s 
particular sound resembles that of the airborne vehicles. Over 
the past 30 years, the term has evolved from Unmanned 
Aircraft Vehicle (UAV) to more precise terms, such as 
Remote Piloted Aircraft System (RPAS) and Unmanned 
Aircraft System (UAS), terms and acronyms embraced by the 
scientific and academic community, government aviation 
regulators [4,5,6] and companies dedicated to manufacturing 
or servicing these vehicles. A UAS is considered a system 
because it integrates three subsystems: i) the unmanned 
aircraft, ii) the ground control station, and iii) the 
communications link between the aircraft and the ground 
station [7-9]. These subsystems are synergistically linked to 
each other to achieve autonomous, controlled and stable 
flight. The UAS can be remotely controlled by a human on 
the ground, fly autonomously under the control of a 
computer, or through a combination of both methods. This 

leads to a system with different degrees of automation and 
operational autonomy that, according to the National 
Highway Traffic Safety Administration (NHTSA) of the 
United States [10], can be classified in six levels: i) level 0, 
the pilots have manual and full control of vehicle navigation, 
ii) level 1, there is a certain degree of automation applied to 
two flight modes. The first one corresponds to holding some 
altitude during dynamic flight and the second to static and 
sustained flight. iii) Level 2, the UAS navigates based on 
several flight modes programmed by the pilot, maintaining 
its route autonomously if there are no unexpected changes in 
the flight environment, iv) level 3, unlike the previous level, 
the UAS understands the changes in the flight environment 
and controls the flight modes to navigate in the new 
environment, v) level 4, the UAS can adapt and react when 
there is some anomaly in the system, an accident or a sudden 
collision with any object, and vi) level 5, a UAS can navigate 
autonomously in all environments and situations. A more 
detailed classification sort by levels is proposed in [11], as 
follows: i) remotely operated vehicle, ii) vehicle with the 
capacity of completing a mission iii) robust real-time 
response to failures or events, iv) adaptable vehicle during 
failures or events, v) real-time coordination between 
vehicles, vi) real-time cooperation between vehicles and vii) 
fully autonomous aircraft. 

UAS are also classified into two types according to their 
takeoff and landing features. The first type is Horizontal Takeoff 
and Landing (HTOL), characterized by having fixed wings, 
covering long distances and reaching high speeds. The second 
type is Vertical Takeoff and Landing (VTOL), characterized by 
having one or more rotating wings and possessing the ability to 
perform sustained and stable static flight [12,13], which is 
considered an advantage with respect to bridge inspection. 
VTOLs have less speed than HTOLs, but, on the other hand, they 
are smaller, lighter, and cheaper. According to their configuration 
and number of engines, VTOLs are divided into helicopters and 
multi-rotors. The latter are widely used for civil purposes due to 
their good maneuverability, good controllability and lower 
acquisition cost. They are called tricopters if equipped with three 
engines, quadcopters if equipped with four engines, hexacopters 
if equipped with six engines, and octocopters if equipped with 
eight engines [14].  

Multi-rotors have five basic components [15,16]: i) a 
frame that can be made of plastic, carbon fiber, wood, or 
aluminum, ii) a motor-helix assembly, in which the 
propellers are fixed pitch propellers (pitch is the distance 
traveled in the air during a complete 360-degree rotation of 
the propeller), which are coupled to brushless electric 
motors located in the arms of the frame, iii) an Electronic 
Speed Controller (ESC) that manages current flow to the 
motor according to the required RPM depending on the 
multi-rotor operation. ESC is controlled by Pulse Wide 
Modulation (PWM). iv) A Flight Controller (FC), 
considered the brain of the drone, which is in charge of 
sending control signals to the ESCs. These signals are 
generated based on commands received by the FC through 
a signal receiver (Rx) transmitted by the ground station 
(Tx), and the signals received from various types of 
sensors, both internal and/or external to the FC [17]. 
Sensors are generally devices, such as gyroscopes, 
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accelerometers, barometers, and magnetometers, which 
allow the FC to determine the attitude, altitude, speed and 
position of the aircraft, supported by a satellite navigation 
system such as GPS or GLONASS. v) A Lithium Polymer 
(LiPo) battery with high electrical power and energy 
density that feeds the UAV’s electronic components [18]. 

