

© The author; licensee Universidad Nacional de Colombia.
Revista DYNA, 88(218), pp. 72-80, July - September, 2021, ISSN 0012-7353

DOI: https://doi.org/10.15446/dyna.v88n218.90781

On the resource consumption of Software quantum computing
simulators•

Gilberto Javier Díaz-Toro a, Luiz Angelo Steffenel b & Carlos J. Barrios-Hernández a

a SC3UIS - CAGE, Universidad Industrial de Santander, Bucaramanga, Colombia. jgdiazt@uis.edu.co, cbarrios@uis.edu.co

b Laboratoire CReSTIC - Équipe CASH Université de Reims Champagne-Ardenne, Reims, France. Luiz-Angelo.Steffenel@univ-reims.fr

Received: September 18th, 2020. Received in revised form: May 6th, 2021. Accepted: June 1st, 2021.

Abstract
Recently, several real quantum devices have become available through the cloud. Nevertheless, they are expected to be very limited, in the
near term, in the number and quality of the fundamental storage element, the qubit. Therefore, software quantum simulators are the only
widely available tools to design and test quantum algorithms. However, the representation of quantum computing components in classical
computers consumes a big amount of resources. This work describes how to model the main elements of quantum computing in a classical
computer and depicts resource consumption using two popular quantum simulators. In the end, we discuss different approaches to overcome
this problem.

Keywords: quantum computing; quantum computing simulators; high performance computing.

Sobre el consumo de recursos de los simuladores cuánticos en
Software

Resumen
Recientemente, varios dispositivos cuánticos reales están disponibles a través de la nube. No obstante, se espera que sean muy limitados,
a corto plazo, en el número y la calidad del elemento fundamental de almacenamiento, el qubit. Por lo tanto, los simuladores cuánticos de
software son las únicas herramientas ampliamente disponibles para diseñar y probar algoritmos cuánticos. Sin embargo, la representación
de componentes de computación cuántica en computadoras clásicas consume una gran cantidad de recursos. Este trabajo describe cómo
modelar los elementos principales de la computación cuántica en una computadora clásica y describe el consumo de recursos utilizando
dos simuladores cuánticos populares. Al final, discutimos diferentes enfoques para superar este problema.

Palabras clave: computación cuántica; simuladores de computación cuántica; computación de alto rendimiento.

1. Introduction

Recently, several quantum devices, with up to tens of

qubits on universal quantum computers (UQC) and thousand
qubits on annealer (QA) devices, have become available
through the cloud. This enables the possibility to use real
quantum hardware to solve very simple problems for first
time. However, in the near term, those devices are expected
to be very limited in number and quality of qubits. These
quantum computers represent prototypes that are not scalable
and sufficient to test complex quantum algorithms. The
construction of a full-scale quantum computer comprising

How to cite: Díaz-Toro, G.J., Steffenel. L.A. and Barrios-Hernández, C.J., On the resource consumption of software quantum computing simulators.. DYNA, 88(218), pp. 72-
80, July - September, 2021.

millions of qubits is a longer-term prospect. Quantum
computer prototypes are currently very small and specific
and are not yet able to overcome the processing capacity of
classical computers. For example, the recent IBM Q System
One [1] only operates with 53 qubits. Programming this
prototype still lacks the compiler support that modern
programming languages enjoy today. Programmers of this
machine must design low-level circuits; they must map
logical qubits into physical qubits that need to obey
connectivity constraints. This task resembles the early days
of programming, in which software was built in machine
languages [2].

mailto:jgdiazt@uis.edu.co

Díaz-Toro et al / Revista DYNA, 88(218), pp. 72-80, July - September, 2021.

73

For all this, quantum computing simulators are the only
widely available tools to design and test quantum algorithms.
However, the simulation of quantum computing models in
classical computers requires exponential time and involves
extremely complex memory management. The problem is
that using conventional techniques to simulate an arbitrary
quantum process that is significantly larger than any of the
existing quantum prototypes would soon require a huge
amount of memory on a classical computer. For instance, to
simulate a 60 qubits quantum state the process would take
about 18.000 petabytes (18 Exabytes) of classical computer
memory. Therefore, researchers try to reduce such challenges
by proposing efficient simulators. Some popular quantum
software simulators can be found in [3,4].

The simulation of quantum systems in classical
computers is a relatively old problem. However, with the
emergence of real quantum computers, the limit of what
classical simulations can handle is being pushed to better
understand its operation and verify that t is behaving as
predicted. The simulations of NISQ (Noisy Intermediate-
Scale Quantum) devices on classical computers represent an
invaluable experimental testbed for noise characterizations,
for the development of quantum error correction, and for the
verification of quantum systems. With this momentum, a
variety of techniques have been invented to keep up with the
newer quantum processors [5].

This work attends to address the fundamental details of
quantum simulation on classical computers and the problems
related to it. We use a useful quantum algorithm and its
implementation on two popular quantum simulators to
illustrate these aspects.

2. Key concepts of quantum computing

To better understand the quantum computing model, it is

necessary to know the key aspects of the inheritance of
quantum mechanics and the fundamental concepts on which
quantum computing is based.

