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Abstract 
Recently, several real quantum devices have become available through the cloud. Nevertheless, they are expected to be very limited, in the 
near term, in the number and quality of the fundamental storage element, the qubit. Therefore, software quantum simulators are the only 
widely available tools to design and test quantum algorithms. However, the representation of quantum computing components in classical 
computers consumes a big amount of resources. This work describes how to model the main elements of quantum computing in a classical 
computer and depicts resource consumption using two popular quantum simulators. In the end, we discuss different approaches to overcome 
this problem. 
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Sobre el consumo de recursos de los simuladores cuánticos en 
Software 

 
Resumen 
Recientemente, varios dispositivos cuánticos reales están disponibles a través de la nube. No obstante, se espera que sean muy limitados, 
a corto plazo, en el número y la calidad del elemento fundamental de almacenamiento, el qubit. Por lo tanto, los simuladores cuánticos de 
software son las únicas herramientas ampliamente disponibles para diseñar y probar algoritmos cuánticos. Sin embargo, la representación 
de componentes de computación cuántica en computadoras clásicas consume una gran cantidad de recursos. Este trabajo describe cómo 
modelar los elementos principales de la computación cuántica en una computadora clásica y describe el consumo de recursos utilizando 
dos simuladores cuánticos populares. Al final, discutimos diferentes enfoques para superar este problema. 
 
Palabras clave: computación cuántica; simuladores de computación cuántica; computación de alto rendimiento. 

 
 
 

1. Introduction 
 
Recently, several quantum devices, with up to tens of 

qubits on universal quantum computers (UQC) and thousand 
qubits on annealer (QA) devices, have become available 
through the cloud. This enables the possibility to use real 
quantum hardware to solve very simple problems for first 
time. However, in the near term, those devices are expected 
to be very limited in number and quality of qubits. These 
quantum computers represent prototypes that are not scalable 
and sufficient to test complex quantum algorithms. The 
construction of a full-scale quantum computer comprising 
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millions of qubits is a longer-term prospect. Quantum 
computer prototypes are currently very small and specific 
and are not yet able to overcome the processing capacity of 
classical computers. For example, the recent IBM Q System 
One [1] only operates with 53 qubits. Programming this 
prototype still lacks the compiler support that modern 
programming languages enjoy today. Programmers of this 
machine must design low-level circuits; they must map 
logical qubits into physical qubits that need to obey 
connectivity constraints. This task resembles the early days 
of programming, in which software was built in machine 
languages [2]. 
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For all this, quantum computing simulators are the only 
widely available tools to design and test quantum algorithms. 
However, the simulation of quantum computing models in 
classical computers requires exponential time and involves 
extremely complex memory management. The problem is 
that using conventional techniques to simulate an arbitrary 
quantum process that is significantly larger than any of the 
existing quantum prototypes would soon require a huge 
amount of memory on a classical computer. For instance, to 
simulate a 60 qubits quantum state the process would take 
about 18.000 petabytes (18 Exabytes) of classical computer 
memory. Therefore, researchers try to reduce such challenges 
by proposing efficient simulators. Some popular quantum 
software simulators can be found in [3,4]. 

The simulation of quantum systems in classical 
computers is a relatively old problem. However, with the 
emergence of real quantum computers, the limit of what 
classical simulations can handle is being pushed to better 
understand its operation and verify that t is behaving as 
predicted. The simulations of NISQ (Noisy Intermediate-
Scale Quantum) devices on classical computers represent an 
invaluable experimental testbed for noise characterizations, 
for the development of quantum error correction, and for the 
verification of quantum systems. With this momentum, a 
variety of techniques have been invented to keep up with the 
newer quantum processors [5]. 

This work attends to address the fundamental details of 
quantum simulation on classical computers and the problems 
related to it. We use a useful quantum algorithm and its 
implementation on two popular quantum simulators to 
illustrate these aspects. 

 
2. Key concepts of quantum computing 

 
To better understand the quantum computing model, it is 

necessary to know the key aspects of the inheritance of 
quantum mechanics and the fundamental concepts on which 
quantum computing is based. 