 
2. Materials and methods 

 
This article was created through a systematic review, as 

described in [19]. SCOPUS and Google Scholar were used 
as research tools. On SCOPUS, the search was performed 
in two different time slots: articles released during the last 
five years (January 2015 to February 2020) and articles 
released before 2015. The keywords used for the search 
were: i) drones, ii) unmanned aircraft vehicle, iii) 
unmanned aircraft system, iv) remotely piloted aircraft 
system and v) bridge inspection. A total of 257 were found 
and they were reduced to 112 after filtering the results 
according to their relevance (determined by number of 
citations). The guiding questions described in [19] were 
used in order to perform the analysis. As a result, 55 
articles obtained from the search performed on SCOPUS 
were selected. This group of papers was called the 
Academic Relevant Space (ARS) [19]. The same key 
words used for SCOPUS were used for Google Scholar, 
and a total of 11 references were chosen. These references 
added to the ARS from SCOPUS comprise the 66 
references taken into consideration for writing this review. 

 
3. Studies performed with unmanned aircraft systems 

for bridge inspection 
 
Bridges are structures of vital importance for the 

transportation of people and goods. For this reason, their 
periodic inspection is pertinent and necessary to ensure 
continuous and safe operation, as well as to extend their 
useful life. This is extremely important for bridges that are 
subject to structural degradation, aging and mechanical 
damage due to fatigue due to loads, thermal expansion and/or 
contraction and delamination in concrete and cracks. The 
latter is considered one of the most important parameters for 
monitoring and evaluating structural conditions [20].   

Although there are a variety of bridges, they are usually 
divided into three major sections: i) foundation, ii) 
substructure and iii) superstructure. The foundation 
contains the piles that provide support and a solid base for 
the bridge. They also transmit the weight and loads to the 
terrain. The caps, which are made of concrete and contribute 
to transferring loads to the ground, are located above the 
piles. The abutments are found in the substructure. These 
are vertical walls located at the ends of bridges, which retain 
the soil around the bridge [21]. If the bridge is composed of 
several sections, as shown in Fig. 1, pier and pier caps are 
located at the ends of each section to support the sections 
and disperse vibrations produced by traffic crossing the 
bridge. The decks that directly support the traffic loads are 
located in the section called the superstructure. These 
elements are attached to the pier caps through bearings. The 
last ones transfer loads from the decks to the substructure.  

 
Figure 1. Main Parts of a Bridge 
Source: The Autors 

 
 
Inspections performed manually on bridges by means of 

visual inspection techniques are expensive, risky, time-
consuming and require the expertise of highly qualified 
inspectors, which produces a high degree of subjectivity in 
the data analysis process and decision-making for 
maintenance. Additionally, equipment, such as ladders, ropes 
and lifting baskets mounted on land or water vehicles are 
required to inspect areas that are difficult to access [3,21,33]. 
Due to the large size of certain structures, there is a high risk 
derived from working at heights. For this reason, [20] 
presents the need for an intelligent and precise technique to 
perform a Structural Health Monitoring (SHM) study. 
Methods based on emerging technologies and digital 
techniques, combined with the use of UAS equipped with 
cameras and sensors of various types, allow evaluating and 
monitoring bridges' structural conditions through image-
based approaches as a source of information. 

Using multirotor UAS for bridge inspections has 
demonstrated significant development in the last 10 years, 
since these vehicles are smaller and more maneuverable 
compared to manned and unmanned fixed-wing aircraft. 
Additionally, they have a certain degree of trajectory control 
and flight autonomy, facilitating their use for inspecting 
complex areas that are difficult to access. On the other hand, 
a variety of equipment and sensors for inspecting structures 
can be equipped on UAS, such as high-resolution digital 
cameras, thermographic cameras [22,23], Light Detection 
and Ranging or Laser Imaging (LIDAR) devices for terrain 
characterization [24], radiation detectors [25] and humidity 
and temperature sensors [26], among others that make up the 
UAS payload. These elements allow inspectors to obtain the 
necessary information to detect and analyze various types of 
defects and discontinuities in bridge structure components 
and materials.  

