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Abstract 
Underground excavations are among the most complex engineering works in existence, as they have many variables involved, from the 
working environment to the methods and equipment adopted for excavation. Historically, preliminary excavation projects have been 
developed based on empirical methods and qualitative or semi-quantitative classifications of rock mass. Given insufficient information 
regarding rock mass properties, due to technical limitations related to soundings and their interpretations, there is—from conceptual studies 
and project executions—great variability in the decisions to be made. Wrong decisions regarding the excavation method, support type, and 
projections of advances can be highly costly to the enterprise, leading to unplanned or unnecessary expenses and/or risks to human lives. 
Thus, this study proposes the use of quantitative Risk Analysis by Monte Carlo Simulations to determine the most likely support class to 
be applied in an underground excavation project. 
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Análisis de riesgo por simulación de Monte Carlo en proyectos de 
excavación subterránea en roca 

 
Resumen 
Las excavaciones subterráneas se encuentran entre las obras de ingeniería más complejas que existen, ya que involucran muchas variables, 
desde el entorno de trabajo hasta los métodos y equipos adoptados para la excavación. Históricamente, los proyectos preliminares de 
excavación se han desarrollado con base en métodos empíricos y clasificaciones cualitativas o semicuantitativas de macizos rocosos. Dada 
la información insuficiente sobre las propiedades del macizo rocoso, debido a las limitaciones técnicas relacionadas con los sondeos y sus 
interpretaciones, existe, desde los estudios conceptuales y la ejecución de un proyecto, una gran variabilidad en las decisiones a tomar. Las 
decisiones incorrectas con respecto al método de excavación, el tipo de soporte y los estimados de avances pueden resultar muy costosos 
para la empresa, lo que genera gastos y/o riesgos para las vidas humanas no planificados o innecesarios. Por lo tanto, este estudio propone 
el uso de Análisis de Riesgo cuantitativo por Simulaciones de Monte Carlo para determinar la clase de soporte más probable que se aplicará 
en un proyecto de excavación subterránea. 
 
Palabras clave: soporte; mineria, túnel, diseño conceptual. 

 
 
 

1. Introduction 
 
Exploration of the underground environment has great 

importance to society, whether for mining, space optimization 
in large cities or for travel distance reduction. The use of 
underground space has several advantages because of its 
multiple applications. However, exploration of underground 
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spaces is complex, given the large number of variables involved 
in the projects and the uncertainties in their estimates [1]. 
Unlike other studies on underground excavations, in most cases 
the environment is the main constructive element, naturally 
with great uncertainty as to the quality of rock masses. These 
rock masses can present variations in physical and structural 
properties, making previous geotechnical characterization 
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extremely important for the development of excavation 
projects. Thus, consistent rock mass classification has been 
developed, such as Bieniawski's [2] RMR classifications; Q-
system by Barton et al. [3], and GSI (Geological Strength 
Index) by Hoek [4], and consequently, several studies 
associating physical properties of rock masses and ground 
support quantification to their classifications [5]. 

Several studies have addressed the subject of risk analysis 
in underground excavations, especially regarding the 
uncertainty of the behavior of the surrounding excavation and 
its geotechnical properties; such as the studies by Charbel [6], 
Momeni et al. [7], Fattahi et al. [8], and Lu et al. [9], who use 
Monte Carlo Simulation to assess the influence of the 
variability of input parameters on the output result of a model. 

Unpredictable variations in the properties of rock mass 
can mean great economic losses regarding the execution of 
excavations, as they cause the need to change the adopted 
support, delay development and can even collapse the 
excavation. According to Vargas et al. [10], both for the 
development of underground mining and civil excavations, 
the difficulties in forecasting productivity times of the unitary 
operations (drilling, blasting, hauling, and support) are highly 
costly. Each operation tends to present a certain distribution 
of occurrence probability. 