 
2.1 Qubit 

 
A physical qubit Is a physical device that behaves as a 

two-level quantum system. A logical qubit is a unitary vector 
in a two-dimensional Hilbert space in which the Boolean 
states 0 and 1 are represented by a prescribed pair of 
normalized and mutually orthogonal quantum states denoted 
using Dirac’s notation  |0〉 and  |1〉 [6]. The two states form 
a “computational basis”, and any other (pure) state of the 
qubit can be written as a superposition α|0〉 + β|1 [7].  

 
 |0⟩  ≡  �

1
0�  ∶ |1⟩  ≡  �

0
1� 

(1) 

 
The state |ψ〉 associated with a qubit can be any unit 

vector in the two-dimensional vector space spanned by |0〉 
and |1〉 over the complex numbers [8]. The general state of a 
qubit is: 

 
|ψ〉 = α0|0〉 +  𝛼𝛼1|1〉 (2) 

 

Where α0 and α1, are called the amplitude of component 
|0〉 and component |1〉 respectively, are two complex 
numbers constrained only by the requirement that |ψ〉, like 
|0〉 and |1〉, should be a unit vector in the complex vector 
space, in other words, only by the normalization condition: 
|α0|2+|α1|2 = 1. The state of n qubits is spanned by the tensor 
product basis. 

 
|0⟩ ⨂… |0⟩ ⨂ |0⟩ = |0 … 00⟩ 
|0⟩ ⨂… |0⟩ ⨂ |1⟩ = |0 … 01⟩ 

… 
|1⟩ ⨂… |1⟩ ⨂ |1⟩ = |1 … 11⟩ 

(3) 

 
The general equation of a n-qubit state is 
 

|Ψ⟩ =  � 𝑐𝑐𝑥𝑥  |𝑋𝑋⟩ 
2𝑁𝑁−1

𝑥𝑥=0

 (4) 

 
2.2 Superposition 

 
The special characteristic of quantum states is that they 

allow the system to be in a few states simultaneously, this is 
called superposition. Quantum bits are not constrained to be 
wholly 0 or wholly 1 at a given instant. In quantum physics, 
if a quantum system can be found to be in one of a discrete 
set of states, which we’ll write as |0〉 or  |1〉, then, whenever 
it is not being observed it may also exist in a superposition, 
or blend of those states simultaneously [9]. 

 
2.3 Measurement of single qubit quantum state 

 
According to the postulate 3 of quantum mechanics 

(Measurement), the action of measure a quantum state 
produces a change in it. If a state |𝑣𝑣〉 = α|0〉 + β|1〉 is 
measured and the outcome is |0〉, then the state |𝑣𝑣〉 changes 
to |0〉. A second measurement with respect to the same basis 
will return |0〉 with probability 1. To understand this, it is 
necessary to think of a superposition |𝑣𝑣〉 as a state that could 
be in both state |0〉 and state |1〉 at the same time, that is to 
say, the quantum state  |𝑣𝑣〉 is a combination of  |0〉 and |1〉 in 
similar proportions but with different amplitudes. A 
fundamental fact about this measurement process 
(measurement in the computational basis) is that the quantum 
state |𝑣𝑣〉 v is disturbed by the measurement. Therefore, it is 
impossible to determine the original state from any sequence 
of measurements [10]. 

 
2.4 Entanglement 

 
The “entanglement” describes a correlation between 

different parts of a quantum system that surpasses anything 
that is classically possible. It happens when the subsystems 
interact in such a way that the resulting state of the whole 
system cannot be expressed as the direct product of the states 
of its individual parts. When a quantum system is in such a 
tangled state, the actions performed in one subsystem will 
have a side effect in another subsystem, even if it does not act 
directly on that subsystem [9]. It takes 2n – 1 complex 
numbers to describe states of an n-qubit system. Because 2n 
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is much bigger than n, most of the n-qubit states cannot be 
described in terms of the state of n separate single-qubit 
systems. States that cannot be written as the tensor product of 
n single-qubit states are called entangled states. Thus, the vast 
majority of quantum states are entangled [10]. If we can write 
the tensor product of those states, they are said to be separate 
states. 

 
2.6 Reversibility 

 
The reversibility is a property of some operations that 

consist of obtaining unique inputs for all outputs of said 
operations. Reversibility is one of the most useful 
mechanisms in quantum computing. Reversible operations 
change the initial state of the qubits into its final form using 
only processes whose action can be inverted. There is only a 
single irreversible component to the operation of a quantum 
computer, the measurement, which is the only way to extract 
useful information from the qubits after their state has 
acquired its final form [8]. In a reversible operation, every 
final state arises from a unique initial state. 