 
3.1 Methodology to perform bridge inspection with UAS 

 
A detailed methodology for acquiring data autonomously 

from images obtained using UAS is presented in [20]. The 
proposed methodology consists of ten macro-processes, as 
follows: i) task definition, ii) criteria assessment, iii) mission 
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preparation and control, iv) flight path generation, v) data 
acquisition, vi) photogrammetric and 3D reconstruction, vii) 
3D modeling and visualization, viii) anomaly detection, ix) 
mechanical interpretation and x) structural condition 
assessment. Inspection parameters and criteria are defined in 
processes i and ii, determining what properties and quantities 
are required to be obtained, such as structure geometry, 
anomalies, defects and discontinuities, in order to be detected 
and evaluated. The requirements and criteria for rejecting and 
accepting these anomalies are also established. Legal and 
safety specifications are defined during process iii, such as 
minimum approach distance between the object and the 
drone, as well as minimum and maximum flight heights. The 
technical specifications of the equipment on the drone, such 
as flight systems, cameras, lenses, and sensors are also 
considered. Processes iv and v include planning of flight path 
by following determined waypoints. Camera orientation is 
set in order to obtain high-resolution images that have a 
percentage of overlap between each other, These processes 
are also described in [22,28]. At this point, a flight to obtain 
images of the component to be analyzed is performed. As a 
result of steps iv and v, the flight path has been optimized 
with the specific points to be analyzed. A set of raw images 
is then obtained, with the camera’s real position and 
orientation and time stamps of each image. Processes vi and 
vii consists of pre-processing the images acquired with the 
UAS through radiometric and geometric enhancement. A 3D 
model is built to perform a georeferenced photogrammetric 
analysis using a simple meshing of the inspected component. 
3D reconstruction is performed using the Structure From 
Motion (SFM) technique [20,33] used to obtain 3D models 
from 2D images. Georeferencing is accomplished by 
adjusting the gathered data with a Dense Stereo Matching 
[27]. As a result of steps vi and vii, a dense cloud of 
georeferenced 3D points is finally acquired [17,24,28]. 
Process viii focuses on executing an automated analysis of 
the images, identifying and sizing the anomalies through their 
metrics and characterization, quantifying variables such as 
pixel size and resolution of the object. In parallel, a mesh and 
texture is created to build a 3D surface model, achieving data 
integration aimed at mapping the anomalies. Step ix includes 
analyzing the point cloud and recording the geometric 
changes in the structure and the changes in the location of the 
anomalies, as well as changes in their dimensions. The 
anomalies are interpreted based on the evaluation criteria and 
mechanical properties of the materials that make up the 
inspected component. Finally, the structural evaluation of the 
bridge’s condition is completed in process x. 

 
3.2 Equipment, software and techniques used in bridge 

inspection with UAS 
 
The research developed in [28] analyzed the abutments, 

piers and pylons of an aged bridge to detect, characterize and 
quantify cracks. An Inspire 2 quadcopter equipped with a Zen 
muse X5S camera with a 20.8-megapixel resolution was used 
to do so. The methodology consisted of the following steps: 
i) acquiring the images using the camera mounted on the 
drone, ii) generating a point cloud to build a damage map or 
3D inspection map by means of the Pix4D Mapper 

commercial software [20,28]. This process took 150 min. iii) 
Detecting cracks through deep learning methods [29], such 
as region analysis with Convolutional Neural Network 
(CNN) [30,31]. CNN is a deep learning algorithm that has an 
image as input and weighs the importance of various aspects 
or objects on the input image, differentiating them from each 
other. iv) Quantifying cracks by image processing to detect 
cracks by binarization, in order to convert a Red-Green-Blue 
(RGB) image [22,28,38,39] into a binary one with AutoCAD 
2017 software. This process took 30 min.  Noise was filtered 
in order to clean the image. v) Displaying the images on an 
inspection map using the Sobel [32] algorithm for edge and 
contour detection. This methodology was applied to the 
region of interest (ROI) of the bridge, which was the lateral 
part of the decks and pier caps in this case. The UAS was 
manually operated at a distance of two meters to avoid losing 
GPS signal and to ensure a sufficient Field of View (FOV) of 
the camera. A total of 384 images were obtained, revealing 
twelve cracks between 0.55 mm and 1.92 mm thick and 8.32 
mm and 78.43 mm long. After comparing the mentioned 
results to an analysis of the same cracks by traditional 
methods, an error of between 1 and 2% was found.  