2.1 Qubit

A physical qubit Is a physical device that behaves as a

two-level quantum system. A logical qubit is a unitary vector
in a two-dimensional Hilbert space in which the Boolean
states 0 and 1 are represented by a prescribed pair of
normalized and mutually orthogonal quantum states denoted
using Dirac’s notation |0〉 and |1〉 [6]. The two states form
a “computational basis”, and any other (pure) state of the
qubit can be written as a superposition α|0〉 + β|1 [7].

 |0⟩ ≡ �

1
0� ∶ |1⟩ ≡ �

0
1�

(1)

The state |ψ〉 associated with a qubit can be any unit

vector in the two-dimensional vector space spanned by |0〉
and |1〉 over the complex numbers [8]. The general state of a
qubit is:

|ψ〉 = α0|0〉 + 𝛼𝛼1|1〉 (2)

Where α0 and α1, are called the amplitude of component
|0〉 and component |1〉 respectively, are two complex
numbers constrained only by the requirement that |ψ〉, like
|0〉 and |1〉, should be a unit vector in the complex vector
space, in other words, only by the normalization condition:
|α0|2+|α1|2 = 1. The state of n qubits is spanned by the tensor
product basis.

|0⟩ ⨂… |0⟩ ⨂ |0⟩ = |0 … 00⟩
|0⟩ ⨂… |0⟩ ⨂ |1⟩ = |0 … 01⟩

…
|1⟩ ⨂… |1⟩ ⨂ |1⟩ = |1 … 11⟩

(3)

The general equation of a n-qubit state is

|Ψ⟩ = � 𝑐𝑐𝑥𝑥 |𝑋𝑋⟩
2𝑁𝑁−1

𝑥𝑥=0

 (4)

2.2 Superposition

The special characteristic of quantum states is that they

allow the system to be in a few states simultaneously, this is
called superposition. Quantum bits are not constrained to be
wholly 0 or wholly 1 at a given instant. In quantum physics,
if a quantum system can be found to be in one of a discrete
set of states, which we’ll write as |0〉 or |1〉, then, whenever
it is not being observed it may also exist in a superposition,
or blend of those states simultaneously [9].

2.3 Measurement of single qubit quantum state

According to the postulate 3 of quantum mechanics

(Measurement), the action of measure a quantum state
produces a change in it. If a state |𝑣𝑣〉 = α|0〉 + β|1〉 is
measured and the outcome is |0〉, then the state |𝑣𝑣〉 changes
to |0〉. A second measurement with respect to the same basis
will return |0〉 with probability 1. To understand this, it is
necessary to think of a superposition |𝑣𝑣〉 as a state that could
be in both state |0〉 and state |1〉 at the same time, that is to
say, the quantum state |𝑣𝑣〉 is a combination of |0〉 and |1〉 in
similar proportions but with different amplitudes. A
fundamental fact about this measurement process
(measurement in the computational basis) is that the quantum
state |𝑣𝑣〉 v is disturbed by the measurement. Therefore, it is
impossible to determine the original state from any sequence
of measurements [10].

2.4 Entanglement

The “entanglement” describes a correlation between

different parts of a quantum system that surpasses anything
that is classically possible. It happens when the subsystems
interact in such a way that the resulting state of the whole
system cannot be expressed as the direct product of the states
of its individual parts. When a quantum system is in such a
tangled state, the actions performed in one subsystem will
have a side effect in another subsystem, even if it does not act
directly on that subsystem [9]. It takes 2n – 1 complex
numbers to describe states of an n-qubit system. Because 2n

Díaz-Toro et al / Revista DYNA, 88(218), pp. 72-80, July - September, 2021.

74

is much bigger than n, most of the n-qubit states cannot be
described in terms of the state of n separate single-qubit
systems. States that cannot be written as the tensor product of
n single-qubit states are called entangled states. Thus, the vast
majority of quantum states are entangled [10]. If we can write
the tensor product of those states, they are said to be separate
states.

2.6 Reversibility

The reversibility is a property of some operations that

consist of obtaining unique inputs for all outputs of said
operations. Reversibility is one of the most useful
mechanisms in quantum computing. Reversible operations
change the initial state of the qubits into its final form using
only processes whose action can be inverted. There is only a
single irreversible component to the operation of a quantum
computer, the measurement, which is the only way to extract
useful information from the qubits after their state has
acquired its final form [8]. In a reversible operation, every
final state arises from a unique initial state.

2.7 Decoherence

Quantum states are very fragile and susceptible to noise.

Eventually, errors inevitably appear over time, this process is
known as decoherence. Some situations that cause errors are,
for example, atoms couple to the electromagnetic field and
spins couple to other spins via dipole interactions. These
unwanted couplings cause errors; therefore, quantum states
must be well isolated from the environment in order to
protect quantum information against these errors.

In the context of quantum computing, qubits are
susceptible to more kinds of errors than are classical bits.
There are phase errors that send |0〉 → |0〉 and |1〉 → −|1〉,
which has the effect of changing α|0〉 + β|1〉 to α|0〉 − β|1〉.
In addition, there are generally small errors that have the
effect α|0〉 + β|1〉 → �α + 𝑂𝑂(𝜖𝜖)) �0〉 + (β + 𝑂𝑂(𝜖𝜖)) |1〉 where
𝜖𝜖 ≪ 1 is a parameter that characterizes the size of the error.
It is necessary to take special care in detecting an error
because measuring a state can change it, and of course, we
cannot just copy the qubit state, because of the no-cloning
theorem [6].

2.7 Quantum computing models

A quantum computing model is the description of the

different scientific approaches to formalizing the
transformations over inputs to compute outputs using
quantum resources. A model is determined by the basic
elements in which the computation is decomposed [11,12].
The four main models of practical importance are:
• Quantum Gate Array or Quantum Circuit: The

computation is decomposed into a sequence of few qubit
quantum gates.

• One-way quantum computer: The computation is
decomposed into a sequence of one-qubit measurements
applied to a highly entangled initial state or cluster state.

• Adiabatic quantum computer: The computation is

decomposed into a slow continuous transformation of an
initial Hamiltonian into a final Hamiltonian, whose
ground states contain the solution.

• Topological quantum computer: The computation is
decomposed into the braiding of anyons in a 2D lattice.

3. Basis of quantum computing simulation

In classical computing, the amount of information

contained by a specific state using n bits is n, there will be
only one combination of n 0s and 1s. In quantum computing,
a state composed of n qubits will be a union of all possible
combinations of n 0s and 1s. That is to say, the size of the
information is 2n. For example, if we are using 3 bits, we will
have just one of the 23 possibilities whose length is 3, for
instance, 010. If we use 3 qubits we will have, not only one
but all combinations: 001, 010, 011... 111, each one
multiplied by the corresponding amplitude. If we increase in
1 the number of bits the size will be n + 1, but if we increase
the number of qubits, we get the double of the size, that is to
say, 2n+1 [13].

