
 
 

 

© The author; licensee Universidad Nacional de Colombia.  

Revista DYNA, 88(219), pp. 147-154, October - December, 2021, ISSN 0012-7353 
DOI:  https://doi.org/10.15446/dyna.v88n219.92532 

Compression and encryption of vital sign signals using an SoC-

FPGA 

 

Carlos Andrés Gómez-García & Jaime Velasco-Medina 
 

Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle, Cali, Colombia. carlos.a.gomez.g@correounivalle.edu.co, 

jaime.velasco@correounivalle.edu.co 

 
Abstract 
This article presents the implementation of a remote monitoring system of biomedical signals with cybersecurity support and compression 
of vital sign signals and data of the patient. This system uses a low-cost microsystem for encrypting and compressing the information using 
the Lempel–Ziv–Welch (LZW) lossless compression algorithm and the Advanced Encryption Standard (AES). In this case, the WolfSSL 
library is used to implement the Transport Layer Security (TLS) protocol, whose encryption function is accelerated by the AES processor 
designed on a System on Chip - Field Programmable Gate Array (SoC-FPGA) device. Data transmission tests were carried out from the 
measurement system to the monitoring application developed in LabVIEW and implemented on a Personal Computer (PC), where vital 
signs and data of the patient are decrypted and decompressed. The microsystem is suitable for e-health platforms and/or e-health devices 
that use unsecured communication networks with limited bandwidth. 
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Compresión y encriptación de señales de signos vitales usando un 

SoC-FPGA 
 

Resumen 
Este artículo presenta la implementación de un sistema de monitoreo remoto para señales biomédicas con soporte de ciberseguridad y 
compresión de señales de signos vitales y datos del paciente. Este sistema utiliza un microsistema de bajo costo para encriptar y comprimir 
la información utilizando el algoritmo de compresión sin pérdidas Lempel – Ziv – Welch (LZW) y el Estándar de Encriptación Avanzado 
(AES). En este caso, la biblioteca WolfSSL se utiliza para la implementación del protocolo Transport Layer Security (TLS), cuya función 
para la encriptación es acelerada por el procesador AES diseñado sobre un dispositivo SoC-FPGA. Se realizaron pruebas de transmisión 
de datos desde el sistema de medición a la aplicación software desarrollada en LabVIEW e implementada en un computador personal (PC), 
donde se desencriptan y descomprimen los signos vitales y los datos del paciente. El microsistema puede ser utilizado en plataformas e-
health y/o dispositivos e-health que utilizan redes de comunicación no seguras con ancho de banda limitado. 
 
Palabras clave: AES; Algoritmo LZW; compresión de datos; encriptación; señales biomédicas; SoC-FPGA. 

 

 
 

1. Introduction 
 
The systems for remote monitoring of vital signs have 

evolved in recent years, increasing their autonomy, 
portability, and functionality. Telemedicine services have 
experienced an important advance due to new technological 
generations for mobile telephony; however, reliable 
transmission of medical data, signals, and images over the 
Internet is required. Also, it is important to mention that 
broadband Internet is a service that only some people can 
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access, especially in third-world countries. 
Typically, there are no inconveniences to disclose the data of 

the patients because there is a high degree of trust between the 
actors involved in the healthcare systems, such as service 
providers, doctors, and patients; however, the data must be stored 
and transmitted using protection mechanisms to prevent that 
unauthorized people observe the information because they can 
interfere or change it. For this reason, encryption algorithms are 
a valuable alternative to achieve the security of stored and 
transmitted data. In the literature, some works are reported on the 
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encryption of medical data [1,2] and electrocardiographic signals 
(ECG) using simple or complex algorithms [3-5]. 

On the other hand, problems related to limited storage 
capacity and lack of a fast Internet service must also be 
solved. The above can be solved using efficient compression 
methods, reducing the amount of data for storage or 
transmission while preserving all or most of the information 
of the original message. Techniques for data compression are 
classified into lossy and lossless techniques. Lossless 
compression of a signal or message and its subsequent 
decompression process generates a reconstructed signal or 
message with the same information as the original. Several 
works on the compression of ECG signals are reported in the 
literature [6-8]. Also, other works present both compression 
and encryption of ECG signals [9-11]. 