 
2.7 Decoherence 

 
Quantum states are very fragile and susceptible to noise.  

Eventually, errors inevitably appear over time, this process is 
known as decoherence. Some situations that cause errors are, 
for example, atoms couple to the electromagnetic field and 
spins couple to other spins via dipole interactions. These 
unwanted couplings cause errors; therefore, quantum states 
must be well isolated from the environment in order to 
protect quantum information against these errors. 

In the context of quantum computing, qubits are 
susceptible to more kinds of errors than are classical bits. 
There are phase errors that send |0〉 → |0〉 and |1〉 → −|1〉, 
which has the effect of changing α|0〉 + β|1〉 to α|0〉 − β|1〉. 
In addition, there are generally small errors that have the 
effect α|0〉 + β|1〉 → �α + 𝑂𝑂(𝜖𝜖)) �0〉 + (β + 𝑂𝑂(𝜖𝜖)) |1〉 where 
𝜖𝜖 ≪ 1 is a parameter that characterizes the size of the error. 
It is necessary to take special care in detecting an error 
because measuring a state can change it, and of course, we 
cannot just copy the qubit state, because of the no-cloning 
theorem [6].  

 
2.7 Quantum computing models 

 
A quantum computing model is the description of the 

different scientific approaches to formalizing the 
transformations over inputs to compute outputs using 
quantum resources. A model is determined by the basic 
elements in which the computation is decomposed [11,12]. 
The four main models of practical importance are: 
• Quantum Gate Array or Quantum Circuit: The 

computation is decomposed into a sequence of few qubit 
quantum gates.  

• One-way quantum computer: The computation is 
decomposed into a sequence of one-qubit measurements 
applied to a highly entangled initial state or cluster state. 

• Adiabatic quantum computer: The computation is 

decomposed into a slow continuous transformation of an 
initial Hamiltonian into a final Hamiltonian, whose 
ground states contain the solution. 

• Topological quantum computer: The computation is 
decomposed into the braiding of anyons in a 2D lattice. 
 

3. Basis of quantum computing simulation 
 
In classical computing, the amount of information 

contained by a specific state using n bits is n, there will be 
only one combination of n 0s and 1s. In quantum computing, 
a state composed of n qubits will be a union of all possible 
combinations of n 0s and 1s. That is to say, the size of the 
information is 2n. For example, if we are using 3 bits, we will 
have just one of the 23 possibilities whose length is 3, for 
instance, 010. If we use 3 qubits we will have, not only one 
but all combinations: 001, 010, 011... 111, each one 
multiplied by the corresponding amplitude. If we increase in 
1 the number of bits the size will be n + 1, but if we increase 
the number of qubits, we get the double of the size, that is to 
say, 2n+1 [13].  

 
3.1 Single Qubit representation 

 
A qubit is a two-level quantum system. The state |ψ〉 of 

this quantum system can be represented by two complex 
numbers α0 and α1 such as 

 
|𝜓𝜓⟩ =  𝛼𝛼0 |0⟩+ 𝛼𝛼1 |1⟩ 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 |𝛼𝛼0|2 + |𝛼𝛼1|2 = 1 (5) 

 
When we measure the qubit, we obtain |0〉 with 

probability 𝑝𝑝 = |𝑎𝑎0|2  or |1〉 with probability 1− 𝑝𝑝 =  |𝑎𝑎1|2. 
Thus, after being measured, the qubit becomes a classical bit. 
To store |𝜓𝜓〉 on a classical computer, it is more suitable to use 
two orthonormal vectors to represent |0〉 and |1〉. 

 
|𝜓𝜓⟩ =  𝛼𝛼0  �

1
0�  +  𝛼𝛼1  �

0
1�  =   �

𝛼𝛼0
𝛼𝛼1
� (6) 

 
3.2 Operations on single Qubits 

 
Any operation on the qubit of eq. (7) is represented by a 

complex unitary matrix. For example, if we apply a NOT gate 
(X gate), it is equivalent to execute a matrix-vector 
multiplication. 

