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Abstract 
This work analyzes the problem of non-technical losses in a low-voltage electrical power distribution system with an artificial intelligence 
model. The problem focuses on the use of a backpropagation multilayer perceptron neural network, which will quantitatively determine 
these losses from the manipulation of the current profile and the voltage drop expressed as percentages of their nominal values. These two 
magnitudes considered, will allow obtaining from the identification of patterns with large variations a technical assessment or quantification 
to approach the analysis from a different perspective, differing in the methodological determination of non-technical losses currently 
considered as a percentage of total losses. The results obtained will allow to form a basis for the correct determination of the non-supplied 
energy, its influence on distribution costs and energy efficiency for the future insertion of distributed generation. 
 
Keywords: electrical distribution systems; total losses; added value of distribution; regulation; renewable energy; distributed micro-generation. 

 

 

Pérdidas no técnicas en un sistema de distribución eléctrica. La 

eficiencia energética como proceso continuo 
 

Resumen 
Este trabajo analiza la problemática de las pérdidas no técnicas en un sistema de distribución de energía eléctrica de baja tensión con un modelo de 
inteligencia artificial. El problema se centra en la utilización de una red neuronal perceptron multicapa backpropagation, que determinará cuantitativamente 
estas pérdidas a partir de la manipulación del perfil de corrientes y la caída de tensión expresadas como porcentajes de sus valores nominales. Estas dos 
magnitudes consideradas, permitirán obtener a partir de la identificación de patrones con grandes variaciones una valoración técnica o cuantificación para 
abordar el análisis desde una óptica distinta, diferenciándose en la determinación metodológica de las pérdidas no técnicas actualmente considerada como 
un porcentaje de las pérdidas totales. Los resultados obtenidos permitirán conformar una base para la determinación correcta de la energía no suministrada; 
su influencia en los costos de distribución y la eficiencia energética para la inserción futura de generación distribuida.  
 
Palabras clave: sistemas eléctricos de distribución; pérdidas no técnicas; pérdidas totales; valor agregado de distribución; regulación; 
energías renovables; micro-generación distribuida. 

 

 
 

1. Introduction 
 
Total losses are made up of two components; a 

component called Technical Losses (TechL) and another 
called Non-Technical Losses (NTechL). The legislative 
reform applied to the electricity industry in all its voltage 
levels, allowed the creation of different segments considered 
as business units, each one with its market characteristics and 
therefore with its own fundamentals in determining costs. In 
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the field of the distribution segment, the Argentine regulatory 
standards introduced the concept of service quality based on 
a series of reliability indices, where the most important and 
descriptive parameter is the continuity of the electricity 
supply, leaving aside the considerations necessary to 
treatment the total losses. Of both components, the real 
difficulty arises in the determination of Non-Technical 
Losses (NTechL), due to the multiple factors that intervene 
within a general context that includes the economic, social 
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and regulatory conditions where the company develops its 
activities, in addition to an abstract methodology that does 
not address the requirement of a technical analysis; 
administrative and commercial. In the state of the art there 
are not many specific studies on these losses, currently 
approached with a linear approximation methodology, where 
the final result of this is included as a significant percentage 
of total losses and leaving aside numerous directly incident 
variables such as: economic situation of the population; 
economic-financial situation of the company; energy 
purchase price; regulatory regime; etc. This new theoretical 
aspect for the treatment of this issue applicable to the 
regulation, is supported by the few considerations to quantify 
this type of losses that generate a cost component that is not 
measured due to the absence of an analytical profile that 
affects the correct analysis. of the economic-financial 
situation of the electricity companies. Therefore, the 
following points are presented that describe in a simplified 
way the problem and the new proposal for the treatment of 
variables: 

The electricity market currently considers phenomena as 
linear, negatively influencing the parameters taken as a 
reference to set the quality of service. 

Technological progress requires a transformation in the 
sector, especially at the level of regulatory entities, where to 
adopt stochastic approaches due to the existence of variables 
that present a certain dispersion is a necessity. 

The use of a neural network to perform the calculation 
and determination of the error matrix during its training using 
the first derivation of the Widrow-Hoff rule of stochastic 
approximation would constitute a reference in the required 
transformation. 

This work proposes a structure organized into sections, 
where in the sections 2nd and 3th describe the structure of the 
distribution segment and the theoretical aspect of the tools 
currently used, in the 4th and 5th a stratification for the 
identification of the origin of non-technical losses is 
developed and the theoretical presentation of the neural 
network. Finally, in the 6nd and 7 the details of the 
calculations and the most relevant conclusions are presented 
respectively. 