An inspection of the Placer River Bridge in Alaska was 
conducted in [33]. The structure is 85 meters long and has a 
wooden superstructure. The research compared a traditional 
inspection developed with the LIDAR method applied 
manually by an inspector to a hybrid autonomous method 
performed by a UAS. During the study, the effectiveness and 
efficiency of the method was validated, comparing the 
number of points, point density and noise level in the images. 
The pictures were gathered using a DJI S800 hexacopter 
equipped with a 24.3 megapixel SONY NEX 7 camera and a 
GoPro Hero 3 camera. Data acquisition and flight path 
planning were performed using the Mission Planner [34] 
software from 3D Robotics, allowing the researchers to 
obtain 2626 images and 20 videos. Subsequently, the team 
created the 3D reconstruction of the bridge from the images 
using the Dense Structure From Motion (DFSM) technique 
[35] jointly with the Hierarchical PointCloud Generation 
(HPCG) technique described in detail in [36]. By employing 
this hybrid method, 1,412,060,890 points with a density of 
5,656,185 points per cubic meter and a noise level 
(distortion) of 4.5 mm of the image were obtained. On the 
other hand, using the traditional LIDAR method, 
202,790,259 points with a density of 1,478,099 points per 
cubic meter and a noise level of 1.8 mm were obtained.  The 
increase in points in the hybrid technique increases the 
density and consequently increases the geometric resolution 
of the image, which benefits the detectability of possible 
defects or discontinuities in the ROI or damage region (DR). 
Nevertheless, the increase in the total number of processed 
pixels increases the complexity and processing time of 
creating the model. 

The objective of the study performed by [37] was to 
inspect a steel bridge to detect damage through a critical 
members’ fracture analysis (FCM). Two aspects were 
analyzed and compared: i) Maximum Crack to Camera 
distance (MCC) or maximum distance for detection and ii) 
Achievable Crack to Platform distance (ACP). Two 
experiments were conducted: i) an external field inspection 
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on a 120 m long bridge specimen simulating a section of a 
steel bridge and ii) a real inspection on a bridge in Utah City. 
During the experiment, the following equipment was used: i) 
DJI MAVIC quadcopter equipped with a 12-megapixel 
resolution camera, ii) 3DR IRIS quadcopter equipped with a 
12 megapixel resolution GoPro Hero 4 camera and iii) 
quadcopter drone assembled for the researchers, equipped 
with a 16 megapixel resolution Nikon COOLPIX L830 
camera. The measurements were made under the lighting 
conditions generally found during bridge inspections, which 
are: i) dark conditions under the bridge on a cloudy day, ii) 
intermediate lighting conditions under the bridge on a clear 
day and iii) artificial lighting conditions using electric light 
lamps. The results revealed that cracks might be detected at 
a greater MCC distance if illumination increases. In darkness, 
the MCC distances increased from 0.2m to 0.6m with the 
GoPro and 0.4m to 1.10m with the DJI camera. On the other 
hand, a 1.10m MCC was obtained with the DJI camera in 
artificial lighting conditions, while the Nikon camera went 
from 0.3m MCC in dark conditions to 1m in artificial lighting 
conditions. Another aspect that affects the efficiency of crack 
detection is the camera's ability to increase ISO sensitivity. It 
considers the amount of light that must pass through the lens 
in low light conditions. ISO sensitivity values for the Nikon 
camera ranged between 280 and 1600 and between 480 and 
1600 for the Mavic DJI camera, while it was always 400 for 
the GoPro because it does not vary as lighting conditions 
change. This makes GoPros less suitable for crack detection. 
In the absence of a GPS signal, the DJI MAVIC quadcopter, 
unlike the other two multirotors, used an alternate positioning 
system based on stereovision and sonar to maintain altitude, 
which guaranteed a 0.25m ACP and a 0.25m MCC with clear 
crack detection in real-time and in post-flight image analysis. 