This study aims to present the applicability of Monte 
Carlo Simulation Risk Analysis for the elaboration and 
analysis of conceptual excavation projects, using empirical 
models based on geomechanical classifications. The 
variability of a conceptual project was checked against the 
occurrence probabilities of input parameters for 
geomechanical classifications of rock mass. For this 
purpose, a standard type of excavation in a rock mass was 
considered, and an attempt was made to assess the impact 
of variations on input parameters in the estimation of 
design parameters. 

 
2. Material and methods  

 
2.1 Empirical modeling 

 
Rock masses are discontinuous masses that present 

spatial anisotropy, being constituted by different rocks of 
different composition and mechanical properties. They can 
present different degrees and qualities of fractures, given 
their environment and geological history. Due to the 
complexity of working with realistic analytical models, in 
which all variables are included, historical problems of 
underground excavations have been solved with empirical 
models supported by the classification of rock mass, with 
great representation of the subdivision of classes for the type 
of reinforcement (use of mesh, rockbolts, shotcrete, etc.), 
since the diffusion of the New Austrian Tunnelling Method 
(NATM) [11]. A preliminary classification, usually in 
possession of data provided by drilling surveys and other 
methods of sampling and geotechnical characterization, 
allows the definition of the qualitative class of rock mass and 
definition of support types needed. As the excavation is 
carried out, with increased reliability of the information from 
the underground characterization, the class predicted should 
be revised and the appropriate support performed (Fig. 1).  

 
Figure 1. Support class classification example 
Source: Stille and Palmström [13] 

 
 

Fig. 1 shows the representation of the challenges faced in the 
field, where in the course of the excavation, the class of the 
rock mass must be reviewed to indicate the most appropriate 
support type to be performed. 

Barton [12] proposed a diagram that indicates the choice 
and specification of support types of rock mass according to 
the classification by the Q-system. It uses the smallest 
excavation dimension (Excavation Span) or excavation 
height (the highest value among these) and the Excavation 
Support Ratio (ESR), a factor referring to the purpose of the 
excavation [3], which aims to consider the need for 
reliability, as previously mentioned. 

For other rock mass classifications, there are empirical, 
graphical, and numerical relationships relating the 
classification of the rock mass with geotechnical properties 
and design parameters, such as the studies by Bieniawski [2, 
14], Unal [15], Palmström [16,17], and Mark [18], among 
others. This practice is common in the field of rock 
mechanics [19]. 

 
2.2 Rock mass classifications  

 
2.2.1 Rock Mass Rating (RMR) 

 
The Rock Mass Rating (RMR) classification was 

developed by Bieniawski, between the years 1972 and 1973 
[2]. However, due to its wide applicability, it is a 
classification system with several updates and correlations, 
which incorporate new aspects of assessment and weighting 
to the system [20-22]. This system has its origins in the 
excavation of South African tunnels and mines, with its main 
applications in civil and mining excavations. Zingano [23] 
points out that the RMR classification has been applied to a 
wide range of problems in Rock Mechanics, such as 
excavations, slope stability, rock foundations, and mining in 
general. 

The RMR system uses five main parameters to classify 
rock mass, which are: a) Uniaxial Compression Strength 
(UCS) of the rock; b) RQD (Rock Quality Designation) [24]; 
c) Spacing between discontinuities; d) Quality of 
discontinuities; e) Presence of water in the rock mass. 

 
2.2.2 Q-System 

 
The Q-system or Q-Classification [3] proposes a quality 

index of rock masses called “Q”, ranging from 0.001 to 1000, 
based on six parameters, divided into different levels, 
combined according to the following expression: 

 
Q = (RDQ/Jn) . (Jr/Ja) . (Jw/SRF) (1) 
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Where Jn is the number of joints set, Jr is the number 
representing joint roughness, Ja is the number representing 
the joint alteration, Jw is the reduction factor due to joint 
water and SRF is the reduction factor due to excavation 
stress. 