 

2. Structure of the distribution segment. Natural 

monopolies 
 
The problem of the current context in the distribution 

segment is characterized by the regulation mechanism 
and the restrictions imposed by a regulatory entity, which 
defines the general guidelines based on different legal 
limitations applied to business units that operate under the 
name of natural monopolies. The obligation of these to 
comply with a certain quality of service in the supply, 
lead to omitting certain aspects that in the first instance 
should be dealt with technically and then adapt them to 
the regulatory context. A natural monopoly arises when a 
company can offer a good or provide a service at a lower 
cost than two or more in the same sector and there is also 
an economy of scale in the production interval. The cost 
taken as a parameter to create a natural monopoly [4] is 
the average total cost. 

 

Figure 1. Average Total Cost curve of a natural monopoly. 
Source: The author. 

 
 

A simple description of the situation, if two or more 
electricity distribution companies compete to provide 
service to a specific region, each one must build its own 
distribution network, generating higher total costs in the 
segment. Assuming that a single company is in charge of 
the construction of the electrical network, during its 
expansion process it must build more kilometers of lines 
for an increasing demand (Q), so the total cost is divided 
by an amount each time most users. In the same way as 
competitive companies [4], the relation between the total 
cost (fixed and variable) with respect to the demand, 
defines the average total cost, which one decreases as the 
number of users increases. The concept of average total 
cost is also applicable to natural monopolies, but with 
respect to competitive companies, its curve does not have 
the characteristic U aspect but rather the aspect shown in 
Fig. 1. 

Another concept considered is the demand and the 
response of both types of companies to it. Characteristic of 
competitive companies is that the price of the assets or 
service marketed is given, since in the market sector where 
they carry out their activities there are many that offer similar 
assets or services, that is, they have close substitutes. The 
before mentioned is the reason like the price curve is a 
horizontal line that coincides with the marginal income and 
with the average income, causing that the demand curve of a 
competitive company is perfectly elastic that contrasts with 
the homologous curve of the monopoly [3]. Although the 
monopolist can decide on the price of the service, he cannot 
fix the value what he would want, because an excessive 
increase in the price several users of the demand will not have 
access to the service. Despite that the amount of energy to be 
supplied will not decrease, many   users who in one or another 
way could be alter the normal conditions of the service, they 
will cause energy losses due to theft or fraud, becoming users 
out the system. This new segment has its own characteristics; 
there are several types of consumers; energy cannot be 
measured, therefore it is not correctly recorded, it also 
influences on the monopolist's demand curve and the market 
sector demand curve. 

The Fig. 2 shows the different combinations of cost and 
quantity demanded. 
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Figure 2. Demand curve of the Distribution Sector of a natural monopoly. 

Source: The author. 

 
 
Also we can see the negative slope of the demand which limits 

the ability of the monopolist to benefit from its power of market. 
 

3. Theoretical foundation. Main theoretical guidelines 

of the tools used 
 
In [4], the demand curve in the distribution segment 

establishes the supply-demand balance based on certain 
characteristics of the natural monopoly, defining an 
equilibrium considered ideal and without influences from 
externalities that lead to a deviation from the optimum 
proposed in the economic theory. These externalities of 
technical characteristics have their origin in the components 
of the electrical system and make up the energy losses that 
must be measured and it controlled to reduce damage to the 
environment. These losses are generally classified as: 
 Technical losses: occur due to physical causes like to 

the circulation of the electric current and the voltage in 
the networks. This combination is known as the Joule 
effect. 

 Non-technical losses: it refers to the effective energy 
supplied but not measured (EESNM) or not 
commercially registered. The causes that originate this 
EESNM and according to the objective of this work, can 
be subclassified as follows: 
- Losses due to theft: includes energy that is illegally 

appropriated from the networks by users through 
clandestine connections. They do not have 
measuring devices. 

- Losses due to fraud: corresponds to those users 
who manipulate the measuring devices so that they 
register consumption lower than the real one. 

- Losses due to administration: it refers to energy 
badly registered administratively by the company; 
due to measurement errors in the electrical 
connection of the users; incorrect registration due to 
meter obsolescence; incorrect measurement in 
public lighting installations. 

 

3.1 Current regulatory context and the influence of non-

technical losses on the main technical-economic 

parameters 
 
The current context from the legislative and normative 

point of view is developed through a regulatory mechanism.  

By that previous, it is created a specific sector where 
distribution companies (mostly natural monopolies) and 
organisms called regulatory entities are related, with a 
distinctive characteristic, each one has its own autonomy and 
legal conditions. 

