

© The author; licensee Universidad Nacional de Colombia.

Revista DYNA, 88(219), pp. 147-154, October - December, 2021, ISSN 0012-7353
DOI: https://doi.org/10.15446/dyna.v88n219.92532

Compression and encryption of vital sign signals using an SoC-

FPGA

Carlos Andrés Gómez-García & Jaime Velasco-Medina

Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle, Cali, Colombia. carlos.a.gomez.g@correounivalle.edu.co,

jaime.velasco@correounivalle.edu.co

Abstract
This article presents the implementation of a remote monitoring system of biomedical signals with cybersecurity support and compression
of vital sign signals and data of the patient. This system uses a low-cost microsystem for encrypting and compressing the information using
the Lempel–Ziv–Welch (LZW) lossless compression algorithm and the Advanced Encryption Standard (AES). In this case, the WolfSSL
library is used to implement the Transport Layer Security (TLS) protocol, whose encryption function is accelerated by the AES processor
designed on a System on Chip - Field Programmable Gate Array (SoC-FPGA) device. Data transmission tests were carried out from the
measurement system to the monitoring application developed in LabVIEW and implemented on a Personal Computer (PC), where vital
signs and data of the patient are decrypted and decompressed. The microsystem is suitable for e-health platforms and/or e-health devices
that use unsecured communication networks with limited bandwidth.

Keywords: AES algorithm; biomedical signals; data compression; encryption; LZW algorithm; SoC-FPGA.

Compresión y encriptación de señales de signos vitales usando un

SoC-FPGA

Resumen
Este artículo presenta la implementación de un sistema de monitoreo remoto para señales biomédicas con soporte de ciberseguridad y
compresión de señales de signos vitales y datos del paciente. Este sistema utiliza un microsistema de bajo costo para encriptar y comprimir
la información utilizando el algoritmo de compresión sin pérdidas Lempel – Ziv – Welch (LZW) y el Estándar de Encriptación Avanzado
(AES). En este caso, la biblioteca WolfSSL se utiliza para la implementación del protocolo Transport Layer Security (TLS), cuya función
para la encriptación es acelerada por el procesador AES diseñado sobre un dispositivo SoC-FPGA. Se realizaron pruebas de transmisión
de datos desde el sistema de medición a la aplicación software desarrollada en LabVIEW e implementada en un computador personal (PC),
donde se desencriptan y descomprimen los signos vitales y los datos del paciente. El microsistema puede ser utilizado en plataformas e-
health y/o dispositivos e-health que utilizan redes de comunicación no seguras con ancho de banda limitado.

Palabras clave: AES; Algoritmo LZW; compresión de datos; encriptación; señales biomédicas; SoC-FPGA.

1. Introduction

The systems for remote monitoring of vital signs have

evolved in recent years, increasing their autonomy,
portability, and functionality. Telemedicine services have
experienced an important advance due to new technological
generations for mobile telephony; however, reliable
transmission of medical data, signals, and images over the
Internet is required. Also, it is important to mention that
broadband Internet is a service that only some people can

How to cite: Gómez-García, C.A. and Velasco-Medina, J., Compression and encryption of vital sign signals using an SoC-FPGA.. DYNA, 88(219), pp. 147-154, October -

December, 2021.

access, especially in third-world countries.
Typically, there are no inconveniences to disclose the data of

the patients because there is a high degree of trust between the
actors involved in the healthcare systems, such as service
providers, doctors, and patients; however, the data must be stored
and transmitted using protection mechanisms to prevent that
unauthorized people observe the information because they can
interfere or change it. For this reason, encryption algorithms are
a valuable alternative to achieve the security of stored and
transmitted data. In the literature, some works are reported on the

Gómez-García & Velasco-Medina / Revista DYNA, 88(219), pp. 147-154, October - December, 2021.

148

encryption of medical data [1,2] and electrocardiographic signals
(ECG) using simple or complex algorithms [3-5].

On the other hand, problems related to limited storage
capacity and lack of a fast Internet service must also be
solved. The above can be solved using efficient compression
methods, reducing the amount of data for storage or
transmission while preserving all or most of the information
of the original message. Techniques for data compression are
classified into lossy and lossless techniques. Lossless
compression of a signal or message and its subsequent
decompression process generates a reconstructed signal or
message with the same information as the original. Several
works on the compression of ECG signals are reported in the
literature [6-8]. Also, other works present both compression
and encryption of ECG signals [9-11].