The encryption and compression algorithms allow better 
use of the storage capacity and the transmission bandwidth, 
as well as the data confidentiality. These technological 
alternatives allow improving the functionalities and technical 
characteristics of medical equipment, allowing an easy 
adaption to current communication networks and provide 
higher-level security to use them in telemedicine applications 
in third world countries with limited healthcare coverage. 

Some works on data encryption using SoC or SoC-FPGA 
devices don’t present a practical application and only focus 
on the acceleration of the AES algorithm implemented on 
FPGA [12-14]. In this work, an AES processor was designed 
allowing to reduce the execution time of the AES encryption 
function of the TLS protocol, which is implemented with the 
WolfSSL library on a Linux OS that is executed on an ARM 
processor. It is also important to mention that there are no 
works using an SoC-FPGA device and the LZW algorithm 
for compression of vital signs and patient data. 

Considering the above and the literature review, the main 
contribution of this work is the hardware implementation of a 
remote monitoring system with cybersecurity support and 
compression of vital sign signals and patient data. In this case, a 
microsystem was designed to encrypt and compress the 
information using the AES and LZW algorithms, respectively. 
The designed microsystem implemented into an SoC-FPGA 
device is suitable for platforms and/or e-health devices that use 
unsecured communication networks with limited bandwidth. 

This article is organized as follows. Section 2 briefly 
describes LZW and AES algorithms. Section 3 describes the 
hardware functional blocks and software applications of the 
designed vital signs monitoring system. In section 4, the 
software and hardware implementations of the algorithms are 
presented, Section 5 explains the tests and results obtained, 
and Section 6 presents the conclusions. 

 

2. Compression and encryption algorithms 
 

2.1 Compression with LZW algorithm 
 
LZW algorithm for lossless compression/decompression (see 

Fig. 1a and 1b) was selected to perform the compression of 
biomedical signals and patient data because it requires minimal 
processing and few storage resources. This algorithm uses a code 
table or dictionary that has 4096 positions, with the purpose of 
replacing the input character strings with unique codes that are 

generated and stored in the dictionary when the algorithm is 
executed. In this case, the compressed data are transmitted 
without the table or dictionary, that is, only the codes that have 
been obtained as output are transmitted, and the initial code table 
is loaded in the receptor terminal. 
1) Compression process: Initially, this process loads the 

individual characters that may appear in the message or 
file to be compressed into the code table. Generally, the 
0-255 positions of the code table are assigned to store the 
individual bytes or codes of the message to be compressed 
(commonly ASCII characters), and the remaining positions 
of the table are allocated to store the character strings that 
are added [15]. Thus, message compression is achieved 
using the codes stored from positions 256 to 4096. 

2) Decompression process: This process reconstructs the bytes 
or characters of the message without transmitting the code 
table from the transmitter terminal to the receptor terminal 
where the compression was performed. The receptor only 
needs the compressed data and the standard initial table of the 
first 255 characters. From the compressed data, the 
decompression algorithm completely rebuilds the code table 
to obtain the original information and updates it to generate 
each character of the input sequence, except for the first 
character. Decoding is accomplished by reading the codes 
and translating them through the code table that is being built. 

LZW has two advantages over other lossless compression 
algorithms, such as those based on Huffman encoding or 
arithmetic encoding. The first one, LZW does not require prior 
knowledge or statistical characteristics of the symbols. Then a 
fast compression is achieved since it is not necessary a 
subsequent processing on the data, such as in some statistical 
methods. The second one, the decompression process is easier 
and faster than the compression process [16]. 

 

 
 
Figure 1. Flow diagram of (a) LZW compression, and (b) LZW decompression 
algorithms. 

Source: The Authors 
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2.2 Encryption with AES algorithm 
 
AES algorithm is a symmetric cipher that uses the same 

key to encrypt or decrypt, and it has 128, 192, or 256 bits of 
length. This algorithm uses various substitutions, 
permutations, and linear transformations, and they are 
processed in 16-byte data blocks, where each one is a 4x4-
byte block or matrix, which is called state block or state 
matrix. The above operations are repeated into processes 
called "rounds", and the number of rounds is 10, 12, or 14 
depending on the size of the key [9,17]. For each round, a 
single round key or subkey (round-key) is calculated using 
the encryption key, and it is used in the linear 
transformations.  