 
𝑋𝑋|𝜓𝜓⟩ =  �0 1

1 0��
𝛼𝛼0
𝛼𝛼1
� =  �

𝛼𝛼1
𝛼𝛼0
� =  𝛼𝛼1 |0⟩+  𝛼𝛼0 |1⟩ (7) 

 
3.3 n-Qubits representation 

 
In a general form, the n-qubits state of a quantum 

computer can be represented by a complex vector of size 2n. 
 

|ψ〉 = 𝛼𝛼0|0. .00⟩+ 𝛼𝛼1|0. .01⟩+. .𝛼𝛼2𝑛𝑛−1|1. .11⟩ =

⎝

⎜
⎜
⎛ 𝛼𝛼0

𝛼𝛼1
.
.

𝛼𝛼2𝑛𝑛−1⎠

⎟
⎟
⎞

 (8) 
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3.4 Operations on n-Qubits 
 
The operations on the state of eq. (8) are 2𝑛𝑛 × 2𝑛𝑛  unitary 

matrices. Finally, applying a single-qubit gate U to the i-th 
qubit of an n-qubit quantum computer amounts to 
multiplying the state vector of coefficients 𝛼𝛼𝑖𝑖 by the matrix. 

 
𝟙𝟙2 ⊗… ⊗𝟙𝟙2 ���������⊗𝑈𝑈⊗ 𝟙𝟙2 ⊗…⊗𝟙𝟙2 ��������� 
𝑛𝑛 − 𝑖𝑖 − 1                                   𝑖𝑖           

(9) 

 
This is a complex sparse matrix-vector multiplication of 

dimension 2n. Therefore, for double-precision values, just 
storing the state vector for 50 qubits would already require 
16 petabytes of memory. 

 
3.6 Quantum state preparation 

 
Patrick Coles et. al. in his work [14] presents some 

methods to prepare qubits states. The preparation procedure 
of an n- qubit state consists of two steps: 
• Finding a unitary transformation that takes the N-

dimensional vector (1, 0, . . . 0) to the desired state (α1, 
..., αN), where N = 2n. 

• Rendering the unitary transformation into a sequence of 
gates. 
To briefly exemplify this procedure, let us see how to 

prepare a single qubit state |𝜓𝜓〉 It is represented as a 
superposition of 0 and 1 states |𝜓𝜓〉 =  𝛼𝛼|0〉 +  𝛽𝛽|1〉 where 
|𝛼𝛼|2 + |𝛽𝛽|2 = 1. The magnitudes |𝛼𝛼|2 and |𝛽𝛽|2  represent 
the relative probability of |𝜓𝜓〉 being 0 or 1. Until a non-
observable global phase, we can assume that 𝛼𝛼 is real, so that 
|𝜓𝜓〉 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|0〉 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|1〉 for some angles θ, φ. 
Therefore, we represent the state as a point on the unit sphere 
with θ the latitude and φ the longitude. Thus, one qubit state 
preparation consists simply of finding the unitary 
transformation that takes the north pole to (α, β). To set the 
initial state of more than one qubit we can use the so-called 
Schmidt decomposition. It allows one to initialize a 2n-qubit 
state by initializing a single n-qubit state, along with two specific 
n-qubit gates, combined with n CNOT gates. 

 
4. Quantum algorithms 

 
A quantum algorithm is an algorithm made in one of the 

models of quantum computing, with quantum circuits as the most 
used model. A classical (or non-quantum) algorithm is a finite 
sequence of instructions, or a step-by-step procedure for solving a 
problem, where each step or instruction can be performed on a 
classical computer. Similarly, a quantum algorithm is a step-by-
step procedure, where each of the steps can be performed on a 
quantum computer. Although all classical algorithms can also be 
performed on a quantum computer, the term quantum algorithm is 
generally used for those algorithms that incorporate some essential 
features of quantum computing, such as superposition or 
entanglement [11]. The field of quantum algorithms has become a 
sufficiently large area of study “Quantum Algorithms Zoo” [15] 
cite almost 400 articles in this area.  

When referring to an algorithm, the computational 
complexity, or just complexity, is a measure of the resources 

used by the algorithm, usually measured as a function of the input 
size of the algorithm. The complexity for the input size n is taken 
as the cost of the algorithm in a more unfavorable case entry for 
the size n problem. When referring to a problem, the complexity 
is the minimum amount of resources required by any algorithm 
to solve the problem [16]. In the theory of computational 
complexity, asymptotic scales of complexity measures such 
as execution time or problem size are generally considered. In 
both classical and quantum computing, the execution time is 
measured by the number of elementary operations used by an 
algorithm. In the case of quantum computing, this can be 
measured using the quantum circuit model, where a quantum 
circuit is a sequence of quantum operations called quantum 
gates, each applied to a small number of qubits. To compare 
the performance of the algorithms, the notation O(f(n)) of the 
computing style is used, which is interpreted as 
“asymptotically delimited by f (n)” [17]. In these cases, it is 
convenient to use the basic ideas of the theory of 
computational complexity [18], especially the notion of 
complexity classes, which are groupings of problems by 
difficulty. The informal descriptions of some important 
complexity classes are.  
• Class P: A deterministic classical computer can solve it in 