3.1 Single Qubit representation

A qubit is a two-level quantum system. The state |ψ〉 of

this quantum system can be represented by two complex
numbers α0 and α1 such as

|𝜓𝜓⟩ = 𝛼𝛼0 |0⟩+ 𝛼𝛼1 |1⟩ 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 |𝛼𝛼0|2 + |𝛼𝛼1|2 = 1 (5)

When we measure the qubit, we obtain |0〉 with

probability 𝑝𝑝 = |𝑎𝑎0|2 or |1〉 with probability 1− 𝑝𝑝 = |𝑎𝑎1|2.
Thus, after being measured, the qubit becomes a classical bit.
To store |𝜓𝜓〉 on a classical computer, it is more suitable to use
two orthonormal vectors to represent |0〉 and |1〉.

|𝜓𝜓⟩ = 𝛼𝛼0 �

1
0� + 𝛼𝛼1 �

0
1� = �

𝛼𝛼0
𝛼𝛼1
� (6)

3.2 Operations on single Qubits

Any operation on the qubit of eq. (7) is represented by a

complex unitary matrix. For example, if we apply a NOT gate
(X gate), it is equivalent to execute a matrix-vector
multiplication.

𝑋𝑋|𝜓𝜓⟩ = �0 1

1 0��
𝛼𝛼0
𝛼𝛼1
� = �

𝛼𝛼1
𝛼𝛼0
� = 𝛼𝛼1 |0⟩+ 𝛼𝛼0 |1⟩ (7)

3.3 n-Qubits representation

In a general form, the n-qubits state of a quantum

computer can be represented by a complex vector of size 2n.

|ψ〉 = 𝛼𝛼0|0. .00⟩+ 𝛼𝛼1|0. .01⟩+. .𝛼𝛼2𝑛𝑛−1|1. .11⟩ =

⎝

⎜
⎜
⎛ 𝛼𝛼0

𝛼𝛼1
.
.

𝛼𝛼2𝑛𝑛−1⎠

⎟
⎟
⎞

 (8)

Díaz-Toro et al / Revista DYNA, 88(218), pp. 72-80, July - September, 2021.

75

3.4 Operations on n-Qubits

The operations on the state of eq. (8) are 2𝑛𝑛 × 2𝑛𝑛 unitary

matrices. Finally, applying a single-qubit gate U to the i-th
qubit of an n-qubit quantum computer amounts to
multiplying the state vector of coefficients 𝛼𝛼𝑖𝑖 by the matrix.

𝟙𝟙2 ⊗… ⊗𝟙𝟙2 ���������⊗𝑈𝑈⊗ 𝟙𝟙2 ⊗…⊗𝟙𝟙2 ���������
𝑛𝑛 − 𝑖𝑖 − 1 𝑖𝑖

(9)

This is a complex sparse matrix-vector multiplication of

dimension 2n. Therefore, for double-precision values, just
storing the state vector for 50 qubits would already require
16 petabytes of memory.

3.6 Quantum state preparation

Patrick Coles et. al. in his work [14] presents some

methods to prepare qubits states. The preparation procedure
of an n- qubit state consists of two steps:
• Finding a unitary transformation that takes the N-

dimensional vector (1, 0, . . . 0) to the desired state (α1,
..., αN), where N = 2n.

• Rendering the unitary transformation into a sequence of
gates.
To briefly exemplify this procedure, let us see how to

prepare a single qubit state |𝜓𝜓〉 It is represented as a
superposition of 0 and 1 states |𝜓𝜓〉 = 𝛼𝛼|0〉 + 𝛽𝛽|1〉 where
|𝛼𝛼|2 + |𝛽𝛽|2 = 1. The magnitudes |𝛼𝛼|2 and |𝛽𝛽|2 represent
the relative probability of |𝜓𝜓〉 being 0 or 1. Until a non-
observable global phase, we can assume that 𝛼𝛼 is real, so that
|𝜓𝜓〉 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|0〉 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|1〉 for some angles θ, φ.
Therefore, we represent the state as a point on the unit sphere
with θ the latitude and φ the longitude. Thus, one qubit state
preparation consists simply of finding the unitary
transformation that takes the north pole to (α, β). To set the
initial state of more than one qubit we can use the so-called
Schmidt decomposition. It allows one to initialize a 2n-qubit
state by initializing a single n-qubit state, along with two specific
n-qubit gates, combined with n CNOT gates.

4. Quantum algorithms

A quantum algorithm is an algorithm made in one of the

models of quantum computing, with quantum circuits as the most
used model. A classical (or non-quantum) algorithm is a finite
sequence of instructions, or a step-by-step procedure for solving a
problem, where each step or instruction can be performed on a
classical computer. Similarly, a quantum algorithm is a step-by-
step procedure, where each of the steps can be performed on a
quantum computer. Although all classical algorithms can also be
performed on a quantum computer, the term quantum algorithm is
generally used for those algorithms that incorporate some essential
features of quantum computing, such as superposition or
entanglement [11]. The field of quantum algorithms has become a
sufficiently large area of study “Quantum Algorithms Zoo” [15]
cite almost 400 articles in this area.