The regulatory structure [8], is centralized at the National 
level through a organism called National Electricity 
Regulatory Entity (NERE), which has its representation in 
each province by organisms called Provincial Electricity 
Regulatory Entities (PERE). These entities allow each 
province has a contract (Concession Contract) where 
equitable values are agreed for both parties in terms of the 
energy purchase price; investment plan and its associated 
costs; total losses; taxes; all this included and weighted 
within of parameter called the quality of service 

Currently in distribution, the total electrical losses can be 
defined from an energy balance, as the difference between 
the energy input (purchase) and the energy output (sale) 
referred to the complete system. The numerical value 
obtained represents the total losses that includes both 
technical and non-technical losses, which formula is shown 
below: 

 �����ℎ� � �	
ℎ����ℎ� � �	
ℎ����ℎ� (1) 

 

Where TL: Total Losses. 

TechL: Technical Losses. 

NTechL: Non Technical Losses. 

 

Once the energy balance has been carried out, the non-

technical losses are determined as the difference between the 

total losses and the technical losses, both conveniently 

measured. Eq. (1), allows the distribution company to 

quantify non-technical losses as a percentage of total losses, 

generating an economic deficiency. The direct influence of 

the above on a parameter called Distribution Added Value 

(DAV), which analytically characterizes technical losses and 

approximately non-technical ones imply an incomplete 

treatment of the subject. 

The Distribution Added Value is made up of two 

components: 

1. The Own Distribution Cost (ODC) in this work, is 

developed “ceteris paribus” and as a function of the non-

technical losses associated with parameters considered 

traditional. 

2. The Commercial Costs (CC), present the particularity that 

due to their varied nature, they can reflect a different 

origin within the company, leading to incorrect 

imputations. In this article they are only mentioned 

leaving the development for future work. 

The following formula allows us to know the existence of 

two components of the costs affected by the total losses: 
 

�� � ��� � $��� � �� � $��� (2) 

 
The proposed methodology will weight the non-technical 

losses based on variables currently used to control the 
operation of the system; the current profile and the voltage 
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drop adapted to the use of artificial intelligence techniques, 
will allow the desired quantification. Its introduction in eq. 
(2) will allow to establish its influence on the quality of the 
service. 

 

4. Classification and identification of the origin of non-

technical losses 
 
As mentioned above, the application of the currently 

existing parameters will allow a systematic analysis of non-
technical losses. Due to the absence of variables that directly 
quantify them, a possible solution is to study percentage 
parameters that have a variation behavior in patterns or sets 
of values that allow them to be described. One of the 
parameters chosen is the percentage of voltage drop. The 
calculation procedure accepted by current regulations to 
determine it in three-phase systems uses the following 
equation: 

 ∆� � √3���
��∅ � ��	�∅���� (3) 

 
If the parameters of ohmic resistances or reactances are 

referred to in the distribution lines with respect to units of 
length, to take into account their influence on the voltage 
variation, eq. (3) can be expressed as: 

 ∆� � √3� ��
��∅ � ��	�∅���� (4) 

 
Where l: length in [Km]. 
R: resistence in [!/�#]. 
   X: reactance in [!/�#]. 
 
The voltage drop will depend on the construction of a 

current profile that it is a direct function of demand, therefore, 
a measurable parameter. If we can consider eq. (4) as a 
fraction of the nominal voltage, we get: 

 ∆�� � √3� ��
��∅ � ��	�∅�� $100 �%�  (5) 

 
By identifying current patterns with a neural network to 

calculate their magnitude using eq. (5), we can determine the 
percentage of voltage drop. The resulting dimensionless 
variable, expressed in% of the relationship between the 
voltage variation and its nominal value indirectly represents 
the non-technical losses (NTechL). 

 

 
Chart 1. Classification of non-technical losses 
Source: The author. 

The proposal is to classify NTechL into direct and 
indirect, where the first are intrinsic and specific to the 
company, so they are under the exclusive control of the 
organization, while the indirect ones are those analyzed 
because they have a negative influence distribution system. 
Therefore, its quantification is important to obtain a 
stochastic profile of a phenomenon that is difficult to identify 
and affects the company. 

Chart (1) summarizes the proposed classification for the 
control and quantification of NTecLs. The demand 
measurement allows to determine a current profile that it will 
applied to organize the percentage drop in voltage in defined 
patterns and classify them within limit values. Failure to 
comply with the imposed conditions causes a network 
review. 

 

4.1  Non-supplied energy measurement methods 
 
In [6] Economically Adapted Electric Distribution 

Systems (EAEDS) are described, in [7] the cost of Non-
Supplied Electric Energy (NSEE) based on rules is defined 
without methodological fundaments. However, for the 
purposes of this work, if an adaptation of the regulation 
mechanism applied to the electric power distribution segment 
is carried out [8], where the NSEE will be expressed in terms 
of the NTecLs, the result will be an inefficiency indicator in 
terms of quality service from a probabilistic sample, precise 
enough to identify deviations from the values considered as 
reference. With this function, the company will have a 
diagnosis of possible penalties, before to submitting annual 
reports to the regulatory organism. Therefore, it is necessary 
to use control methods that can be of two types: 
 Control at the point of supply. 
 Energy balance by zones. 