polynomial time. 
• Class BPP: A probabilistic classical computer can solve 

it in polynomial time. 
• Class BQP: A quantum computer can solve it in 

polynomial time. 
• Class NP: A deterministic classical computer can check 

the solution in polynomial time. 
• Class Quantum Merlin–Arthur: A quantum computer can 

check the solution in polynomial time. 
If a problem is said to be complete for a complexity 

class, this means that it is one of the “most difficult” 
problems within that class [17].  

There are three classes of quantum algorithms with clear 
advantages over known classical algorithms. 
• Algorithms based upon quantum versions of the Fourier 

transform, which is very used in classical algorithms.  
• Quantum search algorithms. 
• Quantum simulation. A quantum computer is used to 

simulate a quantum system. 
 

4.1 Quantum parallelism 
 
One of the main features of quantum computing is to take 

advantages of quantum mechanics effects like superposition and 
entanglement, to speed up the calculations. In 1985 Deutsch [19] 
found a computational problem that could be solved on a quantum 
computer in a manner that is impossible classically. In 1992 
Deutsch and Jozsa [20] simplified and extended the earlier result. 

 
4.2 Quantum algorithms workflow 

 
A typical quantum algorithm workflow on a gate-model 

quantum computer is depicted in Fig. 1. It begins with a high-
level definition of the problem, for example, Shor’s 
algorithm. The problem to solve is, given an odd composite 
number N, we need to find an integer i, strictly between 1 and 
N, that divides N. 
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Figure 1. Quantum Algorithm Workflow 
Source: own authorship.  

 
 

5. Quantum computing simulators 
 
A quantum simulator is an object able to execute quantum 

computations. They can be classified in two categories [21]: 
• A Quantum System that can perform very specific 

quantum computations. 
• Software Packages that can reproduce most of the 

fundamental aspects of a general universal quantum 
computer on a general-purpose classical computer. 
Real quantum computers are available to use over the 

cloud, however, they are still very small to be considered as 
a complete universal quantum computer. On the other hand, 
although quantum computing simulators, running on a 
classical computer, cannot process actual quantum states they 
are very helpful to test the code syntax and flow. 

There has been a recent explosion of quantum software 
platforms which can overwhelm to those looking for a 
platform to use. Therefore, this section attempts to mention 
some of the most popular initiatives. 

 
5.1 Popular open-source quantum computing simulators 

 
Many institutions are working on quantum software, 

specifically quantum simulators, from academic research 
groups to big companies. A list of the very recent 
developments is maintained in several websites [3,4,22,23]. 
They present several quantum computing software packages 
developed by different organizations. LaRose et. al. [24] 
made a review of some important general-purpose projects, 
that operate at the level of quantum gates. Guzik [25] did a 
study on the appropriate approach to implement different 
models of quantum computing. Fingerhuth et. al. [26] did an 
evaluation of a wide range of open source software for 
quantum computing, including all stages of the quantum 
toolchain from quantum hardware interfaces through 
quantum compilers to implementations of quantum 
algorithms, as well as several quantum computing models: 
quantum annealing and discrete and continuous-variable 
gate- model. The criteria used by this team to select the 
projects involve aspects like approved license, maturity, 
number of contributors, repository availability, etc. 

Leveraging all those works, we present the following list 
with a specific selection of major software quantum 
simulators developments: 
• Quantum++ (C++) Is a general-purpose multi-threaded 

quantum simulator written in C++ with high performance [27].  
• QuEST (C/C++) It is an open-source quantum simulator 

with multithreading, distributed processes and GPU- 

accelerated capabilities [28].  
• Qrack (C++) Is a quantum simulator written in C++ that 

comes with additional support for Graphics Processing 
Units (GPUs) [29].  