When referring to an algorithm, the computational
complexity, or just complexity, is a measure of the resources

used by the algorithm, usually measured as a function of the input
size of the algorithm. The complexity for the input size n is taken
as the cost of the algorithm in a more unfavorable case entry for
the size n problem. When referring to a problem, the complexity
is the minimum amount of resources required by any algorithm
to solve the problem [16]. In the theory of computational
complexity, asymptotic scales of complexity measures such
as execution time or problem size are generally considered. In
both classical and quantum computing, the execution time is
measured by the number of elementary operations used by an
algorithm. In the case of quantum computing, this can be
measured using the quantum circuit model, where a quantum
circuit is a sequence of quantum operations called quantum
gates, each applied to a small number of qubits. To compare
the performance of the algorithms, the notation O(f(n)) of the
computing style is used, which is interpreted as
“asymptotically delimited by f (n)” [17]. In these cases, it is
convenient to use the basic ideas of the theory of
computational complexity [18], especially the notion of
complexity classes, which are groupings of problems by
difficulty. The informal descriptions of some important
complexity classes are.
• Class P: A deterministic classical computer can solve it in

polynomial time.
• Class BPP: A probabilistic classical computer can solve

it in polynomial time.
• Class BQP: A quantum computer can solve it in

polynomial time.
• Class NP: A deterministic classical computer can check

the solution in polynomial time.
• Class Quantum Merlin–Arthur: A quantum computer can

check the solution in polynomial time.
If a problem is said to be complete for a complexity

class, this means that it is one of the “most difficult”
problems within that class [17].

There are three classes of quantum algorithms with clear
advantages over known classical algorithms.
• Algorithms based upon quantum versions of the Fourier

transform, which is very used in classical algorithms.
• Quantum search algorithms.
• Quantum simulation. A quantum computer is used to

simulate a quantum system.

4.1 Quantum parallelism

One of the main features of quantum computing is to take

advantages of quantum mechanics effects like superposition and
entanglement, to speed up the calculations. In 1985 Deutsch [19]
found a computational problem that could be solved on a quantum
computer in a manner that is impossible classically. In 1992
Deutsch and Jozsa [20] simplified and extended the earlier result.

4.2 Quantum algorithms workflow

A typical quantum algorithm workflow on a gate-model

quantum computer is depicted in Fig. 1. It begins with a high-
level definition of the problem, for example, Shor’s
algorithm. The problem to solve is, given an odd composite
number N, we need to find an integer i, strictly between 1 and
N, that divides N.

Díaz-Toro et al / Revista DYNA, 88(218), pp. 72-80, July - September, 2021.

76

Figure 1. Quantum Algorithm Workflow
Source: own authorship.

5. Quantum computing simulators

A quantum simulator is an object able to execute quantum

computations. They can be classified in two categories [21]:
• A Quantum System that can perform very specific

quantum computations.
• Software Packages that can reproduce most of the

fundamental aspects of a general universal quantum
computer on a general-purpose classical computer.
Real quantum computers are available to use over the

cloud, however, they are still very small to be considered as
a complete universal quantum computer. On the other hand,
although quantum computing simulators, running on a
classical computer, cannot process actual quantum states they
are very helpful to test the code syntax and flow.

There has been a recent explosion of quantum software
platforms which can overwhelm to those looking for a
platform to use. Therefore, this section attempts to mention
some of the most popular initiatives.

5.1 Popular open-source quantum computing simulators

Many institutions are working on quantum software,

specifically quantum simulators, from academic research
groups to big companies. A list of the very recent
developments is maintained in several websites [3,4,22,23].
They present several quantum computing software packages
developed by different organizations. LaRose et. al. [24]
made a review of some important general-purpose projects,
that operate at the level of quantum gates. Guzik [25] did a
study on the appropriate approach to implement different
models of quantum computing. Fingerhuth et. al. [26] did an
evaluation of a wide range of open source software for
quantum computing, including all stages of the quantum
toolchain from quantum hardware interfaces through
quantum compilers to implementations of quantum
algorithms, as well as several quantum computing models:
quantum annealing and discrete and continuous-variable
gate- model. The criteria used by this team to select the
projects involve aspects like approved license, maturity,
number of contributors, repository availability, etc.

Leveraging all those works, we present the following list
with a specific selection of major software quantum
simulators developments:
• Quantum++ (C++) Is a general-purpose multi-threaded

quantum simulator written in C++ with high performance [27].
• QuEST (C/C++) It is an open-source quantum simulator

with multithreading, distributed processes and GPU-

accelerated capabilities [28].
• Qrack (C++) Is a quantum simulator written in C++ that

comes with additional support for Graphics Processing
Units (GPUs) [29].

• Intel-QS Formely qHiPSTER, is a simulator of quantum
circuits optimized to take maximum advantage of multi-
core and multi-nodes architectures [30].
Some projects provide a full-stack approach to quantum

computing, including not only a simulator but compilers and
the possibility to run the program on real quantum
processors. The following list shows some of these projects:
• XACC, Simulator: TNQVM (C) This provides an

implementation that takes advantage of the tensor
network theory to simulate quantum circuits [31,32].

• Qiskit, Simulator: Qiskit Aer (Python) Framework for
working with noisy quantum computers at the level of
pulses, circuits, and algorithms supported by IBM
[33,34].

• ProjectQ, Simulator: ProjectQ (C++, Python) An open
source software framework for quantum computing
[35,36] supported by ETH Zurich.

• Forest, Simulator: QVM (Python) Is the quantum
simulator of the full-stack library Forest. It is a purely
Python- based simulator which is meant for rapid
prototyping of quantum circuits. It is supported by
Rigetti.

6. Quantum simulations resource usage

To illustrate the resources consumption by a quantum

simulator, we run the Fourier Quantum Transform (QFT)
using two quantum simulators. Before present the results of
the simulations we describe in the next subsection the details
of the QFT algorithm.

6.1 The Quantum Fourier Transform

Quantum Fourier Transform (QFT) is a quantum

implementation of the discreet Fourier transform [37]. The
quantum Fourier transformation is a generalization of the
Hadamard transformation. The difference is that QFT
introduces phase. The specific types of phases introduced by
QFT are the primitive roots of the unit, ω. Let’s remind that
in the complex numbers, the equation 𝑧𝑧𝑛𝑛 = 1 has n solutions,
for example: for n = 2 𝑧𝑧 could be 1 or -1, for n = 4 𝑧𝑧
could be 1, i, -1 or -i. These roots can be written as power of
𝜔𝜔 = 22𝜋𝜋𝜋𝜋/𝑛𝑛. This number 𝜔𝜔 is called a primitive nth root of
unity. DFT is a transformation of a set x0, ...xN−1 of N
complex numbers into a set of complex numbers y0, ...yN−1
defined by eq. (10).