The encryption and compression algorithms allow better
use of the storage capacity and the transmission bandwidth,
as well as the data confidentiality. These technological
alternatives allow improving the functionalities and technical
characteristics of medical equipment, allowing an easy
adaption to current communication networks and provide
higher-level security to use them in telemedicine applications
in third world countries with limited healthcare coverage.

Some works on data encryption using SoC or SoC-FPGA
devices don’t present a practical application and only focus
on the acceleration of the AES algorithm implemented on
FPGA [12-14]. In this work, an AES processor was designed
allowing to reduce the execution time of the AES encryption
function of the TLS protocol, which is implemented with the
WolfSSL library on a Linux OS that is executed on an ARM
processor. It is also important to mention that there are no
works using an SoC-FPGA device and the LZW algorithm
for compression of vital signs and patient data.

Considering the above and the literature review, the main
contribution of this work is the hardware implementation of a
remote monitoring system with cybersecurity support and
compression of vital sign signals and patient data. In this case, a
microsystem was designed to encrypt and compress the
information using the AES and LZW algorithms, respectively.
The designed microsystem implemented into an SoC-FPGA
device is suitable for platforms and/or e-health devices that use
unsecured communication networks with limited bandwidth.

This article is organized as follows. Section 2 briefly
describes LZW and AES algorithms. Section 3 describes the
hardware functional blocks and software applications of the
designed vital signs monitoring system. In section 4, the
software and hardware implementations of the algorithms are
presented, Section 5 explains the tests and results obtained,
and Section 6 presents the conclusions.

2. Compression and encryption algorithms

2.1 Compression with LZW algorithm

LZW algorithm for lossless compression/decompression (see

Fig. 1a and 1b) was selected to perform the compression of
biomedical signals and patient data because it requires minimal
processing and few storage resources. This algorithm uses a code
table or dictionary that has 4096 positions, with the purpose of
replacing the input character strings with unique codes that are

generated and stored in the dictionary when the algorithm is
executed. In this case, the compressed data are transmitted
without the table or dictionary, that is, only the codes that have
been obtained as output are transmitted, and the initial code table
is loaded in the receptor terminal.
1) Compression process: Initially, this process loads the

individual characters that may appear in the message or
file to be compressed into the code table. Generally, the
0-255 positions of the code table are assigned to store the
individual bytes or codes of the message to be compressed
(commonly ASCII characters), and the remaining positions
of the table are allocated to store the character strings that
are added [15]. Thus, message compression is achieved
using the codes stored from positions 256 to 4096.

2) Decompression process: This process reconstructs the bytes
or characters of the message without transmitting the code
table from the transmitter terminal to the receptor terminal
where the compression was performed. The receptor only
needs the compressed data and the standard initial table of the
first 255 characters. From the compressed data, the
decompression algorithm completely rebuilds the code table
to obtain the original information and updates it to generate
each character of the input sequence, except for the first
character. Decoding is accomplished by reading the codes
and translating them through the code table that is being built.

LZW has two advantages over other lossless compression
algorithms, such as those based on Huffman encoding or
arithmetic encoding. The first one, LZW does not require prior
knowledge or statistical characteristics of the symbols. Then a
fast compression is achieved since it is not necessary a
subsequent processing on the data, such as in some statistical
methods. The second one, the decompression process is easier
and faster than the compression process [16].

Figure 1. Flow diagram of (a) LZW compression, and (b) LZW decompression
algorithms.

Source: The Authors

Gómez-García & Velasco-Medina / Revista DYNA, 88(219), pp. 147-154, October - December, 2021.

149

2.2 Encryption with AES algorithm

AES algorithm is a symmetric cipher that uses the same

key to encrypt or decrypt, and it has 128, 192, or 256 bits of
length. This algorithm uses various substitutions,
permutations, and linear transformations, and they are
processed in 16-byte data blocks, where each one is a 4x4-
byte block or matrix, which is called state block or state
matrix. The above operations are repeated into processes
called "rounds", and the number of rounds is 10, 12, or 14
depending on the size of the key [9,17]. For each round, a
single round key or subkey (round-key) is calculated using
the encryption key, and it is used in the linear
transformations.

The encryption key used in the AES algorithm can be
considered as a rectangular array of 4xNk bytes, where Nk is
equal to the number of bits of the key divided by 32. The
number of rounds (Nr) of the AES algorithm depends on the
size or number of bits of the key, i.e., if the key is 128, 192,
or 256 bits, then Nr is 10, 12, or 14, respectively. Nr-1 rounds
perform the following operations or transformations: 1)
SubBytes, 2) ShiftRows, 3) MixColumns, 4) AddRoundKey.
Finally, the last round (Nr) is processed, and it is like the
previous rounds, but the step through MixColumns
transformation is skipped. These transformations use
arithmetic operations as addition and multiplication over the
finite field GF(28) [17], and operations of rotation and
substitution of bits to encrypt each byte of the state matrix.
Once the algorithm is executed, the output is the state matrix,
which contents the encrypted text.

