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Abstract 
When studying porous media transport properties, it is crucial to ascertain tortuosity (τ) and its variation with porosity (𝜙𝜙). In this work, 
numerical methods were used to investigate this relationship. First, a digital representation of media was derived, and thereby implement 
an algorithm for calculating tortuosity. The program allows deriving several statistics of the paths present within the pores. The results 
complement the theoretical studies that suggest the existence of a scaling law in disordered media. However, this paper proposes that the 
relationship between τ and 𝜙𝜙 depends on the average fractal dimension instead of the fractal dimensionality of the optimal path. It was 
also confirmed that the geometry of the latter can be considered in the same universality class as those described by loopless compressible 
invasion percolation. 
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Aproximación numérica a la ley de escalamiento que describe la 
tortuosidad geométrica en medios porosos desordenados 

 
Resumen 
Cuando se estudian las propiedades de transporte de un medio poroso, es importante conocer la tortuosidad (τ) y su variación con la 
porosidad (𝜙𝜙). En este trabajo se utilizan métodos numéricos para buscar dicha relación. Primero se obtiene una representación digital de 
los medios y luego se implementa un algoritmo para el cálculo de la tortuosidad. El programa permite conocer varios estadísticos de los 
caminos presentes al interior de los poros. Los resultados sirven de complemento a los estudios teóricos que sugieren la existencia de una 
ley de escalamiento en medios desordenados. Sin embargo, se propone que la relación entre τ y 𝜙𝜙 depende de la dimensión fractal promedio 
en lugar de la dimensión fractal del camino óptimo. También se verifica que la geometría de este último, puede considerarse dentro de la 
misma clase de universalidad que las descritas por la percolación por invasión compresible sin bucles. 
 
Palabras clave: tortuosidad; medios porosos; percolación; método numérico; ley de escalamiento; dimensión fractal. 

 
 
 

1.  Introduction 
 
When studying the behavior of a porous medium, it is 

crucial to gain information about its effective transport 
properties (i.e., conductivity, permeability, permittivity, and 
diffusivity). For example, knowledge of the soil hydraulic 
permeability helps predict productivity in an oil well [1] or 
the pollutant migration toward aquifers or other water bodies 
[2]. The thermal conductivity of soil allows estimate the 
geothermal energy production efficiency [3]. Insight into the 
diffusivity of soot particles is key to designing metallic or 
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ceramic porous media useful for the treatment of exhaust 
gases [4]. It is also relevant to know the hydrogen effective 
diffusivity when synthesizing materials for use in energy 
storage devices [5]. A main subject of study in materials 
science is the relationship between transport properties and 
the microstructure descriptors of a porous medium (porosity 
(𝜙𝜙), pore diameter, connectivity, and tortuosity (τ), among 
others). Through numerical, experimental, and analytical 
approaches, such as percolation theory, critical path analysis, 
and effective medium approximation; different mathematical 
expressions for these relations have been obtained (see 
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references [6-8] for some examples). Porosity and tortuosity 
are among the most widely used descriptors. Conceptually, τ 
can be interpreted as a measurement of the geometrical 
complexity of a porous structure. Despite the simplicity of 
this concept, some authors state that tortuosity is neither 
understood nor consistently defined [9-11]. Carman [12] 
used it for the first time. He recoursed to this parameter to 
match his experimental permeability data with the results 
predicted by the analytical solution to the capillary tubes 
problem. In literature, four classes of τ can be found. Three 
of them are related to the process under study (hydraulic, 
electric, or diffusive tortuosity) and the fourth class is 
associated with the morphological properties of porous media 
(geometrical tortuosity). In 2013, Ghanbarian et al. [9] 
published a critical review of the deduction, meaning, and 
application field of each of these definitions. The geometrical 
tortuosity (𝜏𝜏𝑔𝑔) defines the relationship between the average 
length of the paths existing within the porous channels (〈𝐿𝐿𝑔𝑔〉) 
and the linear dimension of the system (𝐿𝐿): 