The encryption key used in the AES algorithm can be 
considered as a rectangular array of 4xNk bytes, where Nk is 
equal to the number of bits of the key divided by 32. The 
number of rounds (Nr) of the AES algorithm depends on the 
size or number of bits of the key, i.e., if the key is 128, 192, 
or 256 bits, then Nr is 10, 12, or 14, respectively. Nr-1 rounds 
perform the following operations or transformations: 1) 
SubBytes, 2) ShiftRows, 3) MixColumns, 4) AddRoundKey. 
Finally, the last round (Nr) is processed, and it is like the 
previous rounds, but the step through MixColumns 
transformation is skipped. These transformations use 
arithmetic operations as addition and multiplication over the 
finite field GF(28) [17], and operations of rotation and 
substitution of bits to encrypt each byte of the state matrix. 
Once the algorithm is executed, the output is the state matrix, 
which contents the encrypted text. 

Before encrypting an input text, the key expansion 
operation (KeyExpansion) is performed. If the key has 128 
bits, it generates 11 round keys or subkeys (see Fig. 2), each 
one of 128-bit; if the key has 192 bits, it generates 13 
subkeys, and if the key has 256 bits, it generates 15 subkeys. 
Each round performs a transformation using the 
corresponding subkey to guarantee the adequate security of 
the encryption. 

The decryption process is performed using the same 
transformations and subkeys generated in reverse order of the 
encryption process. However, the MixColumns operation 
uses a different matrix to obtain the inverse of the linear 
transformation applied in the encryption process. 

On the other hand, to achieve a higher level of security 
using the AES algorithm, it is recommended to use an 
operation mode different from the normal or the ECB 
(Electronic Codebook) mode. Then, the CBC (Cipher- Block 
Chaining) mode [17] is implemented in this work. 

 

3. Remote monitoring system 
 
This section describes the hardware and the software 

application of the designed remote monitoring system (see 
Fig. 3).  

The remote monitoring system was designed considering 
a client/server architecture using the TLS v1.1 protocol for 
the secure transmission of data, and it is compliant with the 
Health Insurance Portability and Accountability Act, 
(HIPAA) for the safe handling of patient information. The 
system allows the compression and encryption of biomedical 

signals using an SoC-FPGA device; the signals are 
transmitted from the vital signs monitor (client device) to the 
server application placed on Central Monitoring Station 
(CMS) through the Intranet or Internet. It was decided to use 
this simple architecture to test and analyze the performance 
of the algorithms described in section 2 and the TLS v1.1 
protocol, to carry out a future implementation of the 
monitoring system using the SOA software architecture 
through REST services with HTTPS. The system is mainly 
composed of: 
1) A multi-parameter board from Goldwei Corporation, 

which is used in commercial Vital Sign Monitors 
(VSMs), allowing the measurement of ECG signals, 
pulse oximetry signal (SpO2), blood pressure (NIBP), 
temperature (TEMP), and respiratory rate (RESP). This 
board allows the measurement of the 
electrocardiographic signal through the connection of 3 
or 5 leads. The measurement data of the different 
biomedical signals are transmitted by RS-232 serial 
communication. In addition to the waveforms that 
belong to ECG, SpO2, and RESP signals, the board sends 
the data corresponding to the measurement of 
parameters such as heart rate (HR), respiratory rate (RR), 
percentage of oxygen in the blood (% SpO2), 
temperature, systolic pressure, diastolic pressure, and 
mean pressure.  

 

 
Figure 2.  Structure of AES algorithm. 

Source: The Authors 

 
 

 
 

Figure 3.  General diagram of the remote monitoring system. 
Source: The Authors 
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2) A SoCKit Arrow board, whose main integrated circuit is 
the SoC-FPGA Cyclone V device from Altera. 
Functional blocks were synthesized on the FPGA fabric 
for capturing and decoding the data frames transmitted 
by the multiparameter board which has a structure and a 
coding scheme established by the manufacturer. An 
ARM processor, embedded into the Hard Processor 
System (HPS) of the SoC-FPGA device, executes the 
LZW compression algorithm and the firmware to 
manage the data received from the multi-parameter 
board. In addition, it controls the compression and 
encryption of the data with the AES processor, as well 
as the sending of the data frames through the TLS 
protocol.  