Before encrypting an input text, the key expansion
operation (KeyExpansion) is performed. If the key has 128
bits, it generates 11 round keys or subkeys (see Fig. 2), each
one of 128-bit; if the key has 192 bits, it generates 13
subkeys, and if the key has 256 bits, it generates 15 subkeys.
Each round performs a transformation using the
corresponding subkey to guarantee the adequate security of
the encryption.

The decryption process is performed using the same
transformations and subkeys generated in reverse order of the
encryption process. However, the MixColumns operation
uses a different matrix to obtain the inverse of the linear
transformation applied in the encryption process.

On the other hand, to achieve a higher level of security
using the AES algorithm, it is recommended to use an
operation mode different from the normal or the ECB
(Electronic Codebook) mode. Then, the CBC (Cipher- Block
Chaining) mode [17] is implemented in this work.

3. Remote monitoring system

This section describes the hardware and the software

application of the designed remote monitoring system (see
Fig. 3).

The remote monitoring system was designed considering
a client/server architecture using the TLS v1.1 protocol for
the secure transmission of data, and it is compliant with the
Health Insurance Portability and Accountability Act,
(HIPAA) for the safe handling of patient information. The
system allows the compression and encryption of biomedical

signals using an SoC-FPGA device; the signals are
transmitted from the vital signs monitor (client device) to the
server application placed on Central Monitoring Station
(CMS) through the Intranet or Internet. It was decided to use
this simple architecture to test and analyze the performance
of the algorithms described in section 2 and the TLS v1.1
protocol, to carry out a future implementation of the
monitoring system using the SOA software architecture
through REST services with HTTPS. The system is mainly
composed of:
1) A multi-parameter board from Goldwei Corporation,

which is used in commercial Vital Sign Monitors
(VSMs), allowing the measurement of ECG signals,
pulse oximetry signal (SpO2), blood pressure (NIBP),
temperature (TEMP), and respiratory rate (RESP). This
board allows the measurement of the
electrocardiographic signal through the connection of 3
or 5 leads. The measurement data of the different
biomedical signals are transmitted by RS-232 serial
communication. In addition to the waveforms that
belong to ECG, SpO2, and RESP signals, the board sends
the data corresponding to the measurement of
parameters such as heart rate (HR), respiratory rate (RR),
percentage of oxygen in the blood (% SpO2),
temperature, systolic pressure, diastolic pressure, and
mean pressure.

Figure 2. Structure of AES algorithm.

Source: The Authors

Figure 3. General diagram of the remote monitoring system.
Source: The Authors

Gómez-García & Velasco-Medina / Revista DYNA, 88(219), pp. 147-154, October - December, 2021.

150

2) A SoCKit Arrow board, whose main integrated circuit is
the SoC-FPGA Cyclone V device from Altera.
Functional blocks were synthesized on the FPGA fabric
for capturing and decoding the data frames transmitted
by the multiparameter board which has a structure and a
coding scheme established by the manufacturer. An
ARM processor, embedded into the Hard Processor
System (HPS) of the SoC-FPGA device, executes the
LZW compression algorithm and the firmware to
manage the data received from the multi-parameter
board. In addition, it controls the compression and
encryption of the data with the AES processor, as well
as the sending of the data frames through the TLS
protocol.

3) A software application developed in LabVIEW running on
CMS, which allows the visualization of the signals and
physiological parameters sent through the LAN or WAN
networks from SoC-FPGA device. This application decrypts
and decompresses the received data frames.

To perform functional tests on the remote monitoring
system, we connected the SoCKit board and the computer of
the CMS to a local network through a router.

The application allows the visualization of all the
biomedical signals and parameters measured and transmitted
through the TLS protocol. In this case, the monitor-station
system is designed using a client-server architecture, where
the client is the SoCKit board, and the server is the CMS.

4. Implementation of compression and encryption

algorithms

4.1 Implementation of LZW compression algorithm

To reduce the data load on the network and take better

advantage of the bandwidth, the LZW compression algorithm
was implemented into the software, which was executed by the
ARM processor. This algorithm starts its execution with the
codes table or dictionary containing the first 256 input data that
represent the ASCII characters and the range of values of the
physiological signals that are handled in biosignals; the other
addresses in the dictionary (4096 total) contain data that have
zero values. Compression is achieved by generating the code for
the sequences of bytes found, which are stored in the dictionary
from address 256 to 4096. LZW is executed for a specific
character string and identifies repeated sequences and adds them
to the dictionary at the following available address.