Despite the benefits of applying control at the point of 
supply, the effectiveness of the procedure can be optimized 
by applying Energy balance by zones. 

 

4.2  Description of the energy balance method 
 
The use of energy recorders to carry out the input-output 

balance at one point, will allows obtaining the current profile 
from the energy difference. 

The use of energy recorders, preferably profilers, will 
allow from an energy input-output balance at a point, to 
obtain the current profile by calculating the net energy. The 
advantage of the Balance of Energy method over the control 
method at the point of supply is that the profile of the energy 
consumed in the sector is obtained at regular time intervals in 
a simpler way. In this way, the characteristics of the sector 
will be known from the record of maximum demand, a 
parameter that in addition to detecting energy losses 
(although they would not be significant in quantity), would 
allow the determination of excessive levels in the power 
contracted by users by inspection. 

The method is applied at different levels of the network: 
a) From the transformer or low voltage distribution center. 
b) In a section or sector of the distribution network. 
c) At the point of supply. 
d) Next to the user's meter. 
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Figure 3. Profiler / totalizer installed in the transformer. 

Source: The autor. 

 
 
This work will only use the first two modalities, stating 

that the obtaining and selection of patterns carried out by the 
neural network will arise from the correction or update of the 
error matrix in each iteration. These are described below. 

 

a. Energy balance from the transformer 
 
This energy balance method is characterized by its 

simplicity of application; it consists of installing a recorder 
energy on each low voltage output of the power transformer 
as shown in Fig. 3 or on small power boards. During a few 
days or weeks, the total energy is recorded and compared 
with the energy pattern obtained by a neural network installed 
at a specific point in the sector. By comparing between the 
energy accumulated in the users' meter devices and to the 
energy billed, the method allows the detection of the 
magnitude of energy loss in the area 

 

b. Energy balance in a sector of the distribution network 
 
In areas with high demand there is more than one low 

voltage distribution center, therefore the energy balance 
should be carried out by sections delimited in switching 
points or "network division". Successful measurement will 
require the use of two measurement equipment capable of 
recording energy in both directions (“in” or “out” flow 
measurement), as shown in Fig. 4. 

During the registration period (for example: 1 month), 
contingencies may occur in the network that force to modify 
the usual configuration (transitory state of the network during 
the duration of the contingency called altered configuration), 
producing a change in the direction of the Flow in the 
network. The recorder (profiler / totalizer) will detect the 
direction of the energy flow and indicate how much energy 
was counted in each direction, allowing the amount actually 
consumed in the area to be determined. With this technique, 
a multiple comparison alternative is available, the registered 

 

 
Figure  4. Two profilers / totalizers installed on a network section. 

Source: The autor. 

energy is compared with the sum of the readings in the energy 
meters, data processed by the neural network. 

 

5. Description of the neural network. 
 
The differential treatment of the topic related to NTechLs 

is found in the calculation and determination of the error 
matrix that depends on the operation of a neural network 
(NN). According to bibliographies consulted in the 
references, it was concluded that there is no method that 
allows determining the optimal number of hidden neurons to 
solve a specific problem, so most of the simulations are 
determined by trial and error, reason by which the use of the 
first derivation of the Widrow-Hoff rule of stochastic 
approximation is proposed. In reference [3], this concept is 
developed, mentioning to the author that the stochastic 
approach is used to solve non-linear problems whose 
variables present some dispersion, this constitutes another 
distinctive element in a sector that actually considers linear 
phenomena. In order not to extend into theoretical 
developments, the neural network concept is based on [1], 
using a multilayer perceptron neural network (MLP) obtained 
from adding hidden layers to the simple perceptron. This 
architecture is usually trained with the algorithm called error 
backpropagation or BP or by making use of some of its 
variants. The set of MLP architecture + BP learning is often 
called a backpropagation (BP) network.  

The neural network programmed with the MATLAB 
software does not use the code included by default in the 
program, it is a .m code created to process the necessary data 
and has the appearance shown in Fig. 5. 

 

5.1  Choise of the criterion 
 
Without despice the concept of error and at the same time 

reducing the dispersion of the variables in the simulation 
results, it was decided that the NN works under the criterion 
of the first derivation of the Widrow-Hoff rule of stochastic 
approximation whose theoretical development in [2] allows 
to arrive at the error formula given below and used by the 
algorithm: 

 

 
Figure 5. Backpropagation network or backpropagation (BP).  