• Intel-QS Formely qHiPSTER, is a simulator of quantum 
circuits optimized to take maximum advantage of multi- 
core and multi-nodes architectures [30].  
Some projects provide a full-stack approach to quantum 

computing, including not only a simulator but compilers and 
the possibility to run the program on real quantum 
processors. The following list shows some of these projects: 
• XACC, Simulator: TNQVM (C) This provides an 

implementation that takes advantage of the tensor 
network theory to simulate quantum circuits [31,32].  

• Qiskit, Simulator: Qiskit Aer (Python) Framework for 
working with noisy quantum computers at the level of 
pulses, circuits, and algorithms supported by IBM 
[33,34]. 

• ProjectQ, Simulator: ProjectQ (C++, Python) An open 
source software framework for quantum computing 
[35,36]  supported by ETH Zurich. 

• Forest, Simulator: QVM (Python) Is the quantum 
simulator of the full-stack library Forest. It is a purely 
Python- based simulator which is meant for rapid 
prototyping of quantum circuits. It is supported by 
Rigetti. 
 

6. Quantum simulations resource usage 
 
To illustrate the resources consumption by a quantum 

simulator, we run the Fourier Quantum Transform (QFT) 
using two quantum simulators. Before present the results of 
the simulations we describe in the next subsection the details 
of the QFT algorithm. 

 
6.1 The Quantum Fourier Transform 

 
Quantum Fourier Transform (QFT) is a quantum 

implementation of the discreet Fourier transform [37]. The 
quantum Fourier transformation is a generalization of the 
Hadamard transformation. The difference is that QFT 
introduces phase. The specific types of phases introduced by 
QFT are the primitive roots of the unit, ω. Let’s remind that 
in the complex numbers, the equation 𝑧𝑧𝑛𝑛 = 1 has n solutions, 
for example: for n = 2 𝑧𝑧 could be 1 or -1, for n = 4 𝑧𝑧 
could be 1, i, -1 or -i. These roots can be written as power of 
𝜔𝜔 =  22𝜋𝜋𝜋𝜋/𝑛𝑛. This number 𝜔𝜔 is called a primitive nth root of 
unity. DFT is a transformation of a set x0, ...xN−1 of N 
complex numbers into a set of complex numbers y0, ...yN−1 
defined by eq. (10). 

 

𝑦𝑦𝑘𝑘 =  
1
√𝑁𝑁

 �𝜔𝜔𝑁𝑁
𝑗𝑗𝑗𝑗

𝑁𝑁−1

𝑗𝑗=0

𝑥𝑥𝑗𝑗 (10) 

 
Where 
 

𝜔𝜔𝑁𝑁
𝑗𝑗𝑗𝑗 = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁 

 
(11) 
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To build the quantum version of DFT let’s define a linear 
transformation U on n qubits that acts on computational basis states 
|𝑗𝑗〉 where 0 ≤ 𝑗𝑗 ≤  2𝑛𝑛 − 1. In other words, QFT acts on a 
quantum state like  

 

�𝑥𝑥𝑗𝑗

𝑁𝑁−1

𝑗𝑗=0

|𝑗𝑗⟩ (12) 

 
And map it to the following quantum state. 
 

�𝑦𝑦𝑗𝑗

𝑁𝑁−1

𝑗𝑗=0

|𝑗𝑗⟩ (13) 

 
That transformation is performed using the formula of eq. 

(10). If we consider it action on superpositions we note that it 
corresponds to a vector notation for the Fourier transform  for the 
case 𝑁𝑁 =  2𝑛𝑛. Considering the action of QFT on an orthonormal 
basis |0〉, … , |𝑁𝑁 − 1〉, we can define it as a linear operator with 
the following transformation on the basis states. 
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That action on an arbitrary state can be written as  
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Where the amplitudes 𝑦𝑦𝑘𝑘 are the discrete Fourier 

transform of the amplitudes 𝑥𝑥𝑘𝑘. It can be checked that this 
transformation is a unitary transformation, and thus can be 
implemented as a quantum circuit. 