Then, to recover the original data, the LZW
decompression algorithm generates the same string table or
dictionary during the decompression process. The first 256
addresses of the dictionary are initialized with the ASCII
characters or range of values from the physiological signals.
The dictionary is updated for every character in the input
string, except for the first one. Decoding is achieved by
reading the code and translating it through the dictionary.

LZW compression and decompression were implemented
in C++ language, and cross-compilation for ARM processor
was performed using the DS-5 tool. CodeBlocks tool was
used to generate a DLL (Dynamic-Link Library) to
implement the LZW algorithm on LabVIEW through the Call
Library Function tool.

Figure 4. AES processor block diagram.
Source: The Authors

4.2 Implementation of AES processor on FPGA

To design the AES processor, it is important to consider

the following: 1) a 256-bit key size is required to achieve a
higher level of security and less vulnerability to side-channel
and key-recovery attacks [18]. 2) AES algorithm can be
implemented in hardware using a serial/serial,
parallel/pipeline, or parallel/serial architecture [19].
Considering the above, in this work, we designed the AES
processor using a 256-bit key and a sequential architecture
with parallel processing in the state block. Although it has
lower performance than a Parallel/Pipeline architecture, it
reduces the consumption of resources ten times less, which is
important for the implementation of additional accelerators
for the TLS protocol. Compared with the Serial/Serial
architecture, it has four times fewer iterations; therefore, the
execution time is reduced [19].

The block diagram of the AES processor is shown in Fig.
4, and from this figure, it is possible to observe that the
processor is composed of an FSM and five functional blocks:
1) AddRoundKey block: The input data of this block is

selected from the input data of the plain text, the output
data of the ShiftRows block, or the output data of the
MixColumns block. This block performs an XOR
operation between each selected set of 128 bits and the
subkeys generated by the KeyExpansion block. It is
implemented in hardware using a set of XOR gates.

2) SubByte block: This block performs a non-linear byte
substitution, which is carried out using a fixed
substitution table, called S-box, described in the AES
standard, and this block was implemented in hardware
using eight 256x8-bit ROMs of double port, which
contain an initialization vector with the values of the S-
box. The data from the ROMs are used in each round of
the algorithm to achieve the replacement of the 128 bits
in a single clock cycle. In this case, each 128-bit data or
state is divided into 16 bytes, and each byte is used to
address the ROMs that contain the value to be replaced.

3) ShiftRows block: According to the standard, this block

Gómez-García & Velasco-Medina / Revista DYNA, 88(219), pp. 147-154, October - December, 2021.

151

performs a series of rotations to the left of the bytes from
the state matrix. Its hardware implementation is wired,
that is, the direct interconnection between the outputs of
the SubByte block and the inputs of the MixColumn
block.

4) MixColumns block: This block performs a
transformation of the columns of the state matrix, where
each column is represented as a four-term polynomial
over the finite field GF(28), and each column or the state
matrix is multiplied by the irreducible polynomial c(x) =
3x3+x2+x+2 mod x4+1. To perform the above, both
addition and multiplication operations by factors of 2
and 3 are required over the finite field GF(28). The sum
is implemented using XOR operations and the
multiplication by 2 on GF(28) is implemented using the
function xtime described in the AES NIST standard.
Multiplication by 3 is performed by multiplying by 2 and
an addition

5) KeyExpansion block: This block carries out the
expansion of the key to generate several subkeys, which
are used in each round of the algorithm, and it can be
considered as a matrix of 4 rows by [4 × (Nr + 1)]
columns, named matrix W. In this case, the length of the
expanded key varies depending on Nr, which also varies
depending on the length of the key. In this block,
SubWord, RotWord, and Rcon transformations are
executed by the three sub-blocks shown in Fig. 5. a)
SubWord sub-block is implemented with the ROMs used
for S-boxes of the SubBytes block, with the difference
that only two dual-port 256x8-bit ROMs are used. b)
RotWord sub-block is implemented in a similar way to
the ShiftRows block, with the difference that the
RotWord sub-block only operates on 4 bytes. In this
case, a counterclockwise rotation of the 4 bytes is
performed within the 32-bit word. c) Rcon sub-block
consists of an XOR operation between column i of the
key matrix and column i/Nk of the matrix Rcon.