3) A software application developed in LabVIEW running on 
CMS, which allows the visualization of the signals and 
physiological parameters sent through the LAN or WAN 
networks from SoC-FPGA device. This application decrypts 
and decompresses the received data frames. 

To perform functional tests on the remote monitoring 
system, we connected the SoCKit board and the computer of 
the CMS to a local network through a router.  

The application allows the visualization of all the 
biomedical signals and parameters measured and transmitted 
through the TLS protocol. In this case, the monitor-station 
system is designed using a client-server architecture, where 
the client is the SoCKit board, and the server is the CMS. 

 

4. Implementation of compression and encryption   

algorithms 
 

4.1  Implementation of LZW compression algorithm 
 
To reduce the data load on the network and take better 

advantage of the bandwidth, the LZW compression algorithm 
was implemented into the software, which was executed by the 
ARM processor. This algorithm starts its execution with the 
codes table or dictionary containing the first 256 input data that 
represent the ASCII characters and the range of values of the 
physiological signals that are handled in biosignals; the other 
addresses in the dictionary (4096 total) contain data that have 
zero values. Compression is achieved by generating the code for 
the sequences of bytes found, which are stored in the dictionary 
from address 256 to 4096. LZW is executed for a specific 
character string and identifies repeated sequences and adds them 
to the dictionary at the following available address.  

Then, to recover the original data, the LZW 
decompression algorithm generates the same string table or 
dictionary during the decompression process. The first 256 
addresses of the dictionary are initialized with the ASCII 
characters or range of values from the physiological signals. 
The dictionary is updated for every character in the input 
string, except for the first one. Decoding is achieved by 
reading the code and translating it through the dictionary.  

LZW compression and decompression were implemented 
in C++ language, and cross-compilation for ARM processor 
was performed using the DS-5 tool. CodeBlocks tool was 
used to generate a DLL (Dynamic-Link Library) to 
implement the LZW algorithm on LabVIEW through the Call 
Library Function tool. 

 
 

Figure 4.  AES processor block diagram. 
Source: The Authors 

 
 

4.2 Implementation of AES processor on FPGA 
 
To design the AES processor, it is important to consider 

the following: 1) a 256-bit key size is required to achieve a 
higher level of security and less vulnerability to side-channel 
and key-recovery attacks [18]. 2) AES algorithm can be 
implemented in hardware using a serial/serial, 
parallel/pipeline, or parallel/serial architecture [19]. 
Considering the above, in this work, we designed the AES 
processor using a 256-bit key and a sequential architecture 
with parallel processing in the state block. Although it has 
lower performance than a Parallel/Pipeline architecture, it 
reduces the consumption of resources ten times less, which is 
important for the implementation of additional accelerators 
for the TLS protocol. Compared with the Serial/Serial 
architecture, it has four times fewer iterations; therefore, the 
execution time is reduced [19].  

The block diagram of the AES processor is shown in Fig. 
4, and from this figure, it is possible to observe that the 
processor is composed of an FSM and five functional blocks:  
1) AddRoundKey block: The input data of this block is 

selected from the input data of the plain text, the output 
data of the ShiftRows block, or the output data of the 
MixColumns block. This block performs an XOR 
operation between each selected set of 128 bits and the 
subkeys generated by the KeyExpansion block. It is 
implemented in hardware using a set of XOR gates. 

2) SubByte block: This block performs a non-linear byte 
substitution, which is carried out using a fixed 
substitution table, called S-box, described in the AES 
standard, and this block was implemented in hardware 
using eight 256x8-bit ROMs of double port, which 
contain an initialization vector with the values of the S-
box. The data from the ROMs are used in each round of 
the algorithm to achieve the replacement of the 128 bits 
in a single clock cycle. In this case, each 128-bit data or 
state is divided into 16 bytes, and each byte is used to 
address the ROMs that contain the value to be replaced. 

3) ShiftRows block: According to the standard, this block 
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performs a series of rotations to the left of the bytes from 
the state matrix. Its hardware implementation is wired, 
that is, the direct interconnection between the outputs of 
the SubByte block and the inputs of the MixColumn 
block. 