 
𝜏𝜏𝑔𝑔 =

〈𝐿𝐿𝑔𝑔〉
𝐿𝐿

            (1) 
 
Some authors propose the use of the shortest pathway, or 

optimal path (𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜), instead of 〈𝐿𝐿𝑔𝑔〉 [9]. However, this 
definition is not the most widely adopted. Experimentally, 𝜏𝜏𝑔𝑔 
can be directly obtained from tomographic or micrographic 
image registration [13-15]; or indirectly by using some 
function that relates it to another microstructural descriptor. 
The last one is the most widely used option, and porosity is 
the preferable descriptor. In literature, many equations that 
relate 𝜏𝜏 and 𝜙𝜙 are found. Some of them are compiled by 
Sobieski and Lipinski [16]. The abundance of mathematical 
expressions is attributed to the fact that each study was 
carried out for particular cases of porous media, thus their 
application ranges are limited. Some of them are useful for 
3D beds of spherical particles but cannot be used for cubic 
particles. Other studies apply to 2D sections of overlapping 
square particles but not to the non-overlapping ones. Many 
of these equations have a common deficiency; they predict a 
value of 𝜏𝜏𝑔𝑔 = 0 when 𝜙𝜙 → 1. Nevertheless, the geometrical 
tortuosity in this limit must be 1. 

The lack of a predictive unified model has motivated 
investigations on more universal formulations. Based on the 
percolation theory and the finite-size scaling approach, 
Ghanbarian et al. [17] proposed a model that allows predict 
𝜏𝜏𝑔𝑔 as a function of 𝜙𝜙 in a relatively wide range of two- and 
three-dimensional porous media. In this analytical model, 
which is described in more detail in section 2, the authors use 
the concepts of fractal length and dimension as well as the 
percolation theory and its critical exponents. They found that 
tortuosity follows a scaling law that gradually increases, 
while porosity decreases and diverges as 𝜙𝜙 approaches the 
percolation threshold (or critical porosity). The authors found 
that many of the equations relating 𝜏𝜏 and 𝜙𝜙 matched their 
proposal. Consequently, they could be considered within the 
percolation theory framework. This model has been used for 
predicting different transport parameters, such as effective 
permeability and electrical conductivity in concrete [6]; and 
thermal conductivity in porous alumina ceramics [6] and in 
materials with polyhedral porosity [7]. 

Using numerical methods, this work found that media 
with saturated, disordered, and randomly distributed pores 
follow a scaling law that relates these two microstructure 
descriptors: geometrical tortuosity and porosity. The 
percolation model is used for obtaining the digital 
representations of media with different porosities. An 
advanced algorithm was developed to derive tortuosity from 
the percolating paths that exist within the porous channels. 
Therefore, in addition to the average length, it is possible to 
obtain statistics, such as the median as well as the shortest 
and largest paths, which are not possible to derive using state-
of-the art algorithms. The program validity is verified by 
comparing its results with recently published results. 
Moreover, the universality class to which the shortest path 
belongs was found. The paper is organized as follows: the 
analytical model presenting tortuosity as a scaling law is 
described in section 2. The procedure used for generating the 
digital images of porous media and the algorithm developed 
for obtaining the percolating paths are described in section 3. 
Section 4 presents the scaling law obtained numerically and 
other results, whereas section 5 reports the conclusion. 