Another objective of [37] was to determine the effects of 
wind on detecting cracks and fractures using UAS. To do so, 
four beams, the abutments and two girders of a bridge located 
over the Fall River in the city of Ashton in Idaho were 
inspected. The procedure was performed near midday under 
wind speeds of between 7 m/s and 11 m/s. With the drone 
assembled by the researchers, it was not possible to achieve 
control or maneuverability within the mentioned wind speed 
range, while with the IRIS drone, they achieved an ACP 
distance of 0.6 m with no real-time crack detection, which 
was obtained later during post-flight image analysis. In 
contrast, with the MAVIC DJI drone, an ACP distance of 
0.25 m was achieved and cracks were detected both in real-
time and during post-flight analysis for speeds near 7 m/s at 
all lighting conditions. However, at speeds near 11 m/s, no 
cracks were detected. Besides, it was possible to detect other 
defects and anomalies of interest in real time, such as 
corrosion at the bottom of the south beam, efflorescence, 
cracks in the concrete, possible delamination in the abutment 
and minor corrosion in the splice plate of one of the beams. 

[37] analyzed the effectiveness of the probability of 
detection (POD) of cracks in a 120-meter bridge test tube 
located at Purdue University. The specimen is used to train 
inspectors because it has many previously characterized 
cracks. The results of the inspection on the test tube with 
three drones (Mavic DJI, Inspire 1, DJI Phantom 3) were 
compared to the average results obtained by 30 human 

inspectors. The effectiveness was evaluated by quantifying 
the number of hits during an inspection versus the actual 
number of cracks in the test tube. The procedure was 
performed with a wind speed of 4 m/s and, for evaluation 
purposes, the following parameters were considered: i) 
number of cracks reported (call), ii) number of true positives 
(hit), iii) number of false positives (fallout), iv) number of 
false negatives (misses), v) hit/call ratio, vi) true positive 
ratio (TPR) calculated by dividing the hits by the sum of hits 
and misses and vii) false-positive ratio (FPR), calculated by 
dividing the false positives by the number of calls. The 
evaluation showed that UAS-assisted inspections lasted 
between 1.5 and 3 times longer than real-time human 
inspections and approximately 2 times more calls were 
obtained in UAS inspection compared to human inspections. 
Either way, there was no representative difference in this 
item during post-flight image analysis. In the TPR index, 
there was only approximately a 10% difference between 
UAS and human inspection. UAS inspections produced 
between 10% and 20% less false positives than human 
inspections. Based on the results of all the experiments, the 
study concluded that UAS performance in FCM presents a 
quality similar to that of inspections performed by human 
inspectors. 

In [38], the team conducted a study on the deck and 
girders of a bridge in the city of Idaho. The structure has a 
length of 675 m, a deck of approximately 8 m in width, and 
an area greater than 2,787 square meters. The inspection was 
performed by manual flight in First Person View (FPV) 
mode, with a DJI Phantom 3 quadcopter equipped with a 12 
megapixel camera. The approach distance was 2 to 3 meters, 
which allowed taking 4k videos. The procedure's objective 
was to inspect the connections between components to 
evaluate the condition of bolts, rivets and the possible 
presence of rust on them. The bearings were also inspected 
for misalignment, bulging or tearing, as well as leaks, 
concrete spalling, steel loss and cracks in the joints. The 
project presented a limitation due to the loss of the GPS 
signal while approaching the structure or flying under it. 
Therefore, it was not possible to establish a flight path with 
viewpoints and/or waypoints. To overcome this limitation, 
[39] proposed a UAS navigation system using the Ultrasonic 
Beacons System (UBS). This system was developed to 
provide high precision positioning based on ultrasonic 
sensors, which allows applications in environments without 
GPS. It can be considered an alternative to generating a 
mapping and location system with centimeter accuracy. It is 
easy to integrate to UAS through low-cost hardware. 
Additionally, CNN was used as a method to detect cracks in 
the concrete of a bridge [40,41] and locate them accurately 
through a method called geotagging. Three drones were used 
during the research: two of them manufactured by the team 
itself and equipped with a Sony FDRX3000 camera and, a 
commercial Parrot Bebop 2 drone. The flight plan was made 
using Mission Planner. The study consisted of the following 
steps: i) manufacturing two multirotors instead of using a 
commercial multirotor, since the latter does not allow 
modifying the source code for autonomous navigation, ii) 
installing a mobile beacon in the drones to determine their 3D 
location, iii) modifying the source code of the flight controller 
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firmware, iv) integrating ultrasound beacon system (UBS) with 
the autonomous flight controller and v) replacing the GPS 
coordinates with a signal in the data provided by the images for 
geotagging. The flight was precise, but there were some 
fluctuations in altitude. The cracks were detected in the concrete 
with an accuracy of 96.6%. After comparing the results of the 
UAS images to those obtained by manual collection, it was 
demonstrated that both images were highly accurate. 