4) MixColumns block: This block performs a 
transformation of the columns of the state matrix, where 
each column is represented as a four-term polynomial 
over the finite field GF(28), and each column or the state 
matrix is multiplied by the irreducible polynomial c(x) = 
3x3+x2+x+2 mod x4+1. To perform the above, both 
addition and multiplication operations by factors of 2 
and 3 are required over the finite field GF(28). The sum 
is implemented using XOR operations and the 
multiplication by 2 on GF(28) is implemented using the 
function xtime described in the AES NIST standard. 
Multiplication by 3 is performed by multiplying by 2 and 
an addition 

5) KeyExpansion block: This block carries out the 
expansion of the key to generate several subkeys, which 
are used in each round of the algorithm, and it can be 
considered as a matrix of 4 rows by [4 × (Nr + 1)] 
columns, named matrix W. In this case, the length of the 
expanded key varies depending on Nr, which also varies 
depending on the length of the key. In this block, 
SubWord, RotWord, and Rcon transformations are 
executed by the three sub-blocks shown in Fig. 5. a) 
SubWord sub-block is implemented with the ROMs used 
for S-boxes of the SubBytes block, with the difference 
that only two dual-port 256x8-bit ROMs are used. b) 
RotWord sub-block is implemented in a similar way to 
the ShiftRows block, with the difference that the 
RotWord sub-block only operates on 4 bytes. In this 
case, a counterclockwise rotation of the 4 bytes is 
performed within the 32-bit word. c) Rcon sub-block 
consists of an XOR operation between column i of the 
key matrix and column i/Nk of the matrix Rcon. 

Because the AES algorithm is iterative, KeyExpansion 
block was designed to work with 32-bit key segments for 
each clock cycle, using eight 32-bit registers as shown in Fig. 
5, where register R0 contains the word W[i-Nk] and register 
R7 contains word W[i], and in this case, Nk is equal to 8. The 
output words of the registers, from R0 to R3, are 
concatenated to store them in the memory of subkeys (RAM 
subkeys) of size 16x128 bits. The FSM-based controller 
receives the key_valid control signal from the main controller 
(main FSM) of the AES processor, which indicates the 
complete load of the key since it is entered by 32-bit 
segments. This controller also receives cnt_words bits, which 
corresponds to the number of words processed, in order to 
identify the position of the words within the vector W and to 
control the multiplexers that allow selecting the initial key or 
the words W[i] to store in the registers, as well as selecting 
the words to process with the SubWord, RotWord, and Rcon 
blocks. 

 

4.3 Interface between AES and ARM processors 
 
Altera's Avalon bus enables the communication between 

the AES processor embedded into FPGA fabric and the ARM  

 
 
Figure 5.  KeyExpansion block. 

Source: The Authors 

 
 

processor embedded into the HPS. In this case, the AES 
processor is integrated as a slave device using Intel's Qsys 
tool, and the ARM processor is the master device o CPU. 

In this case, functional blocks are required to 
communicate AES and ARM processors to achieve high 
performance which is carried out as follow: 

First, the data frames from the RAM memory of the HPS 
are transferred to the AES processor; the data from the RAM 
are transferred to the FIFO1(First-In, First-Out) embedded 
into the FPGA fabric using the oCmem1 (onChip memory1) 
memory and the DMA1 (Direct Memory Access) block, and 
then the FIFO1 transfers the data to the AES processor. 
DMA1 transfers 32-bit data to the AES processor in each 
clock cycle during the encryption process.  

Second, the encrypted data from the AES processor are 
transferred to the RAM of the HPS; The data from the AES 
processor are transferred to the FIFO2, and then they are 
transferred to the RAM of the HPS using the DMA2 block 
and the oCmem2 memory.  

Fig. 6 shows the interconnection between the above 
blocks with the AES processor embedded into the FPGA 
fabric. 

 

 
 
Figure 6.  AES processor integration with ARM processor. 