 
2.  Percolation-based tortuosity model [17] 

 
According to the percolation theory, the mean distance 

between two points in a same finite cluster of pores, or 
correlation length (𝜒𝜒), is given by the scaling law: 

 
𝜒𝜒 = 𝐶𝐶|𝜙𝜙 − 𝜙𝜙𝑐𝑐|−𝜈𝜈          (2) 

 
𝜙𝜙𝑐𝑐 is the critical porosity, a minimum porosity value 

needed for the existence of a cluster of pores that spans the 
network from one side to another (percolating cluster). 𝜙𝜙𝑐𝑐 
depends on the type of percolation studied (bound or site, 
with or without trapping) and the lattice (square, cubic) [18]. 
For example, for site percolation in a square lattice, 𝜙𝜙𝑐𝑐 has 
an accepted value of 0.5927. Similar to other percolation 
properties, this is an accepted value since an analytical result 
does not exist. The accepted values are numerically obtained. 
𝐶𝐶 is a fitting coefficient with an accepted magnitude of 
0.85 ± 0.4 for a square lattice [19]. 𝜈𝜈 is a critical exponent 
which only depends on the Euclidean dimension. Unlike 𝜙𝜙𝑐𝑐, 
𝜈𝜈 neither depends on the type of percolation nor the type of 
lattice and has an exact value. For this reason, it is known as 
a universal exponent. Its exact value in 2D is 𝜈𝜈 = 4/3. 

The porous channels have a characteristic fractal 
configuration [17]. The total length of a fractal path (𝐿𝐿𝐹𝐹), 
constructed of steps of length 𝜀𝜀, can be obtained from eq. (3): 

 
𝐿𝐿𝐹𝐹(𝜀𝜀) = 𝐿𝐿𝐷𝐷𝑓𝑓𝜀𝜀1−𝐷𝐷𝑓𝑓   (3) 

 
Where 𝐷𝐷𝑓𝑓 is the fractal dimension 
Close to the critical porosity, 𝜀𝜀 is inversely proportional 

to the correlation length and eq. (3) can be written as [17]: 
 

𝐿𝐿𝐹𝐹(𝜒𝜒) ∝ 𝐿𝐿𝐷𝐷𝑓𝑓|𝜙𝜙 − 𝜙𝜙𝑐𝑐|𝜈𝜈−𝜈𝜈𝐷𝐷𝑓𝑓   (4) 
 
Taking 𝐿𝐿𝐹𝐹(𝜒𝜒) as the average length of the paths, the 

geometrical tortuosity can be expressed as [17]: 
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𝜏𝜏𝑔𝑔(𝜙𝜙) ∝ |𝜙𝜙 − 𝜙𝜙𝑐𝑐|𝜈𝜈−𝜈𝜈𝐷𝐷𝑓𝑓      (5) 
 
The correlation length predicted by percolation theory is 

only independent of the system size if 𝜒𝜒 ≤ 𝐿𝐿. When 𝜒𝜒 > 𝐿𝐿, 
eq. (2) and consequently eq. (5) must be modified to include 
this dependency. Ghanbarian et al. [17] proposed to use the 
scaling factor (𝐶𝐶/𝐿𝐿)1/𝜈𝜈. 

 
𝜏𝜏𝑔𝑔(𝜙𝜙) ∝ �𝜙𝜙 − 𝜙𝜙𝑐𝑐 + (𝐶𝐶/𝐿𝐿)1/𝜈𝜈�𝜈𝜈−𝜈𝜈𝐷𝐷

𝑓𝑓

 (6) 
 
The fact that 𝜏𝜏𝑔𝑔 = 1 when 𝜙𝜙 → 1 also suggests the 

inclusion of the factor �1 − 𝜙𝜙𝑐𝑐 + (𝐶𝐶/𝐿𝐿)1/𝜈𝜈� in eq. (6) for 
ultimately obtaining the percolation-based tortuosity model 

 

𝜏𝜏𝑔𝑔(𝜙𝜙) = �𝜙𝜙−𝜙𝜙𝑐𝑐+(𝐶𝐶/𝐿𝐿)1/𝜈𝜈

1−𝜙𝜙𝑐𝑐+(𝐶𝐶/𝐿𝐿)1/𝜈𝜈 �
𝜈𝜈−𝜈𝜈𝐷𝐷𝑓𝑓

  (7) 
 