𝑦𝑦𝑘𝑘 =
1
√𝑁𝑁

 �𝜔𝜔𝑁𝑁
𝑗𝑗𝑗𝑗

𝑁𝑁−1

𝑗𝑗=0

𝑥𝑥𝑗𝑗 (10)

Where

𝜔𝜔𝑁𝑁
𝑗𝑗𝑗𝑗 = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁

(11)

Díaz-Toro et al / Revista DYNA, 88(218), pp. 72-80, July - September, 2021.

77

To build the quantum version of DFT let’s define a linear
transformation U on n qubits that acts on computational basis states
|𝑗𝑗〉 where 0 ≤ 𝑗𝑗 ≤ 2𝑛𝑛 − 1. In other words, QFT acts on a
quantum state like

�𝑥𝑥𝑗𝑗

𝑁𝑁−1

𝑗𝑗=0

|𝑗𝑗⟩ (12)

And map it to the following quantum state.

�𝑦𝑦𝑗𝑗

𝑁𝑁−1

𝑗𝑗=0

|𝑗𝑗⟩ (13)

That transformation is performed using the formula of eq.

(10). If we consider it action on superpositions we note that it
corresponds to a vector notation for the Fourier transform for the
case 𝑁𝑁 = 2𝑛𝑛. Considering the action of QFT on an orthonormal
basis |0〉, … , |𝑁𝑁 − 1〉, we can define it as a linear operator with
the following transformation on the basis states.

|𝑥𝑥⟩ ⟶
1
√𝑁𝑁

 �𝜔𝜔
𝑥𝑥𝑥𝑥
𝑁𝑁

𝑁𝑁−1

𝑦𝑦=0

|𝑦𝑦⟩ (14)

That action on an arbitrary state can be written as

�𝑥𝑥𝑗𝑗

𝑁𝑁−1

𝑗𝑗=0

|𝑗𝑗⟩ ⟶ �𝑦𝑦𝑘𝑘

𝑁𝑁−1

𝑘𝑘=0

|𝑘𝑘⟩ (15)

Where the amplitudes 𝑦𝑦𝑘𝑘 are the discrete Fourier

transform of the amplitudes 𝑥𝑥𝑘𝑘. It can be checked that this
transformation is a unitary transformation, and thus can be
implemented as a quantum circuit.

6.1.1 N-Qubits QFT

This section describes the QFT for N Qubits. Simple examples

for one and three qubits can be consulted in [34]. The following
operations have to be performed to obtain the quantum Fourier
transform for N qubits.

𝑄𝑄𝑄𝑄𝑄𝑄𝑁𝑁|𝑥𝑥⟩ =
1
√𝑁𝑁

 �𝜔𝜔
𝑥𝑥𝑥𝑥
𝑁𝑁

𝑁𝑁−1

𝑦𝑦=0

|𝑦𝑦⟩ (16)

Since 𝜔𝜔𝑁𝑁

𝑗𝑗𝑗𝑗 = 𝑒𝑒2𝜋𝜋𝜋𝜋
𝑥𝑥𝑥𝑥
𝑁𝑁 and 𝑁𝑁 = 2𝑛𝑛

𝑄𝑄𝑄𝑄𝑄𝑄𝑁𝑁|𝑥𝑥⟩ =
1
√𝑁𝑁

 �𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋/2𝑛𝑛
𝑁𝑁−1

𝑦𝑦=0

|𝑦𝑦⟩ (17)

Rewriting in fractional binary notation, expanding the

exponential of a sum to a product of exponentials,
rearranging the sum and products, and expanding again

𝑄𝑄𝑄𝑄𝑄𝑄𝑁𝑁|𝑥𝑥⟩ =

1
√𝑁𝑁

�|0⟩+ 𝑒𝑒
2𝜋𝜋𝜋𝜋
2 𝑥𝑥 |1⟩�⊗ �|0⟩+ 𝑒𝑒

2𝜋𝜋𝜋𝜋
22 𝑥𝑥|1⟩�⊗..

 . .⊗�|0⟩+ 𝑒𝑒
2𝜋𝜋𝜋𝜋

22𝑛𝑛−1
𝑥𝑥|1⟩�⊗ �|0⟩+ 𝑒𝑒

2𝜋𝜋𝜋𝜋
2𝑛𝑛
𝑥𝑥|1⟩�

(18)

Figure 2. Quantum Circuit for QFT
Source: own authorship

6.1.2 QFT quantum circuit

The circuit that implements QFT uses two quantum gates:

The Hadamard gate and two qubits-controlled rotation gate
CROTk. The last is represented by the following matrix.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 = �𝐼𝐼 0

0 𝑈𝑈 𝑅𝑅𝑅𝑅𝑅𝑅𝐾𝐾
� (19)

Where

𝑈𝑈 𝑅𝑅𝑅𝑅𝑅𝑅𝐾𝐾 = �1 0
0 𝑒𝑒2𝜋𝜋𝜋𝜋/2𝑘𝑘

� (20)

The gate UROTk is the phase gate with the following

matrix representation. Fig. 2 shows the n-qubits quantum
circuit for QFT.

The circuit of the Fig. 2 operates as follow: starts with n-
qubit input state, |𝑥𝑥1,𝑥𝑥2, . . , 𝑥𝑥𝑛𝑛〉. Apply the H gate on qubit 1.
Then, apply the CROT2 gate on qubit 1 controlled by qubit 2.
After that, apply the CROT3 gate on qubit 1 controlled by
qubit 3. Then, apply the CROTn gate on qubit 1 controlled by
qubit n. Finally, apply the similar sequence of gates on qubit
2 to qubit n. The final state is.