Source: The Authors 
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Figure 7.  Layers of the model for the encryption process 
Source: The Authors 

 
 

4.4 Use of AES processor in TLS protocol 
 
To achieve secure transmission of the information of each 

patient through the Internet, the AES processor was linked to the 
WolfSSL library, allowing to accelerate the encryption functions 
of the symmetric key cryptographic library. Fig. 7 shows the 
layers of the model for the encryption process implemented into 
the SoC-FPGA. The application layer is composed of the 
firmware developed and the WolfSSL library. The operating 
system layer is implemented with Linux RTOS, on which the 
application layer runs. The hardware layer is composed of the 
ARM processor, the AES processor, and the drivers for the serial 
interface, DMA, SDRAM, and the Avalon bus. The hardware 
layer, except for the ARM processor, was implemented on the 
FPGA fabric using Qsys tool, and the software modules of the 
application and operating system layers are stored in the SD-card 
memory of the SoCKit board. 

 

5. Tests and results 
 

5.1 Compression tests  
 
For the transmission of the physiological signals from the 

SoC-FPGA device to the server on PC, a data frame with a size 
of 2158 bytes was used, which includes the name and 
identification number of the patient and the corresponding data 
to a one-second window of signals (ECG, SpO2 or RESP). 
Initially, compression tests of the ECG frames were carried out 
with LZW executed on a PC, generating a compressed text of 
429 bytes in size and achieving a compression rate of 80% from 
the original frame, and an average Compression Ratio (CR) of 
5:1, which varies according to the size of the frame to be 
compressed and the variability of the data. If the data frame is 
small, as in the case of the patient's static value and 
physiological parameters (name, document, HR, % SpO2, etc.), 
or if the data are not repeated with a certain frequency, the 
compression ratio is lower (about 1.5: 1).  

Table 1 shows the compression results obtained for three 
types of data frames. In this case, from 10 observations made 
for the three types of data frames, we calculated the margin 
of error (m.e) for a 95% confidence interval in the 
measurement of the information reduction percentage. 
 

Table 1. 

Data compression with LZW algorithm 

Data frame 

Original 

data size 

(bytes) 

Compressed 

data size 

(bytes) 

CR 

% 

Reduction 

± m.e 

Physiological parameters 

and personal data 
441 256 1,49:1 

33,1 ± 

1.18% 

ECG signal 2158 429 5:1 
80,10 ± 

4,15% 

SpO2 signal 2158 519 4,15:1 
75,94 ± 
3,5% 

Source: The Authors 

 
 
After carrying out the preliminary tests, the LZW 

algorithm was implemented into the HPS. The main function 
of the compression algorithm is executed, allowing to 
compress data frames that are later encrypted and sent 
through the TLS protocol, which is configured and managed 
through the WolfSSL library. 

 

5.2 AES processor synthesis results 
 
Table 2 presents the synthesis results of 256-bit AES processor 

with parallel/serial architecture, and Table 3 shows the number of 
resources used in the synthesis of the designed embedded system 
shown in Fig. 6, where the ARM processor is interconnected with 
the AES processor through the memories and the DMA blocks. In 
this case, the maximum operating frequency achieved was 
167.98MHz, and the throughput was 1.53 Gbits/sec. 

 

5.3 Encryption tests 
 
In order to carry out performance comparisons between 

software and hardware implementations of the AES 
algorithm, in the first instance, we implement the AES 
algorithm using C language, and the code developed was 
executed by the ARM processor.  

The execution time of the code was measured through a 
performance counter for a frame of 16 bytes (128-bit) and a 
data frame of 2158 bytes, obtaining the software and 
hardware implementation results presented in Table 4. 

As it can be seen from Table 4, the processing time of the 
AES algorithm implemented in software is higher than its 
hardware implementation. Since the AES processor has a 
high performance, it is suitable for real-time transmission of 
encrypted biomedical signals and parameters.  

 
Table 2. 

Resources used for AES processor 

Resources Total available Used %Used 

Logic elements 

(ALMs) 
113,560 375 <1% 

Memory bits 12,492,800 43,008 <1% 

Source: The Authors 

 
 

Table 3. 

Resources used for the embedded encryption system 

Resources Total available Used %Used 

Logic elements 
(ALMs) 

41,910 4,847 12% 

Memory bits 5,662,720 1,265,728 22% 

Source: The Authors 
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Table 4. 