In [22], a multispectral UAS detection system was used 
for evaluating bridge decks to detect internal delamination in 
the concrete. A quadcopter assembled on an F550 frame was 
used to inspect a 31 ft. × 13 ft. × 8 in. concrete deck specimen. 
The payload that comprised the multispectral system 
consisted of a GoPro Hero3 RGB camera and a FLIR TAU 2 
thermographic camera with an operating range of -40 °C to 
80 °C. The IR-RGB multispectral system was used during the 
study to locate delamination in the subsoil by analyzing the 
thermograms obtained with the thermographic camera and to 
locate cracks in the surface through high-resolution RGB 
images. During the study, researchers detected regions with 
sub-surface delamination shown as hot spots in the 
thermograms that display temperature gradients by means of 
thermal contrasts. They are displayed on a scale that 
associates the temperature values to a color gradient. 

Another research article that addresses the use of infrared 
thermography (IRT) linked to a UAS for bridge inspection is 
[23]. Its main objective was to assess the reliability of using 
a multirotor UAS equipped with an on-board thermographic 
camera in order to determine the condition of the reinforced 
concrete decks of a bridge in the city of London. The 
technique is based on evaluating certain properties of 
concrete, such as density, thermal conductivity and specific 
heat. The study was conducted in the following sequence: i) 
determining the UAS’ capacity for acquiring thermal images, 
ii) developing a procedure focused on images analysis, iii) 
creating a mosaic thermogram of the entire deck and iv) 
producing a condition map with the geometry and 
dimensions of the detected delaminations. The mentioned 
objectives were developed through the following 
methodological steps: i) using the applied passive IRT to 
evaluate two deteriorated decks, ii) improving the thermal 
contrast of images by means of ImageJ software, iii) 
overlaying the images using the Matlab software to produce 
the thermal gradient map of the decks, iv) identifying defects 
through the thermal contrasts achieved in step ii, which is 
caused by the interruption of the heat flow in the concrete, 
and v) quantifying the delaminated areas through the thermal 
contrasts of the images.  This methodology is coordinated 
with the one described in ASTM D4788-03 [42], which 
defines the standard procedure and equipment required to 
conduct a passive infrared thermography test to detect 
delamination in concrete bridge decks. The researchers used 
a Inspire 1 Pro drone equipped with a Vue thermal pro 
camera. The experiments were conducted 6 hours after 
sunrise, under the following conditions: a temperature of 26 
degrees Celsius, relative humidity of 22%, wind speed of 22 
km/hr and dry decks. Four images were taken at a height of 
10 m, with an overlap between images of 50%, and a spatial 
resolution of 2.5 cm in height. The total inspection time was 
20 minutes. The images were enhanced through ImageJ 