Because the AES algorithm is iterative, KeyExpansion
block was designed to work with 32-bit key segments for
each clock cycle, using eight 32-bit registers as shown in Fig.
5, where register R0 contains the word W[i-Nk] and register
R7 contains word W[i], and in this case, Nk is equal to 8. The
output words of the registers, from R0 to R3, are
concatenated to store them in the memory of subkeys (RAM
subkeys) of size 16x128 bits. The FSM-based controller
receives the key_valid control signal from the main controller
(main FSM) of the AES processor, which indicates the
complete load of the key since it is entered by 32-bit
segments. This controller also receives cnt_words bits, which
corresponds to the number of words processed, in order to
identify the position of the words within the vector W and to
control the multiplexers that allow selecting the initial key or
the words W[i] to store in the registers, as well as selecting
the words to process with the SubWord, RotWord, and Rcon
blocks.

4.3 Interface between AES and ARM processors

Altera's Avalon bus enables the communication between

the AES processor embedded into FPGA fabric and the ARM

Figure 5. KeyExpansion block.

Source: The Authors

processor embedded into the HPS. In this case, the AES
processor is integrated as a slave device using Intel's Qsys
tool, and the ARM processor is the master device o CPU.

In this case, functional blocks are required to
communicate AES and ARM processors to achieve high
performance which is carried out as follow:

First, the data frames from the RAM memory of the HPS
are transferred to the AES processor; the data from the RAM
are transferred to the FIFO1(First-In, First-Out) embedded
into the FPGA fabric using the oCmem1 (onChip memory1)
memory and the DMA1 (Direct Memory Access) block, and
then the FIFO1 transfers the data to the AES processor.
DMA1 transfers 32-bit data to the AES processor in each
clock cycle during the encryption process.

Second, the encrypted data from the AES processor are
transferred to the RAM of the HPS; The data from the AES
processor are transferred to the FIFO2, and then they are
transferred to the RAM of the HPS using the DMA2 block
and the oCmem2 memory.

Fig. 6 shows the interconnection between the above
blocks with the AES processor embedded into the FPGA
fabric.

Figure 6. AES processor integration with ARM processor.

Source: The Authors

Gómez-García & Velasco-Medina / Revista DYNA, 88(219), pp. 147-154, October - December, 2021.

152

Figure 7. Layers of the model for the encryption process
Source: The Authors

4.4 Use of AES processor in TLS protocol

To achieve secure transmission of the information of each

patient through the Internet, the AES processor was linked to the
WolfSSL library, allowing to accelerate the encryption functions
of the symmetric key cryptographic library. Fig. 7 shows the
layers of the model for the encryption process implemented into
the SoC-FPGA. The application layer is composed of the
firmware developed and the WolfSSL library. The operating
system layer is implemented with Linux RTOS, on which the
application layer runs. The hardware layer is composed of the
ARM processor, the AES processor, and the drivers for the serial
interface, DMA, SDRAM, and the Avalon bus. The hardware
layer, except for the ARM processor, was implemented on the
FPGA fabric using Qsys tool, and the software modules of the
application and operating system layers are stored in the SD-card
memory of the SoCKit board.

5. Tests and results

5.1 Compression tests

For the transmission of the physiological signals from the

SoC-FPGA device to the server on PC, a data frame with a size
of 2158 bytes was used, which includes the name and
identification number of the patient and the corresponding data
to a one-second window of signals (ECG, SpO2 or RESP).
Initially, compression tests of the ECG frames were carried out
with LZW executed on a PC, generating a compressed text of
429 bytes in size and achieving a compression rate of 80% from
the original frame, and an average Compression Ratio (CR) of
5:1, which varies according to the size of the frame to be
compressed and the variability of the data. If the data frame is
small, as in the case of the patient's static value and
physiological parameters (name, document, HR, % SpO2, etc.),
or if the data are not repeated with a certain frequency, the
compression ratio is lower (about 1.5: 1).

Table 1 shows the compression results obtained for three
types of data frames. In this case, from 10 observations made
for the three types of data frames, we calculated the margin
of error (m.e) for a 95% confidence interval in the
measurement of the information reduction percentage.

Table 1.

Data compression with LZW algorithm

Data frame

Original

data size

(bytes)

Compressed

data size

(bytes)

CR

%

Reduction

± m.e

Physiological parameters

and personal data
441 256 1,49:1

33,1 ±

1.18%

ECG signal 2158 429 5:1
80,10 ±

4,15%

SpO2 signal 2158 519 4,15:1
75,94 ±
3,5%

Source: The Authors

After carrying out the preliminary tests, the LZW

algorithm was implemented into the HPS. The main function
of the compression algorithm is executed, allowing to
compress data frames that are later encrypted and sent
through the TLS protocol, which is configured and managed
through the WolfSSL library.