 
6.1.1 N-Qubits QFT 

 
This section describes the QFT for N Qubits. Simple examples 

for one and three qubits can be consulted in [34]. The following 
operations have to be performed to obtain the quantum Fourier 
transform for N qubits. 
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Since 𝜔𝜔𝑁𝑁

𝑗𝑗𝑗𝑗 =  𝑒𝑒2𝜋𝜋𝜋𝜋 
𝑥𝑥𝑥𝑥
𝑁𝑁  and 𝑁𝑁 =  2𝑛𝑛  
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Rewriting in fractional binary notation, expanding the 

exponential of a sum to a product of exponentials, 
rearranging the sum and products, and expanding again 
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Figure 2. Quantum Circuit for QFT 
Source: own authorship 

 
 

6.1.2 QFT quantum circuit 
 
The circuit that implements QFT uses two quantum gates: 

The Hadamard gate and two qubits-controlled rotation gate 
CROTk. The last is represented by the following matrix. 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 = �𝐼𝐼 0

0 𝑈𝑈 𝑅𝑅𝑅𝑅𝑅𝑅𝐾𝐾
� (19) 

 
Where 
 

𝑈𝑈 𝑅𝑅𝑅𝑅𝑅𝑅𝐾𝐾 =  �1 0
0 𝑒𝑒2𝜋𝜋𝜋𝜋/2𝑘𝑘

� (20) 

 
The gate UROTk is the phase gate with the following 

matrix representation. Fig. 2 shows the n-qubits quantum 
circuit for QFT.  

The circuit of the Fig. 2 operates as follow: starts with n-
qubit input state, |𝑥𝑥1,𝑥𝑥2, . . , 𝑥𝑥𝑛𝑛〉. Apply the H gate on qubit 1. 
Then, apply the CROT2 gate on qubit 1 controlled by qubit 2. 
After that, apply the CROT3 gate on qubit 1 controlled by 
qubit 3. Then, apply the CROTn gate on qubit 1 controlled by 
qubit n. Finally, apply the similar sequence of gates on qubit 
2 to qubit n. The final state is. 
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In terms of performance, DFT takes 𝑁𝑁 log𝑁𝑁 = 𝑛𝑛2𝑛𝑛 steps 

to transform 𝑁𝑁 = 𝑛𝑛2𝑛𝑛  numbers. On a quantum computer, the 
transform can be accomplished using log2𝑁𝑁 = 𝑛𝑛2𝑛𝑛 . It seems 
that quantum computers can be used to very quickly calculate 
the Fourier transform of a vector of 2𝑛𝑛 complex numbers. 
However, the Fourier transformation is performed on the 
“hidden” information in the amplitudes of the quantum state. 

This information is not directly accessible in the 
measurement process. The problem, of course, is that if the 
output status is measured, each qubit will collapse in the state 
|0〉 or |1〉,  preventing us from learning the result of the 
transformation  𝑦𝑦𝑘𝑘 directly. 

 
7. Results 

 
Among the big list of software quantum simulators available 

in [3,4,23] we have chosen Quantum++ and Intel-QS. 
Quantum++ was selected for its simplicity of operation and open-
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source code. Also, it provides a benchmark for QFT and the 
ability of parallel execution on a single node. Intel-QS was 
selected because it uses the parallel studio to optimize the code 
and the MKL library to increase the performance, also this 
simulator is open source and provides a QFT implementation. 
The experiments were performed using a range of 10 to 24 qubits 
to obtain a proper scale to observe the results. Simulations under 
10 qubits take a fraction of a second and do not provide important 
contributions to the analysis. The hardware used was a laptop 
with an Intel i7-8565U 1.8 GHz processor and 16 GB of RAM. 
The first experiment was performed using Quantum++ simulator 
using OpenMP parallelization. We fix the number of threads in 8 
to leverage the total power of the processor and varied the number 
of qubits from 10 to 24. A shell script was used to automate the 
execution procedure. Build instructions and the QFT source code 
corresponding to the quantum circuit illustrated in Fig. 3 can be 
found in [38]. Fig. 4 depicts the performance of Quantum++ 
simulator. 

To show how performance is improved when we increase the 
number of threads, we run an experiment using the Quantum ++ 
simulator by varying the number of threads from 1 to 8. To 
correctly observe the results, we use a range of 21 to 24 qubits 
since for a lower number of qubits, the simulation requires a 
small amount of time and we cannot see the speedup, and for a 
higher number of qubits, the simulation exceeds the hardware 
capacity. Fig. 6 depicts these results. 

 

 
Figure 3. QFT Performance - Quantum++ with 8 Threads 
Source: own authorship 

 
 
The next experiment was performed using Intel-QS simulator 

using MPI with 8 processes. Fig. 5 depicts the results. 
 