1
√2

�|0⟩+ 𝑒𝑒
2𝜋𝜋𝜋𝜋
2𝑛𝑛 𝑥𝑥|1⟩�⊗

1
√2

�|0⟩+ 𝑒𝑒
2𝜋𝜋𝜋𝜋
22𝑛𝑛−1𝑥𝑥|1⟩�⊗..

. .⊗
1
√2

�|0⟩+ 𝑒𝑒
2𝜋𝜋𝜋𝜋
22 𝑥𝑥|1⟩�⊗

1
√2

�|0⟩ + 𝑒𝑒
2𝜋𝜋𝜋𝜋
2 𝑥𝑥 |1⟩�

(21)

In terms of performance, DFT takes 𝑁𝑁 log𝑁𝑁 = 𝑛𝑛2𝑛𝑛 steps

to transform 𝑁𝑁 = 𝑛𝑛2𝑛𝑛 numbers. On a quantum computer, the
transform can be accomplished using log2𝑁𝑁 = 𝑛𝑛2𝑛𝑛 . It seems
that quantum computers can be used to very quickly calculate
the Fourier transform of a vector of 2𝑛𝑛 complex numbers.
However, the Fourier transformation is performed on the
“hidden” information in the amplitudes of the quantum state.

This information is not directly accessible in the
measurement process. The problem, of course, is that if the
output status is measured, each qubit will collapse in the state
|0〉 or |1〉, preventing us from learning the result of the
transformation 𝑦𝑦𝑘𝑘 directly.

7. Results

Among the big list of software quantum simulators available

in [3,4,23] we have chosen Quantum++ and Intel-QS.
Quantum++ was selected for its simplicity of operation and open-

Díaz-Toro et al / Revista DYNA, 88(218), pp. 72-80, July - September, 2021.

78

source code. Also, it provides a benchmark for QFT and the
ability of parallel execution on a single node. Intel-QS was
selected because it uses the parallel studio to optimize the code
and the MKL library to increase the performance, also this
simulator is open source and provides a QFT implementation.
The experiments were performed using a range of 10 to 24 qubits
to obtain a proper scale to observe the results. Simulations under
10 qubits take a fraction of a second and do not provide important
contributions to the analysis. The hardware used was a laptop
with an Intel i7-8565U 1.8 GHz processor and 16 GB of RAM.
The first experiment was performed using Quantum++ simulator
using OpenMP parallelization. We fix the number of threads in 8
to leverage the total power of the processor and varied the number
of qubits from 10 to 24. A shell script was used to automate the
execution procedure. Build instructions and the QFT source code
corresponding to the quantum circuit illustrated in Fig. 3 can be
found in [38]. Fig. 4 depicts the performance of Quantum++
simulator.

To show how performance is improved when we increase the
number of threads, we run an experiment using the Quantum ++
simulator by varying the number of threads from 1 to 8. To
correctly observe the results, we use a range of 21 to 24 qubits
since for a lower number of qubits, the simulation requires a
small amount of time and we cannot see the speedup, and for a
higher number of qubits, the simulation exceeds the hardware
capacity. Fig. 6 depicts these results.

Figure 3. QFT Performance - Quantum++ with 8 Threads
Source: own authorship

The next experiment was performed using Intel-QS simulator

using MPI with 8 processes. Fig. 5 depicts the results.

Figure 4. QFT Performance - Intel-QS with 8 Processes
Source: own authorship

Figure 5. QFT Performance Using Quantum++
Source: own authorship

Figure 6. QFT Performance Using Intel-QS
Source: own authorship

In the same way, we simulate QFT using Intel- QS for a range

of 21 to 24 qubits, this time using a MPI approach when varying
the number of processes from 2 to 8. Fig. 7 depicts the memory
usage vs the number of qubits. Here, we compare both simulators.

Figure 7. Memory Consumption - Quantum++, Intel-QS
Source: own authorship

Finally, in Fig. 8 we can observe the total number of gates used

in the quantum circuit of QFT for different number of qubits.

Figure 8. Number of Gates of the Quantum Circuit
Source: own authorship

Díaz-Toro et al / Revista DYNA, 88(218), pp. 72-80, July - September, 2021.

79

8. Discussion

Analyzing the results depicted in Figs. 3 and 4 we notice

that Intel-QS has a significantly better performance than
Quantum++, in terms of processor usage. In Fig. 5 we note
that increasing the number of threads the execution time
improves substantially. The execution time for 24 qubits
using one thread was 6912.03 seconds and using 8 threads
was 1158.79 seconds. Thus, we obtained a good speedup.
Conversely, Fig. 6 shows that Intel-QS shows less
acceleration than Quantum++ and in some cases there is no
acceleration at all. In Fig. 7 we observe that for small number
of qubits Quantum++ has a better memory management,
however, Intel-QS is better for more than 22 qubits. We can
notice that memory usage is substantially big after 21 qubits
and, in general, as we increase one qubit the memory usage
is approximately double. If we follow that trend, we can infer
that for 30 qubits we will need 32 GB of RAM and for 45
qubits one Petabyte of RAM. In addition, we notice that Intel-
QS has a better memory management. Observing Fig. 8 we
can note that the total number of gates of the QFT quantum
circuit increase approximately linearly with the number of
qubits. Finally, it is clear that Intel-QS can scale better than
Quantum ++ due to its distributed nature which allows it to
use more resources if we run it in an HPC cluster.