5.2 AES processor synthesis results

Table 2 presents the synthesis results of 256-bit AES processor

with parallel/serial architecture, and Table 3 shows the number of
resources used in the synthesis of the designed embedded system
shown in Fig. 6, where the ARM processor is interconnected with
the AES processor through the memories and the DMA blocks. In
this case, the maximum operating frequency achieved was
167.98MHz, and the throughput was 1.53 Gbits/sec.

5.3 Encryption tests

In order to carry out performance comparisons between

software and hardware implementations of the AES
algorithm, in the first instance, we implement the AES
algorithm using C language, and the code developed was
executed by the ARM processor.

The execution time of the code was measured through a
performance counter for a frame of 16 bytes (128-bit) and a
data frame of 2158 bytes, obtaining the software and
hardware implementation results presented in Table 4.

As it can be seen from Table 4, the processing time of the
AES algorithm implemented in software is higher than its
hardware implementation. Since the AES processor has a
high performance, it is suitable for real-time transmission of
encrypted biomedical signals and parameters.

Table 2.

Resources used for AES processor

Resources Total available Used %Used

Logic elements

(ALMs)
113,560 375 <1%

Memory bits 12,492,800 43,008 <1%

Source: The Authors

Table 3.

Resources used for the embedded encryption system

Resources Total available Used %Used

Logic elements
(ALMs)

41,910 4,847 12%

Memory bits 5,662,720 1,265,728 22%

Source: The Authors

Gómez-García & Velasco-Medina / Revista DYNA, 88(219), pp. 147-154, October - December, 2021.

153

Table 4.

Processing times for encryption of software and hardware implementations

Implementati

on

Data size

(bytes)

Key size

(bits)

Processing

time (ms)

Software
16 256 5.60

2158 256 150.72

Hardware
16 256 0.45

2158 256 2.04

Source: The Authors

Table 5.

Configuration of biomedical signals for the patient simulator

Simul.

HR

ECG

(BPM)

HR

SpO2

(BPM)

%SpO2
RR

(BrPM)

Temp

(°C)

Blood

pressure

(mmHg)

1 120 95 98 65 25.3 0

2 120 95 98 0 25.3 133/93

Source: The Authors

The encryption tests from a typical frame of physiological

signals with 2158 bytes verify the advantage of the hardware
implementation. The processing time for the hardware
implementation is 74 times less than that obtained with the
software implementation.

The processing time to encrypt the 2158-byte data frame
with the AES processor increases 1.5 ms compared to the
time required to encrypt the 16-byte data frame. This
processing time is correct because the algorithm consumes
the maximum processing time for performing the key
expansion operation, which is repeated when the key is
changed.

5.4 Remote vital signs system testing

Two tests were carried out to verify the correct operation

of the remote monitoring system, that is, the compression and
encryption performed into the SoC-FPGA device and the
decryption and decompression executed in the CMS. In this
case, both client and server terminals were connected to the
same local network.

Two consecutive simulations, whose parameters are
presented in Table 5, were carried out. In this case, the
sensors for measuring the electrocardiography, pulse
oximetry, temperature, and blood pressure are connected to a
Fluke Prosim 8 patient simulator.

The data of the biomedical signals obtained from the
patient simulator are compressed and encrypted with the
SoC-FPGA device. Then, the data are transmitted to the
CMS, where the parameters and the physiological signals are
decrypted and decompressed.

The biomedical parameters are shown in the HR, RR,
SpO2 Rate, % SpO2, and TEMP fields, and the physiological
signals are shown in the XY charts window of the CMS, as
shown in Fig. 8. From this figure, we can observe that the
biomedical parameters correspond to the values configured
in the patient simulator, and the waves present a continuous
and identical form to their typical real-time signals. The
simulated data were also transmitted in uncompressed and
unencrypted frames, obtaining the same values.

Figure 8. Biomedical signals on the central monitoring station.

Source: The Authors

6. Conclusions

This article presents the implementation of a microsystem

to carry out the compression and encryption of biomedical
signals and physiological parameters captured from a
multiparameter board, which allows the measurement of
electrocardiographic, plethysmographic, and respiration
signals, and parameters such as oxygen saturation, blood
pressure, heart rate, respiratory rate, and temperature. Data
compression is carried out with the LZW algorithm
implemented in software and executed in the ARM
processor. Data encryption is carried out with the AES
processor, and data transmission is carried using the TLS
protocol, which accesses the AES processor embedded into
the FPGA fabric.