Processing times for encryption of software and hardware implementations 

Implementati

on 

Data size 

(bytes) 

Key size 

(bits) 

Processing 

time (ms) 

Software 
16 256 5.60 

2158 256 150.72 

Hardware 
16 256 0.45 

2158 256 2.04 

Source: The Authors 

 
 

Table 5. 

Configuration of biomedical signals for the patient simulator 

Simul. 

HR 

ECG 

(BPM) 

HR 

SpO2 

(BPM) 

%SpO2 
RR 

(BrPM) 

Temp 

(°C) 

Blood 

pressure 

(mmHg) 

1 120 95 98 65 25.3 0 

2 120 95 98 0 25.3 133/93 

Source: The Authors 

 
 
The encryption tests from a typical frame of physiological 

signals with 2158 bytes verify the advantage of the hardware 
implementation. The processing time for the hardware 
implementation is 74 times less than that obtained with the 
software implementation.  

The processing time to encrypt the 2158-byte data frame 
with the AES processor increases 1.5 ms compared to the 
time required to encrypt the 16-byte data frame. This 
processing time is correct because the algorithm consumes 
the maximum processing time for performing the key 
expansion operation, which is repeated when the key is 
changed.  

 

5.4 Remote vital signs system testing 
 
Two tests were carried out to verify the correct operation 

of the remote monitoring system, that is, the compression and 
encryption performed into the SoC-FPGA device and the 
decryption and decompression executed in the CMS. In this 
case, both client and server terminals were connected to the 
same local network.  

Two consecutive simulations, whose parameters are 
presented in Table 5, were carried out. In this case, the 
sensors for measuring the electrocardiography, pulse 
oximetry, temperature, and blood pressure are connected to a 
Fluke Prosim 8 patient simulator. 

The data of the biomedical signals obtained from the 
patient simulator are compressed and encrypted with the 
SoC-FPGA device. Then, the data are transmitted to the 
CMS, where the parameters and the physiological signals are 
decrypted and decompressed. 

The biomedical parameters are shown in the HR, RR, 
SpO2 Rate, % SpO2, and TEMP fields, and the physiological 
signals are shown in the XY charts window of the CMS, as 
shown in Fig. 8. From this figure, we can observe that the 
biomedical parameters correspond to the values configured 
in the patient simulator, and the waves present a continuous 
and identical form to their typical real-time signals. The 
simulated data were also transmitted in uncompressed and 
unencrypted frames, obtaining the same values.  

 
 
Figure 8. Biomedical signals on the central monitoring station. 

Source: The Authors 

 
 

6. Conclusions  
 
This article presents the implementation of a microsystem 

to carry out the compression and encryption of biomedical 
signals and physiological parameters captured from a 
multiparameter board, which allows the measurement of 
electrocardiographic, plethysmographic, and respiration 
signals, and parameters such as oxygen saturation, blood 
pressure, heart rate, respiratory rate, and temperature. Data 
compression is carried out with the LZW algorithm 
implemented in software and executed in the ARM 
processor. Data encryption is carried out with the AES 
processor, and data transmission is carried using the TLS 
protocol, which accesses the AES processor embedded into 
the FPGA fabric. 

The reduced size of data frames compressed allows that a 
lower load can be transmitted on the communication 
network; In addition, it allows to fully recover the original 
information of the vital sign signals in the central monitoring 
station, facilitating detailed analysis of ECG signals for the 
physician. 

AES processor was designed to work with a 256-bit key, and 
their input and output interfaces were adapted to work with 
Altera's Avalon bus, such that the AES processor can 
communicate with the NIOS II processor or the ARM processor. 
In order to integrate the designed AES processor into the TLS 
protocol, the cryptographic routines for the AES symmetric key 
standard of the WolfSSL library were modified. In the section of 
results, it is presented that the performance of the SSL/TLS 
protocol was increased due to the acceleration of the encryption 
process using the AES processor. In this case, the hardware 
accelerator improves the speed of data transmission of the 
SSL/TLS connections, which are highly dependent on the 
performance of the cryptographic function.  

From the results obtained, we can conclude that the 
designed microsystem is suitable for platforms and/or e-
health devices that use unsecured communication networks 
with limited bandwidth. 
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