9. Conclusions

Quantum computing simulators, running on a classical

computer, cannot process actual quantum states, however,
they are very helpful to test the code syntax and flow.
Although some of them can simulate decoherence, an
important feature of quantum simulators is that they can
simulate quantum states without errors, which allows us to
concentrate on the details of the algorithms and their
operation. Despite these important advantages, quantum
simulators consume a huge amount of classical resources as
we can observe in the results section, being the memory the
most critical issue, for example, the amount of RAM memory
needed to simulate a quantum circuit representing the
quantum Fourier transform algorithm for 45 qubits is
approximately one Petabyte. Therefore, it is imperative to
design quantum simulators using novel techniques to test
quantum algorithms with useful dimensions. It must be
pointed out that HPC is a fundamental tool to build this type
of simulators to handle quantum algorithms with proper
dimensions to get useful outcomes.

The next steps could include the use of a supercomputer
to scale the experiments carried out in this work and include
other simulators to extend the comparison process. On the
other hand, several initiatives are trying to reduce the
consumption of classical resources by quantum simulators,
for example, Jianxin Chen et. al. [5] works on a new
technique, based on Google’s model for variable elimination
in the line graph, that implement a single-amplitude
simulator, Aidan Dang et. al. [39] studies how the
entanglement structure of Shor’s algorithm [40] is suitable
for a particular matrix product state representation, that
quantifiably reduces the computational requirements for
simulating it in a classical computer and Xin-Chuan Wu et.

al. [41] implements a lossy compression algorithm to reduce
the amount of memory usage. The aim is to re-design
quantum simulators using at least one of these techniques, or
a mix of them, to test quantum algorithms with useful
dimensions.

One of the main problems with software quantum
simulators is that they demand a huge amount of resources,
specifically, RAM memory. Different research teams have
been working on the implementation of advanced techniques
to overcome this issue. For example, the use of procedures to
make the operations with quantum gates instead of
representing them as traditional data structures. It allows
saving memory space but involves an increment in the
processing time. The vector space compression could also
result in a processing overhead. Therefore, there is not any
standard approach to deal with the resource consumption by
the software quantum simulators.

References

[1] Bozzo-Rey, M.a.L.R., Introduction to the IBM Q Experience and

Quantum Computing, Proceedings of the 28th Annual International
Conference on Computer Science and Software Engineering, pp. 410-
412, 2018.

[2] Siraichi, M.Y., d. Santos, V.F., Collange S. and Pereira F.M.Q., Qubit
Allocation, Proceedings of the 2018 International Symposium on Code
Generation and Optimization, 2018.

[3] Fingerhuth, M., Open-Source Quantum Software Projects, 2019,
[online]. Available at: https://github.com/qosf/os_quantum_software.

[4] Quantiki, List of QC simulators, February 2019, [online]. Available at:
https://www.quantiki.org/wiki/list-qc-simulators.

[5] Chen, J., Zhang, F., Huang C., Newman M. and Shi Y., Classical
Simulation of Intermediate-Size Quantum Circuits, 2018, [online].
Available at: https://arxiv.org/abs/1805.01450

[6] Bergou, J.A. and Hillery, M., Introduction to the theory of quantum
information processing, Springer Publishing Company, Incorporated,
2013.

[7] Ekert, A.a.H.P. and Inamori, H., Basic concepts in quantum
computation, Springer, jan 2001.

[8] Mermin N.D., Quantum computer science: an introduction, Cambridge
University Press, 2007.

[9] Williams C.P., Explorations in Quantum Computing, 2nd Ed., Springer,
2011, DOI: 10.1007/978-1-84628-887-6

[10] Eleanor, R. and Wolfgang, P., Quantum computing, a gentle
introduction, The MIT Press, USA, 2011.

[11] Wikipedia, Quantum Computing, Jan 2019. [online]. Available at:
https://en.wikipedia.org/wiki/Quantum_algorithm.

[12] Imanuel, What is Quantum Computing? Top 18 Quantum Computing
Companies, 2018, [online]. Available at:
https://www.predictiveanalyticstoday.com/what-is-quantum-
computing/

[13] Häner, T. and Steiger, D.S., 0.5 Petabyte simulation of a 45-qubit
quantum circuit, Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, New
York, NY, USA, 2017.

[14] Coles, SP.J. et. al., Quantum algorithm implementations for beginners,
2018, [online]. Available at: https://arxiv.org/abs/1804.03719

[15] Jordan, S., Quantum algorithm zoo, 2018. [online]. Available at:
https://quantumalgorithmzoo.org/

[16] Mosca, M., Quantum algorithms, 2008. [online]. Available at:
https://arxiv.org/abs/0808.0369

[17] Montanaro, A., Quantum algorithms: an overview, 2015. DOI:
10.1038/npjqi.2015.23

[18] Papadimitriou, C.H., Computational complexity., Addison-Wesley,
1994.

[19] Deutsch, D., Quantum theory, the Church-Turing principle and the
universal quantum computer, Proceedings of the Royal Society of
London, vol. 400, pp. 97-117, 1985, DOI: 10.1098/rspa.1985.0070

Díaz-Toro et al / Revista DYNA, 88(218), pp. 72-80, July - September, 2021.

80

[20] Deutsch, D. and Jozsa, R., Rapid solution of problems by quantum
computation, University of Bristol, Bristol, 1992, DOI:
10.1098/rspa.1992.0167

[21] Karafyllidis, I., Sirakoulis, G.C. and Dimitraki,s P., Representation of
qubit states using 3D memristance spaces: a first step towards a
memristive quantum simulator, Proceedings of the 14th IEEE/ACM
International Symposium on Nanoscale Architectures, New York, NY,
USA, 2018. DOI: 10.1145/3232195.3232197

[22] Q.C., Report, Qbit Count, 2019. [online]. Available at:
https://quantumcomputingreport.com/scorecards/qubit-count/

[23] Q.O.S.F. Team, Quantum Open-Source Foundation, April 2019.
[online]. Available at: https://qosf.org/

[24] LaRose, R., Overview and comparison of gate level quantum software
platforms, Quantum, 3, art. 130, 2019. DOI: 10.22331/q-2019-03-25-
130