software, and the team joined the overlapping images to 
obtain a 640 x 780 mosaic thermogram with 499,200 pixels 
using a Gaussian-smoothing filter [43]. It is worth 
mentioning that the authors developed a code in Matlab to 
extract the pixels from the images. Then, they generated a 
threshold classification to sort and choose the appropriate 
photos. The total percentage of delaminated areas on the 
bridge deck was determined by calculating the total 
percentage of pixels in the higher temperature areas. The 
results were compared to the ones obtained with traditional 
techniques, leading to the following data: by inspecting the 
deck using the traditional hammer technique, 17% of total 
delaminated zones in the deck of the bridge were identified. 
On the other hand, the total delaminated zone calculated from 
the study with UAS and IRT was 15.4%, which reflects only a 
difference of 1.6% between the two methods. Similarly, the 
total delaminated zones detected in a second bridge deck by 
the hammer drilling method and the IRT were 32% and 29.3% 
respectively, establishing a 2.7% difference between the two 
methods. These results demonstrate the feasibility of using 
articulated IRT with UAS for evaluating the condition of 
concrete bridge decks. In Table 1, the important and relevant 
aspects and parameters of each study are compared and listed. 

 
3.3 Trajectory and mission planning for UAS 

 
Flight planning is one of the most important factors for an 

inspection’s success and the quality of the images obtained with 
UAS. It is possible to generate flight trajectories with advanced 
techniques such as: image-based recognition [28,44], 
Simultaneous Localization and Mapping (SLAM) [45], a 
technique that allows mapping an unknown environment in real-
time and simultaneously locates itself in that environment, and 
Lidar Odometry Mapping in Real-time (LOAM) [46]. This last 
technique estimates position through LIDAR. Commercial 
planning software, such as Mission Planner [33], DJI Ground 
Station Pro [47], Pix4d Capture [48] or Dronedeploy [49] are 
available to perform the mission. Mission planning software 
contains graphic interfaces that allow the user to define the 
trajectory and tasks of the UAS. The drones may have 3 types of 
trajectories: i) point to point control, consisting of going from 
point A to point B, regardless of the trajectory between the 
points, ii) trajectory tracking, which is when the drone is 
required to follow a certain trajectory, and iii) obstacles 
avoidance, which is when the drone is required to avoid 
obstacles during a certain trajectory. By using a path-planning 
method, the multirotor may achieve the ability to avoid 
obstacles, track targets and move from one point to another with 
precision and operational safety [11]. When a dynamic and 
mathematical model of the drone has been obtained, optimal 
flight paths can be defined by means of high or medium-level 
programming languages designed according to the user’s needs 
[50]. There are currently several techniques and models for 
planning optimal trajectories with minimum energy 
consumption, smooth transitions between states and 
minimization criteria, establishing initial conditions for the 
position, speed and acceleration of the path to follow [51]. These 
parameters are required to avoid obstacles. 
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Table 1. 
UAS applications on bridges inspection. 

Source Damages Evaluated UAS and Camera Used Technique Used Software and 
Algorithms Used 

Automation Level 
According to [11]  

[20] Cracks. Intel Falcon 8 quadcopter with a 36.4 
megapixels Sony Alpha 7R camera. 

3D reconstruction and 
SFM. 

Pix4D Mapper, TSP, 
Dense Stereo 
Matching (DSM). 

ii 

[28] Cracks. Inspire 2 Quadcopter, Zenmuse X5 
20.8 megapixels. 

Images (RGB) 
3D Reconstruction. 

Pix4D Mapper, 
Autocad 3D 2017, 
Convolutional 
Neural Network 
(CNN).  

ii 

[33] Cracks. 
Hexacopter DJI S800, with a 24.3 
meagapixel Sony NEX 7 camera, and 
GoPro Hero 3 camera. 

3D reconstruction and 
SFM. 

Mission planner, 
Hierachical Point 
Cloud Generation 
HPCG. 

ii 

[37] 

Cracks, corrosion in 
beams, efflorescence 
and concrete 
delamination. 

Mavic DJI quadcopter, with a 12 
megapixel camera, 3D Iris drone with 
GoPro Hero 4 camera, assembled 
drone equipped with a 16 megapixel 
Nikon COOLPIX L830, Inspire 1 and 
Phantom 3. 

FCM Analysis and 
Visual inspection.  - i 

[38] 

Misalignment of joints 
in the presence of rust, 
bulging, tearing, 
concrete spalling, steel 
loss, undercutting and 
erosion in concrete.  

Quadcopter DJI Phanton 3 with a 12 
megapixel camera. Visual inspection. - i 

[23] Internal concrete 
delamination. 