The reduced size of data frames compressed allows that a
lower load can be transmitted on the communication
network; In addition, it allows to fully recover the original
information of the vital sign signals in the central monitoring
station, facilitating detailed analysis of ECG signals for the
physician.

AES processor was designed to work with a 256-bit key, and
their input and output interfaces were adapted to work with
Altera's Avalon bus, such that the AES processor can
communicate with the NIOS II processor or the ARM processor.
In order to integrate the designed AES processor into the TLS
protocol, the cryptographic routines for the AES symmetric key
standard of the WolfSSL library were modified. In the section of
results, it is presented that the performance of the SSL/TLS
protocol was increased due to the acceleration of the encryption
process using the AES processor. In this case, the hardware
accelerator improves the speed of data transmission of the
SSL/TLS connections, which are highly dependent on the
performance of the cryptographic function.

From the results obtained, we can conclude that the
designed microsystem is suitable for platforms and/or e-
health devices that use unsecured communication networks
with limited bandwidth.

Gómez-García & Velasco-Medina / Revista DYNA, 88(219), pp. 147-154, October - December, 2021.

154

Acknowledgment

This work was sponsored and supported by Colciencias

(Administrative Department of Science, Technology, and
Innovation of Colombia), Colombia [Project 110677757782,
RC 751-2017].

References

[1] Hussain, M., Mehmood, A., Khan, S., Khan, M.A. and Iqbal, Z.,
Authentication techniques and methodologies used in wireless body

area networks. J Syst Archit., 101, art. 101655, 2019.

[2] Zheng, L., Wang, Z. and Tian, S., Comparative study on
electrocardiogram encryption using elliptic curves cryptography and

data encryption standard for applications in Internet of medical things.

Concurrency Computat Pract Exper. e5776, pp. 1-13, 2020. DOI:
10.1002/cpe.5776.

[3] Qiu, H., Qiu, M. and Lu, Z., Selective encryption on ECG data in body

sensor network based on supervised machine learning. Inf Fusion, 55,
pp. 59-67, 2020. DOI: 10.1016/j.inffus.2019.07.012.

[4] Liu, T.Y., Lin, K.J. and Wu, H.C., ECG data encryption then
compression using singular value decomposition. IEEE J. Biomed.

Health Informatics, 22, pp. 707-713. 2018. DOI:

10.1109/JBHI.2017.2698498.
[5] Premkumar, S. and Mohana, J., A novel ECG based encryption

algorithm for securing patient confidential information. Int. J. Electr.

Eng. Technol. 11, pp. 35-43, 2020.
[6] Yildirim, O., Tan, R.S. and Acharya, U.R., An efficient compression

of ECG signals using deep convolutional autoencoders. Cogn. Syst.

Res., 52, pp. 198-211, 2018. DOI: 10.1016/j.cogsys.2018.07.004.
[7] Tan, C., Zhang, L. and Wu, H.T., A novel blaschke unwinding

adaptive-Fourier-decomposition-based signal compression algorithm

with application on ECG Signals. IEEE J. Biomed. Health Informatics
23, pp. 672-682, 2019. DOI: 10.1109/JBHI.2018.2817192.

[8] Ma. J., Zhang, T. and Dong, M., A novel ECG data compression

method using adaptive fourier decomposition with security guarantee
in e-health applications. IEEE J. Biomed. Health Informatics 19, pp.

986-994, 2015. DOI: 10.1109/JBHI.2014.2357841.

[9] Hameed, M.E., Ibrahim, M.M., Manap, N.A. and Mohammed, A.A.,
A lossless compression and encryption mechanism for remote

monitoring of ECG data using Huffman coding and CBC-AES. Futur

Gener. Comput. Syst., 111, pp. 829-840, 2019. DOI:
10.1016/j.future.2019.10.010.

[10] Raeiatibanadkooki, M., Quchani, S.R., KhalilZade, M.M. and

Bahaadinbeigy, K., Compression and encryption of ECG signal using
wavelet and chaotically huffman code in telemedicine application. J.

Med. Syst., 40, pp. 1-8, 2016. DOI: 10.1007/s10916-016-0433-5.

[11] Pandey, A., Saini, B.S., Singh, B. and Sood, N., Complexity sorting
and coupled chaotic map based on 2D ECG data compression-then-

encryption and its OFDM transmission with impair sample correction.

Multimed Tools Appl., 78, pp. 11223-11261, 2019. DOI:
10.1007/s11042-018-6681-2.