 
Figure 4. QFT Performance - Intel-QS with 8 Processes 
Source: own authorship 

 
Figure 5. QFT Performance Using Quantum++ 
Source: own authorship 

 
 

 
Figure 6. QFT Performance Using Intel-QS 
Source: own authorship 

 
 
In the same way, we simulate QFT using Intel- QS for a range 

of 21 to 24 qubits, this time using a MPI approach when varying 
the number of processes from 2 to 8. Fig. 7 depicts the memory 
usage vs the number of qubits. Here, we compare both simulators. 

 

 
Figure 7. Memory Consumption - Quantum++, Intel-QS 
Source: own authorship 

 
 
Finally, in Fig. 8 we can observe the total number of gates used 

in the quantum circuit of QFT for different number of qubits. 
 

 
Figure 8. Number of Gates of the Quantum Circuit 
Source: own authorship 
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8. Discussion 
 
Analyzing the results depicted in Figs. 3 and 4 we notice 

that Intel-QS has a significantly better performance than 
Quantum++, in terms of processor usage. In Fig. 5 we note 
that increasing the number of threads the execution time 
improves substantially. The execution time for 24 qubits 
using one thread was 6912.03 seconds and using 8 threads 
was 1158.79 seconds. Thus, we obtained a good speedup. 
Conversely, Fig. 6 shows that Intel-QS shows less 
acceleration than Quantum++ and in some cases there is no 
acceleration at all. In Fig. 7 we observe that for small number 
of qubits Quantum++ has   a better memory management, 
however, Intel-QS is better for more than 22 qubits. We can 
notice that memory usage is substantially big after 21 qubits 
and, in general, as we increase one qubit the memory usage 
is approximately double. If we follow that trend, we can infer 
that for 30 qubits we will need 32 GB of RAM and for 45 
qubits one Petabyte of RAM. In addition, we notice that Intel-
QS has a better memory management. Observing Fig. 8 we 
can note that the total number of gates of the QFT quantum 
circuit increase approximately linearly with the number of 
qubits. Finally, it is clear that Intel-QS can scale better than 
Quantum ++ due to its distributed nature which allows it to 
use more resources if we run it in an HPC cluster.  

 
9. Conclusions 

 
Quantum computing simulators, running on a classical 

computer, cannot process actual quantum states, however, 
they are very helpful to test the code syntax and flow. 
Although some of them can simulate decoherence, an 
important feature of quantum simulators is that they can 
simulate quantum states without errors, which allows us to 
concentrate on the details of the algorithms and their 
operation. Despite these important advantages, quantum 
simulators consume a huge amount of classical resources as 
we can observe in the results section, being the memory the 
most critical issue, for example, the amount of RAM memory 
needed to simulate a quantum circuit representing the 
quantum Fourier transform algorithm for 45 qubits is 
approximately one Petabyte. Therefore, it is imperative to 
design quantum simulators using novel techniques to test 
quantum algorithms with useful dimensions. It must be 
pointed out that HPC is a fundamental tool to build this type 
of simulators to handle quantum algorithms with proper 
dimensions to get useful outcomes. 

The next steps could include the use of a supercomputer    
to scale the experiments carried out in this work and include 
other simulators to extend the comparison process. On the 
other hand, several initiatives are trying to reduce the 
consumption of classical resources by quantum simulators, 
for example, Jianxin Chen et. al. [5] works on a new 
technique, based on Google’s model for variable elimination 
in the line graph, that implement a single-amplitude 
simulator, Aidan Dang et. al. [39] studies how the 
entanglement structure of Shor’s algorithm [40] is suitable 
for a particular matrix product state representation, that 
quantifiably reduces the computational requirements for 
simulating it in a classical computer and Xin-Chuan Wu et. 

al. [41] implements a lossy compression algorithm to reduce 
the amount of memory usage. The aim is to re-design 
quantum simulators using at least one of these techniques, or 
a mix of them, to test quantum algorithms with useful 
dimensions. 

One of the main problems with software quantum 
simulators is that they demand a huge amount of resources, 
specifically, RAM memory. Different research teams have 
been working on the implementation of advanced techniques 
to overcome this issue. For example, the use of procedures to 
make the operations with quantum gates instead of 
representing them as traditional data structures. It allows 
saving memory space but involves an increment in the 
processing time. The vector space compression could also 
result in a processing overhead. Therefore, there is not any 
standard approach to deal with the resource consumption by 
the software quantum simulators. 
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