Source: The author 
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W*+�t � 1� � W*+�t� − ./t01 − y013x51  (6) 

 
Where W*+�t � 1� is the update matrix of synaptic 

weights; W*+�t� is the matrix of synaptic weight obtained in 
the previous iteration; . is the learning rate of the network; t01 is the vector representing desired output for the i-th neuron 
in the output layer according to the patterns presented in the 
input; y01 is the vector representing the output obtained in the 
i-th neuron of the output layer according to the patterns 
presented in the input; x51  is the vector representing the input 
of the patterns in the jth neuron of the input layer. 

 

5.2 Learning process 
 
The NN learning process has the classic characteristics of 

the methodology proposed by the consulted bibliographies 
and the randomness in the input patterns that the trainable 
device must deal with according to the following steps: 
1. Network weights and thresholds are randomly initialized 

with values around zero. The stochastic approximation 
method used is modified so that the threshold values are 
an additional weight, with a constant value equal to -1, 
thus simplifying the process of updating the synaptic 
weights. 

2. Presentation of the input patterns of the set of variables 
to be analyzed, weighting them and propagation towards 
the output of the network as follows:  

 
a) Activation of the input neurons of the input layer 

 x51 � input;    a0́ � activating the input layer 
So a5́ � x51  for j=1; 2;…..;n that is to say: x�j� � $�1�; $�2�; … … $��� 
 
b) Activation of hidden layer neurons C �a0G�. 

 

a0G � H�I W*+GJKLMNO

+PK a5GJK � u0G� 

  for i=1; 2;…..;nC y C=2; 3;….;C-1 
 
threshold values Q*R  are considered as an additional 

weight as follows: associating the j-th element equal to zero 
with the threshold function with a value equal to -1, that is 
for j=0; W*S � x0  y xS � −1, the formula reduces to 

 

a0G � H TI W*+G
LM

+PS a5GU � W*V ∗ a*S 

 
1. When the data passes through the hidden layer, the 

output layer is activated where the propagation from 
input to output is done in two parts; first using the 
stochastic gradient descent or forward propagation 
technique; then back propagation updating synaptic 
weights and polarizing them 
 

y* � a0G � H X∑ W*+GLM+PS a5GZ for j=1; 2;…..;nc 

 
1. Once the output is obtained, the mean square error 

committed by the network for pattern n is evaluated 
using the following equation: 

 

	��� � 1�R I�[*��� −L\

*PS ]*����^  
for a reference output    [*��� � X[K���, … [L\���Z 

output obtained      ]*��� � X]K���, … ]L\���Z 

 

1. The first derivation of the Widrow-Hoff rule of stochastic 

approximation is applied 

 W*+�t � 1� � W*+�t� − ./t01 − y013x51 

 
For modify the weights and thresholds of the network. 

2. Steps 2, 3 and 4 are repeated for all training patterns 
completing a learning cycle. 

3. The total error E or error made by the network, is also 
known as the training error is evaluated with the 
equation: 
 

e � 1f I 	���g
*PS   

 
Where E is calculated using the training patterns. 

4. Steps 2; 3; 4; 5; 6 and 7 are repeated until reaching a 
minimum in the training error after m learning cycles. 
For the case analyzed, a value of m = 100 was 
considered. 

 

5.3 Input patterns 
 
The neural network (NN) applied in a part of an electrical 

distribution system receives the energy reading from the 
network, from that information it calculates the following 
patterns that must be processed simultaneously. 
- Percentage inputs current. 
- Percentage drop in voltage. 
- Percentage losses due to transformation. 

These patterns are different magnitudes, with different 
units but its influence the system is the same, which is why 
each one is weighted to be able to train the NN and achieve 
their optimization. With these results, an analysis of the load 
center of the distribution circuit is carried out, which will 
once again allow the NN to process the updated information 
to obtain optimization in the second instance. 

 

6. Non-technical losses calculations. Presentation of the 

context 
 
The closed low voltage system or mesh configuration 

used for the analysis; simulation and optimization of non-
technical losses, has a nominal voltage of 0.4 KV and is made 
up of two Control Areas. We will call Control Area 1 the  
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Figure 6. Low voltage equivalent network. 

Source: The author. 

 
 

circuit whose energy comes from transformer 1 with nominal 
power of 250 KVA, analogously, Control Area 2 is the circuit 
energized from transformer 2 whose nominal power is 400 
KVA. These areas are connected to different medium voltage 
lines with a nominal voltage of 13.2 KV. The simplification 
of the study is achieved with an equivalent circuit shown in 
Fig. 6, formed by both transformers and substituting the 
distributed demand for an effective concentrated demand. 
The system can operate from both areas through two low 
voltage power disconnectors 1 and 2. 