 
2.2.3 Relationships between the RMR and Q-

Classifications 
 
Having been the subject of several studies and debates, in 

relation to the limits of application and applications to 
specific means, it is understood that in general the 
correlations between RMR and Q-Classification should be 
limited to use on a small scale, within the limits of an 
excavation work or geological environment. However, due to 
the large volume of articles devoted to this theme, a designer 
will have a wide range of correlations that are essentially very 
similar and perfectly applicable for preliminary design 
purposes. Below are some empirical correlations based on the 
observations of their authors: 

 
𝑅𝑅𝑅𝑅𝑅𝑅 = 9 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 + 44 
𝑅𝑅𝑅𝑅𝑅𝑅 = 15 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 50 

𝑅𝑅𝑅𝑅𝑅𝑅 = 5,9 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 + 43 
𝑅𝑅𝑅𝑅𝑅𝑅 = 5 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 + 60,8 

𝑅𝑅𝑅𝑅𝑅𝑅 = 10,5 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 + 41,8 
𝑅𝑅𝑅𝑅𝑅𝑅 = 5,4 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 + 55,2 

GSI = 9 * ln Q' + 44 

(2) [20] 
(3) [25] 
(4) [26] 
(5) [27] 
(6) [28] 
(7) [29] 
(8) [14] 

 
The equation with the highest correlation coefficient is 

that of Rutledge and Preston (eq. 4) [26], with 0.81. 
Naturally, studies tend to focus on the search for the 
correlation between RMR and Q-systems, due to their greater 
applicability to the branches of rock mechanics for 
excavations in both the open and underground. It should be 
noted that the systems have full application in surface 
projects, such as excavation and stabilization of rock slopes, 
in this case with emphasis on RMR and GSI, but without 
excluding the Q-system. However, it is for application to 
underground excavations that the correlations were 
developed and, based on this, more data on comparative 
studies between the Q and RMR systems exists for 
underground excavations. 

 
2.3 Risk analysis for excavation projects 

 
Risk analysis in underground works is highly 

recommended; from analysis by qualitative methods, 
analyzing generic risks to the project, as presented by Sturk 
et al. [1] and Domínguez et al. [30], as well as the use of 
methods such as risk matrix analysis. However, the 
applicability of probabilistic methods such as the Monte 
Carlo (Fig. 2), made possible by the computational capacity 
of processing and availability of robust databases of 
properties of interest, has been steering risk analyses towards 
the probabilistic field. Increasingly, non-managerial areas, 
such as engineering, have been using these tools, evolving 
the analysis of scenarios previously restricted to deterministic 
methodologies. 

 

 
Figure 2. Systematics of the Monte Carlo Method 
Source: Charbel [6] 

 
 
In geotechnical engineering and excavations, a trend is 

identified in the use of probabilistic methods to determine 
Safety Factors and deformation parameters. The studies by 
Fattahi et al.[8], Lu et al. [9], Panthi [31], among others, start 
from the probabilistic distribution models of the parameters 
of RQD, Jn, Jr, Ja and Jw, for the simulation of the probability 
of the occurrence of empirical models of physical properties 
of rock mass, considering the Q-system and empirical 
relationships associated with it. Other studies have focused 
on the analysis of uncertainty of RMR parameters, such as 
that by Sari et al. [32]. 

The uncertainty associated with the occurrence of these 
and other parameters can be remedied by exhaustive field and 
laboratory tests. Watanabe [33] and Panthi [31] present 
extensive literature on statistical modeling of the input 
indexes in the RMR and Q-classifications, respectively. 
There is a tendency for the Normal, Lognormal, and 
Triangular distributions of the indices, although it must be 
considered that they tend to vary according to the geology 
(type of rock and location) under study and its genesis 
process (igneous, sedimentary or metamorphic). In his study, 
Charbel [6] presents, for the UCS (Uniaxial Compressive 
Strength) parameter, Lognormal and Normal distributions, 
varying according to the geological layer assessed. Table 1 
presents a compilation of the distribution forms found by 
different authors for the Q-system and RMR parameters. It is 
noticeable that the largest number of studies on 
characterization and statistical analysis falls on the RQD, as 
highlighted by Zhang [5]. RQD is an extremely important 
parameter in the characterization of rock masses and can be 
related in isolation with other parameters related to the 
physical features of rock masses (such as modulus of 
elasticity and relationship between tensile strength of the 
rock mass and intact rock). 