Drone assembled with F550 frame, 
GoPro Hero 3 camera and Flir TAU 2 
thermographic camera. 

Multispectral 
techniques, RGB, 
Infrared thermography. 

Mission planner. ii 

[24] Internal concrete 
delamination. 

Inspire 1 pro with camera Bue thermal 
pro. 

Infrared 
Thermography ASTM 
D4788. 

ImageJ sand Matlab. ii 

Source: prepared by authors 
 
 

3.4 Dynamic Modeling and Control Algorithms for UAS 
 
The dynamic modeling of quadcopter drones is 

performed with two differential equations. One is related to 
translational movements and the other models rotational 
movements. These equations may or may not be linear. In 
any case, they may be linearized [52,53] if the quadcopter is 
operating at a specific point at low speeds [11]. Control 
strategy selection depends on the linearity or non-linearity of 
the modeled system, taking into account that linear strategies 
are less complex and easy to implement, but are, at the same 
time, very sensitive to disturbances. On the other hand, non-
linear strategies are more complicated to implement but are 
less sensitive to disturbances. Two types of linear controllers 
for quadcopters can be found: Proportional, Integral and 
Derivative (PID) and Linear Quadratic Regulator (LCR) [54-
57]. They are modeled by status feedback and using matrix 
inequalities DML [58,59]. There are also several non-linear 
models for quadcopters that allow good precision of the 
modeling but increase the complexity of the analysis, such as 
control based on neural networks, adaptive control [60], 
fault-tolerant control, robust control, backstepping control, 
control H [61], model prediction control and control based on 
disturbance observers [62-65]. 

4. Conclusions, limitations, and future challenges 
 
Among the limitations to using UAS for bridge and 

structure inspection in general is the loss of signal connection 
to the Global Navigation Satellite System (GNSS) while 
operating vehicles under the structures or close to them. This 
condition forces manual operation because it makes it 
difficult or impossible to plan trajectories and/or autonomous 
missions. As a challenge to the industry, it is required to 
increase the power and efficiency of satellite navigation 
systems and develop simple and portable alternative methods 
to deal with the loss of satellite signal. Lighting conditions 
are another important factor that limits operations, since dark 
conditions, which are usually found under bridges reduce the 
detectability of flaws and affect the approach distances 
between the drone and the structure. This makes it necessary 
to use artificial lighting external to the UAS. A major 
challenge in the future of drones consists of the optimal 
adaptation of powerful autonomous lighting systems, since 
installing a powerful lighting system on UAS is currently 
inefficient due to the extra current consumption of the lights. 
In turn, that reduces the flight time. Another significant issue 
is the increase in the amount of payload capacity on 
multirotor UAS. The simultaneous use of sensors and 
cameras is currently limited. This highlights the need to 
research materials that reduce weight and improve 
aerodynamic efficiency. A critical subject is associated to 
flight times, since they only range between 20 to 35 minutes, 
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limiting the vehicles to short periods of operation and 
requiring the availability of several batteries and access to 
charging points in the field. The mentioned scenario 
increases costs and inspection times. Therefore, developing 
components with high-energy efficiency and different 
alternative power sources or improving the LiPo batteries 
that currently power UAS is relevant. The difficulty of 
operating in confined spaces or very close to certain bridge 
components is another limitation, given the structural 
fragility of the propellers and drone arms. This risk has been 
mitigated by using protective baskets [66]. In spite of being 
functional, the protective baskets affect aerodynamic 
efficiency due to the extra drag they produce and the weight 
added to the system, as well as reducing maneuverability and 
controllability. Finally, the operational limitation produced 
by the wind must be overcome, since high-quality images 
cannot be acquired at wind speeds of higher than 7 m/s. Based 
on the results of the studies related to this review, it is prudent 
to ensure UAS are an efficient tool to complement and reduce 
the workload in traditional inspections performed by humans, 
increasing their operational and occupational safety. 
However, it is pertinent to clarify that, although a significant 
amount of research is being performed on the subject, there 
is still a lack of technological development in UAS and 
onboard equipment to execute fully autonomous missions for 
the inspection of bridges and general structures. 
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