3.  Numerical approximation to the tortuosity-porosity 
relationship 
 

3.1  Porous media generation 
 
The digital representations of the microstructures are 

obtained by randomly selecting a fraction 𝜙𝜙 of the nodes 
constituting a square lattice of linear dimension 𝐿𝐿 (in this 
work an 𝐿𝐿 = 120 is arbitrarily selected). These nodes are 
turned into the mass center of a square pore with an edge 
equal to a lattice unit. The phase function (𝑧𝑧(𝑥𝑥,𝑦𝑦)) for this 
system is: 

 
𝑧𝑧(𝑥𝑥,𝑦𝑦) = �1     if (𝑥𝑥,𝑦𝑦) ∈ 𝜙𝜙

0     if (𝑥𝑥,𝑦𝑦) ∉ 𝜙𝜙  (8) 

 
where 𝜙𝜙 is the porosity. A cluster of pores is defined as 

two or more mass centers that have 𝑧𝑧(𝑥𝑥,𝑦𝑦) = 1 and occupy 
consecutive sites in the lattice. The control over the 
distribution and number of clusters is carried out by using the 
labeling algorithm proposed by Ramirez et al. [20]. As in real 
solids, there are pores in the microstructures that do not 
belong to the percolating cluster (occluded pores) and 
therefore cannot be taken into account when calculating 𝜏𝜏. 
There are also blind pores that unjustifiably increase the 
percolating path length. Both types of pores are eliminated 
by doing the following transformation 𝑧𝑧(𝑥𝑥,𝑦𝑦) = 1 → 0 (Fig. 
1 a and b). 

 
3.2  Algorithm for calculating tortuosity (Camper) 

 
The algorithm, named Camper from caminos percolantes, 

has the objective to find as many paths as possible, but not 
all. The general diagram is presented in Scheme 1. Paths are 
found to depart from the left side of the digital representation 
to arrive to the right side and also in the opposite direction. 
All the nodes in the lattice edges [i.e., the nodes (0,0)⋯ (0, 𝐿𝐿) 
and (𝐿𝐿, 0)⋯ (𝐿𝐿, 𝐿𝐿)] with 𝑧𝑧(𝑥𝑥,𝑦𝑦) = 1 are the starting point for 
the search. These paths are formed by steps with an equivalent 
length of a lattice unit. In this case, there are four possibilities. 
When departing from the left side, we will have steps from (𝑥𝑥,𝑦𝑦) 
to (𝑥𝑥,𝑦𝑦 ± 1), which will be cited as right (−) or left (+), or as 

(𝑥𝑥 ± 1,𝑦𝑦), cited as forward (+) or backward (−). When 
departing from the right side, the signs change. The steps are 
preferentially taken forward provided that there are not obstacles. 
Obstacles are the pores walls. There are two types of pores walls 
in the digital representations: those that can only be evaded in one 
direction (to the left or right, they will be named single obstacles) 
and those that can be evaded in both directions (double obstacles) 
(Fig. 1 d). In the first case, the obstacle is bordered in the 
direction, in which 𝑧𝑧 = 1, until there is the possibility of 
continuing the path forward. In the second case, before bordering 
the pore wall a direction is randomly selected. Finally, 〈𝐿𝐿𝑔𝑔〉 is 
obtained after averaging the length of the different paths. Any 
configuration of steps with loops is rejected for the 𝜏𝜏𝑔𝑔 calculation. 