The proposed configuration is predominant in the study 
area (Concepción del Uruguay, Entre Ríos Province), it is the 
one selected because it allows isolating faults; restore power 
flow within minutes by reducing NSEE due to random 
events; a decrease in the frequency of cuts is achieved. In case 
of maintenance work, transient parallels can be carried out, 
for which it is important that the sequence of phases and the 
direction of the currents are the same in both sectors. 
Controlling these parameters that define the quality of 
service, penalties are also minimized. Therefore, points 1 and 
2 are critical and must be under strict observation free of 
errors.The analysis of the numerous data difficult to control 
given the nature of electrical energy, whose instantaneous 
supply according to demand requires a continuous control in 
real time, leads to the purpose of an instantaneous 
verification if the supplied energy program is respected and 
taking immediately take the necessary actions to correct 
deviations that arise (increase or decrease in demand), always 
seeking to minimize operating costs and maximize supply 
reliability. The application of neural networks that control the 
state variables in points 1 and 2; considering the distributed 
demand in the sector compensated by phase and then 
reducing it to a concentrated demand at points determined by 
the voltage drop parameter, it will allow the system to be 
reconfigured in a theoretical and practical way to achieve 
energy efficiency. 

 

6.1  First calculations 
 
The demand values are obtained by two energy recorder 

connected as in Fig. 4. Initially, the NN calculates the 
nominal current of the transformer whose power is known: 

 

� � h√3i �� (7) 

 
The distributed demand in the sectors and for the 

purposes of this work called Effective Demand of the Sector 
(DES in spanish) is structured in a matrix form. 

 

DES �
⎣⎢
⎢⎡ p	�KK      p	�K^   p	�Kq … p	�Kg p	�^K⋮ p	�gK    p	�^^⋮ p	�g^  

  p	�^q …  p	�gq
…  p	�^g⋮p	� gg⎦⎥

⎥⎤ (8) 

 
Eq. (8) Generalized as follows 
 DES � vp	�*+w (9) 

where y i − th segment or distribution circuitj − th user of the segment or distribution circuit
 
The parameter p	�*+  represents the effective unit demand 

of the user measured in [kWh] whose geographic location is 
determined by coordinates in degrees; minutes and seconds 
of latitude |�º ´ ´´ � and longitude λ �º ´ ´´ �; it also contains 
real information on the harmonics of the network where the 
3rd and 5th are currently used to determine the Total 
Harmonic Distortion (THD). 

The distance from the users to the recorders related to the 
length of lines, originates the effective length (LE in spanih) 
and in matrix form: 

 

LE �
⎣⎢
⎢⎡  	KK       	K^    	Kq …  	Kg  	^K⋮  	gK     	^^⋮  	g^  

   	^q …   	gq
…   	^g⋮ 	 gg⎦⎥

⎥⎤ (10) 

 
Eq. (10) Generalized as follows: 
 LE � v 	*+w (11) 

  	*+  is the unit effective distance with units of [km], 
considered in this way to make it compatible with the 
electrical and magnetic parameters of R and X given in [Ω / 
km] and measured by coordinate differences converted to 
length. 

Multiplying the matrix from eq. 8 and its homonymous 
transpose from eq. 10 

 � � DES ∗ LEV  (12) 

 
Numerically � it is a quantity of energy per distance 

[kWh-km], This variable is created to discretize the energy 
demanded in the segments whose locations are punctual. This 
previous step will make it possible to obtain the concentrated 
demand, an important parameter and basis for sending 
patterns to the NN. 

For example, for segment 1: 
 

�K � pKK KK � pK^ K^ � pKq Kq � ⋯ pKg Kg � I p*+ *+ g
+PK  (13) 
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where i= 1; 2; 3;…N 
To determine the point of application of the load, we use 

eq. 5 and the definition of three-phase effective demand. If 
we adapt the demand equation so that it adjusts to the 
conditions imposed by the quality of the service: 

 � � � ∗ [ → � � √3i�
��∅ ∗ [ (14) 

 
From eq. 14, the magnitude U within what is imposed by 

the quality of service must be kept constant with a dispersion 
of±10%; 
��∅ ≈ 0,85 − 15%; √3 ≈ 1,73 due to the fact 
that by the disposition of the energy recorders the total energy 
measured is considered. Then, a parameter is defined that we 
will call χ or validation of the efficiency of the service, since 
a variation of the factors that integrate it outside the allowed 
dispersions will serve as a warning for the NN that will 
contemplate it within the pattern selection process. In 
equation form: 

 D � χ ∗ I    �15�   �ℎ	�	 χ � √3i
��∅ ∗ [     
 
In eq. 14, D is the state variable of the problem; χ is a non-

linear factor representative of the quality of the service and I 
is a control variable. 