[25] Guzik, V., Gushanskiy, S., Polenov, M. and Potapov, V., Models of a
quantum computer, their characteristics and analysis, 2015. 9th
International Conference on Application of Information and
Communication Technologies (AICT), 2015, DOI:
10.1109/ICAICT.2015.7338628

[26] Fingerhuth, M., Babej, T.S. and Wittek, P., Open-source software in
quantum computing, PLOS ONE, 13, pp. 1-28, 2018, DOI:
10.1371/journal.pone.0208561

[27] Gheorghiu, V., Quantum++: a modern C++ quantum computing
library, PLOS ONE, 13(12), pp. 1-27, 2018, DOI:
10.1371/journal.pone.0208073

[28] Jones, T., Brown, A., Bush, I. and Benjamin, S.C., QuEST and high-
performance simulation of quantum computers, Scientific Reports, 9,
pp. 10736, 2019, DOI: 10.1038/s41598-019-47174-9

[29] Strano, D., Qrack, 2019. [online]. Available at:
https://vm6502q.readthedocs.io/en/latest/

[30] Smelyanskiy, M., Sawaya, N.P.D. and Guzik-Aspuru, A., qHiPSTER:
the quantum high performance software testing environment, CoRR,
vol. abs/1601.07195, 2016.

[31] McCaskey, A.J., Dumitrescu, E.F., Liakh, D., Chen, M., Feng, W. and
Humble, T.S., A language and hardware independent approach to
quantum-classical computing, 2017. [online]. Available at:
https://arxiv.org/abs/1710.01794

[32] Amccaskey, Tensor Network QPU simulator for Eclipse XACC, 2019,
[online]. Available at: https://github.com/ornl-qci/tnqvm

[33] Atilag, Qiskit Aer, May 2019. [online]. Available at:
https://github.com/Qiskit/qiskit-aer

[34] Atilag, Qiskit, May 2019. [online]. Available at:
https://qiskit.org/textbook/ch-algorithms/quantum-fourier-
transform.html.

[35] ProjectQ, ProjectQ, May 2019. [online]. Available at:
https://projectq.ch/.

[36] De la Iglesia, F., Takishima, ProjectQ, May 2019. [online]. Available
at: https://github.com/ProjectQ-Framework/ProjectQ.

[37] Nielsen, M.A. and Chuang, I.L., Quantum computation and quantum
information. Cambridge University Press, New York, NY, USA, 2011.

[38] Gheorghiu, V., Quantum++, 2020. [online]. Available at:
https://github.com/softwareQinc/qpp.

[39] Dang, A., Hill, C.D. and Hollenberg, L.C.L., Optimising matrix
product state simulations of Shorś algorithm, {Quantum}, 3, pp.116,
2019. DOI: 10.22331/q-2019-01-25-116

[40] Shor, P.W., Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer, SIAM J. Comput., 26, pp.
1484-1509, 1997. DOI: 10.1137/S0097539795293172

[41] Wu, X.-C., Di, S., Cappello, F., Finkel, H., Alexeev, Y. and Chong,
F.T., Memory-efficient quantum circuit simulation by using lossy data
compression, 2018. [online]. Available at:
https://arxiv.org/abs/1811.05630

G.J. Díaz-Toro, is a BSc. Eng. In System Engineer and MSc. in Computing,
all of them from the Los Andes University in Mérida - Venezuela. Was a
teacher in Faculty of Engineering and researcher in the Supercomputing
Center at the same University. Currently is TIC Consultant Universidad
Industrial de Santander in Bucaramanga - Colombia. His present research
interests include quantum computing and high-performance computing.
ORCID: 0000-0001-8188-5784

L.A. Steffenel, is Associate Professor at the University of Reims
Champagne Ardenne, France. He obtained a PhD. in Computer Science in
2005 from the Institut National Polytechnique de Grenoble, France. His
research cover HPC and distributed computing, including simulation,
performance modeling, edge/fog computing and big data. Dr Steffenel pays
especial attention to performance profiling and modeling, be it with existing
acceleration architectures (GPUs, FPGAs) or future ones (quantic
computers). His works also include the development of HPC and distributed
computing solutions for applied problems in other domains such as
biochemistry and atmospheric sciences.
ORCID: 0000-0003-3670-4088

C.J. Barrios-Hernández, received his PhD. in Computer Science from the
University of Nice-Sophia Antipolis in France and the MSc. in applied
mathematics and informatics at National Institute of Applied Mathematics
and Informatics of Grenoble from University of Grenoble-Alpes, same in
France. Prof. Barrios currently is associate professor at Universidad
Industrial de Santander in Bucaramanga, Colombia and director of the High
Performance and Scientific Computing Center of the same University. He is
ACM and IEEE Computer Society Senior Member and he collaborate and
leads different worldwide projects related with HPC and Advanced
Computing. Precisely, his research interests include advanced and High-
Performance Computing, large scale systems and sustainable computer
architecture. Recently, he is interested in computer science aspects of
quantum and non-Von Newman computer architectures.
ORCID: 0000-0002-3227-8651

	1. Introduction
	2. Key concepts of quantum computing
	2.1 Qubit
	2.2 Superposition
	2.3 Measurement of single qubit quantum state
	2.4 Entanglement
	2.6 Reversibility
	2.7 Decoherence
	2.7 Quantum computing models

	3. Basis of quantum computing simulation
	3.1 Single Qubit representation
	3.2 Operations on single Qubits
	3.3 n-Qubits representation
	3.4 Operations on n-Qubits
	3.6 Quantum state preparation

	4. Quantum algorithms
	4.1 Quantum parallelism
	4.2 Quantum algorithms workflow

	5. Quantum computing simulators
	5.1 Popular open-source quantum computing simulators

	6. Quantum simulations resource usage
	6.1 The Quantum Fourier Transform
	6.1.1 N-Qubits QFT
	6.1.2 QFT quantum circuit

	7. Results
	8. Discussion
	9. Conclusions
	References