 

 
Figure 1. a) Digital representation of porous media with 𝜙𝜙 = 0.65; the occluded 
pores are shown in gray. b) Lattice used for calculating 𝜏𝜏, after eliminating 
occluded and blind pores. c) Zoomed view of the framed region, whereby arrows 
indicate some blind pores. d) Arrows point out a single obstacle (only evadable to 
the left) and a double one (Obstacles are described in section 3.2.) 
Source: elaborated by the author 

 
4. Results and discussion 

 
4.1  Algorithm validation 

 
The algorithm validity is corroborated by comparing 

results with those reported by Roque and Costa in 2020 [14] 
and Al-raoush and Madhoun in 2017 [15]. They also 
developed algorithms for calculating 𝜏𝜏𝑔𝑔 from image 
registration. From reference [14], the synthetic image called 
curved line is taken (see Fig. 2 a). From reference [15], the 
micrography of the natural media called M1, a mixed sand of 
silica and quartz, is taken (see Fig. 2 b). As stated in section 
3.1, Camper only reads square images; for this reason, the 
rectangular image of M1 is cut as presented in Fig. 2 c. Both 
digital representations were adjusted to have a resolution of 
240 × 240 pixels (𝐿𝐿 = 240). Table 1 presents the results. 

One of the advantages of this program is the descriptive 
statistical analysis of the detected paths, which is not possible with 
the other proposals. Camper allows establish the number of paths 
used for calculating 𝜏𝜏𝑔𝑔 as well as the maximum and minimum 
lengths, and the median. In general, there is a good agreement 
between the tortuosities reported in literature and those calculated 
in this work. Particularly for M1, where the same value of 
tortuosity was obtained. 
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Scheme 1. Flowchart of the algorithm used to find the percolating paths. 
Source: elaborated by the author 

 
 

 
Figure 2. Digital representations used for corroborating the algorithm. a) 
Curved line, b) Micrography of the mixed sand (M1 sample), the frame 
encloses the area used for the calculation. c) Zoomed view of the used area. 
As an example, in c) two of the paths found by the program are presented. 
Note how they evade the blind pores. 
Source: adapted from references [14] and [15] with the author’s permission 

Table 1.  
Results used for validating the algorithm 

Medium Curved line M1 
Total number of paths 9 90 
〈𝐿𝐿𝑔𝑔〉 291.2 375.8 
Standard deviation 28.2 50.4 
𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜a 260 296 
𝐿𝐿𝑀𝑀𝑀𝑀b 313 367 
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

c 317 504 
𝜏𝜏𝑔𝑔[14]d 1.36  
𝜏𝜏𝑔𝑔[15]d  1.57 
𝜏𝜏𝑔𝑔 Camperd 1.21±0.1 1.57±0.2 

a Length of the shortest percolating path or optimal path 
b Median for paths 
c Largest path length 
d Tortuosities published in [14] and [15] and the one obtained by Camper 
Source: elaborated by the author 

 
 

 
Figure 3. Relationship between the geometrical tortuosity and porosity. The 
circles indicate the numerically obtained results. The vertical bar represents the 
standard deviation. The solid line is the equation that better fits the data. The 
dashed line is the scaling law analytically obtained by Ghanbarian et al. (eq. 8). 
Source: elaborated by the author 

 
 

4.2  Detection of a scaling law 
 
With the algorithm, 𝜏𝜏𝑔𝑔 is calculated in media with porosity 

from 0.63 to 0.95. Fig. 3 presents the results. This range of 
porosity was used because 𝜒𝜒 ≤ 𝐿𝐿; hence, the correlation length 
is independent of the size of the system and the scaling factor 
can be eliminated in eq. (7). However, while we are closer to 
𝜙𝜙 = 0.63, the finite-size effects appear as greater standard 
deviations, which lead to greater uncertainty in the calculation 
of 𝜏𝜏𝑔𝑔. Ghanbarian et al. [17] proposed to use the fractal 
dimension of the optimal path [21, 22] (𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 = 1.22 in 2D) as 
𝐷𝐷𝑓𝑓 in eq. (7). By replacing the accepted values for 𝜙𝜙𝑐𝑐 and 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜, 
the universal exponent in (7), and by solving the denominator 
such equation can be rewritten as: 