Eq. 5 is algebraically adapted to the problem as follows: 
 ∆�� � √3� ��
��∅ � ��	�∅�� $100  
 
The parameters conditioned by current regulations can be 

modified according to criterion follow: 
 ∆�� � 100 ∗ √3 ∗ ��
��∅ � ��	�∅�i ∗ � ∗    
 
It can be simplified the equation as follows: 
 ∆VV � χK ∗ I ∗ l  �16� ; χK � 100√3��
��∅ � ��	�∅�i  

 
Eq. 16, is important because imposes a restriction 

criterion since ∆V V⁄  is a bounded state variable with 
tolerance≤ 3%; χK is another non-linear factor which 
represent quality of service and condition of lines; I is a 
control variable. Established the conditions and using eq. 6 
of point 5.1 

 W*+�t � 1� � W*+�t� − ./t01 − y013x51 

 
The distance or point of application of the concentrated 

load can be determined, based on the calculation of the error 
matrix of the voltage drop that is used at the beginning of the 
algorithm, where:  

 W*+�t � 1� � ∆VV ����K�  ]  W*+�t� � ∆VV ����  
 
where: [*� �  *+�  reference length. 

]*� � ]�*+�
 approximate length per iteration.  $+� � p��*+�
 unit effective energy demand. 

 
The α factor or learning factor, is modified considering 

within it the demand and total length of the lines, the 
information available from the energy loggers and the 
inspection of the system. So, the factor α = ς * 1 / δ is 
obtained, where ς comes from the function MATLAB rand 
that returns real numbers between 0 and 1 that are drawn from 
a uniform distribution and ς is obtained from eq. 12. 

The Widrow-Hoff rule of stochastic approximation 
modified for the determination of error matrix of the voltage 
drop is:   

 ∆VV �*+���K� � ∆VV �*+��� − . ∗ X *+� −  ]�*+� Z ∗ p��*+�
 (17) 

 

When 
∆�� �*+���K� ≤ 3%; where m =100 by previous 

mention in point 5.2, then from eq.17 ]�*+� � ��*+ is obtained 

as the location of the concentrated demand referred to 

distance from the transformer and whose value is quotient 

between eq. 13 and ��*+ .  

General equation 
 

 �*+ � ∑ p*+ *+g+PK ��*+� ���ℎ� (18) 

 
allows to obtain each one of the concentrated demands for 

the distribution sector under study. The neural network 
analyzes each input pattern or concentrated demand received; 
computes the actual currents and performs initial weighting 
in the traditional way, then uses the Widrow-Hoff rule of 
stochastic approximation to compute the error matrix. 

 E*+�t � 1� � E*+�t� − ./t01 − y013x51 (19) 

 

 Where E*+�t � 1� is the updated value of the error 

for each iteration; ��� is the input in [A] obtained from the 

service efficiency validation parameter χ  in eq.15 and  �*+ of 

eq. 18 x51 �  �*+ χ � ; y51 � 1 ∑  �*+ χ �g+PK� in  [1 / A] and t01 

referent output. 

For this example, the concentrated loads are applied at 

seven points in the system. In this way, the same amount 

of current values are obtained, the sum is compared with 

the nominal current of the transformer and in case of an 

excessive value, the device generates an alert 

automatically calculating approximate values of weighted 

currents in the first instance. The neural network analyzes 

each point of concentration of the demand. The users are 

actually distributed by sections and the trainable device 

proces them as simple input patterns. 

The Table 1 shows the results obtained in the simulation 

carried out by the trainable device with respect to the first set 

of patterns presented. 
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Table 1. 

Results obtained with the first set of patterns presented 

Load  

Concentrated 

demand 

[KWh] 

Concentrated 

electric 

current 

 [A] 

Weighted 

[%] 

Results 

obtained 

[A] 

1 
2 

3 

1025 
667 

457 

125,612 
81,740 

56,004 

26 
17 

12 

94,2487 
61,330 

42,021 

4 200 24,509 5 18,390 
5 565 69,240 14 51,951 

6 700 85,784 18 64,365 
7 315 38,602 8 28,964 

     

∑Itr1=  481,495  375,971 

% 

excess 
 33,277  21,915 

Source: The author. 

 
 

 
Figure 7. First iteration results. 

Source: The author 

 
 
The Table 1 shows the results obtained in the simulation 

carried out by the trainable device with respect to the first set 
of patterns presented. The results obtained show that at the 
beginning of the network study there is an excess load of 
33.27784%, reducing to 21.91578% in the first 
approximation. In Fig. 7 the bar and matrix diagrams 
constitute the first stochastic approximation of a non-linear 
situation. The current profile is a trend of all individual 
consumption patterns; it shows an unbalanced demand whose 
real aspect would be a discrete sequence. In the matrix 
diagram, the optimal value is difficult to identify due to the 
existence of peaks and valleys. Here is the efficiency 
contribution of a spectral analysis using the first derivation of 
the Widrow-Hoff rule of stochastic approximation and 
superiority with respect to a linear analysis 

 

6.2 Voltage drop optimization calculations 
 
For the case of voltage drops in areas of high load density 

such as the one proposed where there are more than one low 
voltage distribution center, eq. (17) will allow the 
identification of compromised areas.  Fig. 8 shows the result 
obtained by the NN as a function of the characteristics of the 
conductors.  