[12] Roy, D.B., Agrawal, S., Reberio, C. and Mukhopadhyay, D.,

Accelerating open SSL’S ECC with low cost reconfigurable hardware.
2016. In: Int. Symp. Integr. Circuits, ISIC 2016. DOI:

10.1109/ISICIR.2016.7829684.

[13] Hamilton, M. and Marnane, W.P., Implementation of a secure TLS
coprocessor on an FPGA. Microprocess Microsyst., 40, pp. 167-180,

2016. DOI: 10.1016/j.micpro.2015.10.009.

[14] Hafsa, A., Alimi, N., Sghaier, A., Zeghid, M. and Machhout, M., A
hardware-software co-designed AES-ECC cryptosystem. Proc. Int.

Conf. Adv. Syst. Electr. Technol. IC_ASET 2017, pp. 50-54, 2017.

DOI: 10.1109/ASET.2017.7983665.
[15] Barua, L., Dhar, P.K., Alam, L. and Echizen, I., Bangla text

compression based on modified lempel-Ziv-welch algorithm. ECCE

2017. In: Int Conf Electr Comput Commun Eng., 2017, pp. 855-859.
DOI: 10.1109/ECACE.2017.7913022.

[16] Bedruz, R.A. and Quiros, A.R.F., Comparison of Huffman algorithm

and Lempel-Ziv algorithm for audio, image and text compression. In:
8th Int Conf Humanoid, Nanotechnology, Inf Technol Commun

Control Environ Manag HNICEM 2015. 2016. DOI:

10.1109/HNICEM.2015.7393210.

[17] Ueno, R., Morioka, S., Homma, N. and Aoki, T., A high
throughput/gate AES hardware architecture by compressing

encryption and decryption datapaths: toward efficient CBC-Mode

implementation. Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9813 LNCS,

Springer Verlag, 2016, pp. 538-558. DOI: 10.1007/978-3-662-53140-

2_26.
[18] Ashokkumar, C., Giri, R.P. and Menezes, B., Highly efficient

algorithms for AES key retrieval in cache access attacks. In: Proc -

2016 IEEE Eur Symp Secur Privacy, EURO S P 2016., 2016, pp. 261-
275. DOI: 10.1109/EuroSP.2016.29.

[19] Nadjia, A. and Mohamed, A., AES IP for hybrid cryptosystem RSA-
AES. 12th Int Multi-Conference Syst Signals Devices, SSD 2015.

2015, pp. 1-6. DOI: 10.1109/SSD.2015.7348109.

C.A. Gómez-García, was born in Cali, Colombia in 1989. He received the

BSc. Eng. and MSc. in Electronic Engineering from the Universidad del
Valle, Cali, Colombia, in 2012, and 2018, respectively. He is currently an

active researcher of the Bionanoelectronics group of the School of Electrical

and Electronic Engineering at the Universidad del Valle, Cali, where he is
involved in several projects of biomedical applications in the areas of

telehealth and integrated systems. He worked as a hardware and software

developer for Bioengineering research group of the Fundación
Cardiovascular de Colombia, in a project funded by Colciencias, designing,

and implementing compression and encryption algorithms on FPGA for vital

signs monitors. Also, he has worked developing a platform for Healthcare
Promotion and Cardiovascular Disease Prevention under the execution of a

project funded by Colciencias. His current research interests include

biomedical design, integrated systems for instrumentation, and
cryptography.

ORCID: 0000-0002-5432-8330

J. Velasco-Medina, (SM'96) received the BSc. Eng in Electrical

Engineering from the Universidad del Valle, Cali, Colombia, in 1985, and

the MSc. and PhD. in Microelectronics from the Joseph Fourier University
and the Institute National Polytechnic of Grenoble, Grenoble, France, in

1995 and 1999, respectively. In 1988, he joined the AT&T Bell Laboratory,

Allentown, PA, USA, as a Technical Staff Member for six months. He was
the pioneer of the current-based testing for analog and mixed-signal circuits

and online testing of operational amplifiers. He is currently a Faculty

Professor with the School of Electrical and Electronics Engineering,
Universidad del Valle, and the Director of the Bionanoelectronics Research

Group. He has authored or co-authored more than 60 IEEE papers and 60

peer-reviewed papers in other scientific events and journals. His current
research interests include digital systems design for computer arithmetic and

digital signal processing; test of analog and mixed-signal integrated circuits,

hardware architectures for cryptography, quantum computing,
citocomputation, and modeling of biological systems.

ORCID: 0000-0003-4091-1055