 
𝜏𝜏𝑔𝑔(𝜙𝜙) = 0.78|𝜙𝜙 − 𝜙𝜙𝑐𝑐|−0.29  (9) 

 
This equation is presented as a dashed line in Fig. 3. The 

solid line is the scaling law that better fits the simulated 
tortuosity values and is 
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𝜏𝜏𝑔𝑔(𝜙𝜙) = 0.78|𝜙𝜙 − 𝜙𝜙𝑐𝑐|−0.35  (10) 
 
There is a good correlation between both equations. After 

solving 𝐷𝐷𝑓𝑓 from 𝜈𝜈 − 𝜈𝜈𝐷𝐷𝑓𝑓 = −0.35, a fractal dimension 
value of 1.26 was found. As expected, 𝐷𝐷𝑓𝑓 > 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 since all 
percolating paths, and not only the shortest one, were used 
for its calculation. Consequently, 𝐷𝐷𝑓𝑓 can be interpreted as an 
average fractal dimension. When 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 is used in eq. (7), as 
Ghanbarian et al. do so, the geometrical tortuosity is obtained 
in terms of the 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜/𝐿𝐿 relationship and not as the relationship 
between the average length of the paths and the linear 
dimension of the system. To adjust to the most accepted 
definition of tortuosity (eq. 1), the use of the average fractal 
dimension found in this work, instead of 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜, is proposed. 
Eq. (9) fulfills 𝜏𝜏𝑔𝑔 → 1 when 𝜙𝜙 → 1. 

 

 
Figure 4. Logarithmic relationship between the optimal path length and the 
linear dimension of the system. The slope gives the value of the fractal 
dimension, 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 
Source: elaborated by the author 

 
 

4.3  Optimal path and fractal dimension 
 

In this section, the capacity of Camper for assigning a 
value to the optimal path length was used. As mentioned 
before, when 𝜒𝜒 > 𝐿𝐿 the percolation properties depend on the 
system dimension. It has been possible to establish that under 
these conditions and in the percolation threshold, the length 
of such path scales with its Euclidean distance, meaning that 
𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜~𝐿𝐿𝑀𝑀𝐷𝐷

𝑜𝑜𝑜𝑜𝑜𝑜 [22,23]. 𝐿𝐿𝑀𝑀 is the distance between the starting 
point and the arrival point, 𝐿𝐿𝑀𝑀 ≥ 𝐿𝐿. It is proposed to obtain 
𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 from the slop of the relation log10�𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜� 𝑣𝑣𝑣𝑣. log10(𝐿𝐿𝑀𝑀) 
constructed from twelve media with 𝜙𝜙 = 0.6 and 𝐿𝐿 =
10,20, … ,110,120. The critical porosity (𝜙𝜙𝑐𝑐 = 0.5927) 
could not be used because, in some cases, the program does 
not find a percolating path. Results are presented in Fig. 4. 
Despite not using 𝜙𝜙𝑐𝑐, the value obtained for 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 was 1.21, 
which agrees adequately with the accepted value of 1.22 
[21,22]. This suggests that the optimal path existing within 
the porous channels can be considered as in the same 

universality class of the geometries described by loopless 
compressible invasion percolation [21,22,24]. 

 
5. Conclusions 

 
The sequence followed by the developed algorithm, i.e., 

removing occluded and blind pores, paths starting in different 
points of each media edge, steps forward, which border 
obstacles, and avoiding loops allows to derive a solid 
statistical description of the percolating paths existing within 
porous media. For media with saturated, disordered, and 
randomly distributed pores, there is a power law that relates 
geometrical tortuosity and porosity. The exponent of such 
law can be obtained from the critical exponent of the 
correlation length and the average fractal dimension instead 
of the fractal dimension of the optimal path. The fractal 
dimension of the optimal path that exists within this type of 
microstructures is in the same universality class that the Eden 
growth observed in tissue or bacterial cultures or the 
geometry of the undirected polymers. 
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