 

 
Figure 8. Identification of critical areas. 
Source: The author 

 
 
With all the before mentioned data, the trainable device 

adjusts to the voltage drop calculations in accordance with 
current regulations and detects the sections where the voltage 
drop percentage has high values, as shown in Table 2 

 
Table 2. 
Results obtained by the NN according to kind of conductors. 

Sector 

1 

P 

[KW] 

I  

[A] 

L 

[Km] 
Conductor 

Secti

on 

[m2] 

ΔU[%] 

AB 27,791 81,7 0.2 preensamblado 95 2,890 

BC 

CD 

19,041  

13,125 

56,03

8,6 

0.2 

0.3 

Unipolar 

unipolar 

50 

25 

2,279 

6,927 
CE 

Sector 

2 

23,541 69,2 0.35 unipolar 50 4,932 

BF 42,708 125,6 0.15 preensamblado 50 3,835 
FG 

GH 

8,3333 

29,166 

24,5 

85,7 

0.2 

0.15 

Preensamblado 

preensamblado   

35 

35 

2,173 

5,705 

Source: The author 

 
 
how a statistical complement, in Fig. 9 the voltage drop 

profile is detailed. 
 

 
Figure 9. Voltage drop profile.  
Source: The author. 

 
 

6.3 Comparison of currents vs voltage drop 
 
Once the magnitudes were calculated and the profile 

established, the NN compares both using the Kolmogorov-
Smirnov test (not developed in this work) to establish the 
association between the results and the geographical location  
 



Pérez & Schweickardt / Revista DYNA, 88(219), pp. 218-227, October - December, 2021. 

227 

 
Figure 10. Discrete and quantized sequence of currents. 

Source: The author. 

 
 

where the percentage values out-of-norm detected. For the 
example, the bar chart in Fig. 9 shows that the CD segment 
has a high value. From Table 1, this segment corresponds to 
the current values I5 and I7 produced by the concentrated 
demands of 565 KWh and 315 KWh respectively. In reality, 
the CD segment is made up of a total of 41 users who have 
been identified by phase and distributed consumptions. 

The bar chart in Fig. 7 contains the profile of currents 
calculated from the concentrated loads, which are associated with 
a discrete sequence of consumption per user shown in Fig. 10.  

From the observation of both graphs it can be inferred that 

from the selection of patterns, there are three maximum 

values of 8 A approximately that exceed the contracted power 

values and other values that oscillate between 5 A and 6 A. 

In this way, a limited interval is established 
min m max

I
edio

I I   

where the mean value considered by the Neural Network for 

the selection of patterns is approximately 6.5 A.  From the 

before mentioned interval, the values 5 A are selectable; 6 A 

and 8A as potential candidates to detect the possible 

alteration of the supply points, which is verified by 

comparing with the percentage drop in voltage in the DC 

section, which amounts to a value of 6.92% at the point where 

the system is installed. Trainable device and normally open 

low voltage load-breaker. 
 

7. Conclusions 
 
This work in principle exposes the inexistence of an 

adequate methodology to quantify non-technical losses 
(NTechL) of an electric service company. In line with current 
legislation that considers companies as natural monopolies, 
they are regulated by regulatory mechanisms, which lead to 
generalizations regarding the determination of important 
parameters that influence the operation; expansion and costs 
of organizations. There is no doubt that non-technical losses 
treated incorrectly from the technical point of view, would 
impact the legislative, possibly resulting in a normative 
transformation, which would generate a drastic change of 
paradigm with the consequent increase in associated costs, 
which without proper identification would directly affect the 

quality and price of the service. The proposal of the use of 
artificial intelligence to carry out a parameterization of non-
technical losses using a neural network, which selects 
patterns of currents and voltage drop; compares them and 
considers them as possible candidates to represent some type 
of alteration when they oscillate within a range calculated and 
determined by the device, it allows the specific quantification 
of these losses, so within the current context the contribution 
of this tool is to provide precision within the limits imposed 
by regulations constituting a modern shape; different from 
analyzing and simulating data, incorporating into its 
operation the biases due to non-linearity, such as the 
parameter, which is increasingly influential in the electricity 
service and that if not properly considered would affect 
efficiency in the short and medium term of the cost structure 
of electric power distribution systems. 
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