Considering that one can assume probability distributions 
for the parameters that compose the geomechanical 
classifications of RMR and Q, these can be simulated using 
the Monte Carlo method. Although the number and quality 
of information regarding the rock mass increase the extent to 
which an excavation is carried out, causing the dynamic 
review of a project and leading to the need for changes in its  
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Table 1. 
Types of parameter distribution of Q and RMR systems 

Index Distribution Authors 

RQD Normal Panthi [31], Choi and Park [34], 
Watanable [33] 

Lognormal Redondo [35] 

UCS Normal Charbel [6] 
Lognormal Charbel [6] 

Jn 
Normal Panthi [31] 
Lognormal Panthi [31] 
Triangular Bedi [36] 

Ja 
Normal Panthi [31] 
Lognormal Panthi [31] 
Triangular Bedi [36] 

Jr 
Normal Panthi [31] 
Lognormal Panthi [31] 
Triangular Bedi [36] 

Jw Triangular Panthi [31] 
SRF Triangular Panthi [31] 
Roughness Normal Watanable [33] 
Spacing Normal Watanable [33] 

Source: Authors 
 
 

execution, the possibility of measuring the variability that a 
project may present is interesting for conceptual elaboration 
stages. In the case of geological environments, even with 
large ranges of data available, abrupt changes in the quality 
of the rock mass cannot be completely ruled out. 

For conceptual cases or pre-feasibility studies, where data 
sources are limited, due to the execution of few physical 
surveys, the quantitative risk analysis helps to measure the 
potential scenarios that could occur. It is possible to visualize 
the amount of support elements to be used, execution times 
and, consequently, the costs of carrying out an excavation, be 
it a road, tunnel or an underground mine access. Although 
this is a distribution of expected values, and such distribution 
presents reliability proportional to the reliability of the input 
data, having a wide range of expected values allows a more 
realistic analysis than that of deterministic projects. Another 
possibility is the assessment of gain by densifying the 
available information (surveys and tests) in view of a possible 
decrease in uncertainty regarding the execution of the work 
in the cycle times, type and quantities of support elements 
and planned advances, among others. In the case of 
underground excavations, whether for mining or civilian 
purposes, we are dealing with works of around millions to 
easily billions of dollars. 

 
3. Methodology  

 
Considering the available bibliographic data, it has been 

identified that calculation of RMR and Q-classifications 
allows the insertion of probability distributions of some of its 
input parameters. Once a probabilistic response was 
generated for the classifications of the rock mass (Q and 
RMR), it is possible to graphically determine the parameters 
of the project of interest, such as in the class of support and/or 
self-support time graphs (time before collapse) without 
reinforcement. Defining the design geometry, excavation 
height and width, through the support graph, it is possible to 
check, depending on the variation of the Q-classification of 
the rock mass, the support type to be adopted. The same  

  
Figure 3. Simulation applied to the Q-system and rock mass class 
Source: Authors 

 
 

Table 2. 
Values considered for the simulation 

In
de

x Distribution 
type Min. Max. Mean Expected 

value 
Std. 
dev. 

RQD Normal - - 76,4 - 26,6 
Jn Triangular 4 15 - 9 - 
Jr Triangular 1 3 - 1,5 - 
Ja Triangular 0,75 10 - 1 - 
Jw Triangular 0,33 1 - 0,8 - 
SRF Triangular 0,5 7,5 - 1 - 

Source: Authors 
 
 

method can also be used in defining the time necessary for 
the execution of the support or if it is intended to excavate 
prior to the execution of the support. 

Fig. 3 illustrates the simulation of the classification of the 
rock mass by the Q-system, which can be converted into a class 
distribution for the inference of other parameters of interest, 
such as class of support and financial cost, among others. 

To perform the simulation, the statistics of the initial 
parameters proposed by Lu et al. [9] were considered, as shown 
in the table above (Table 2). Regarding the excavation 
geometry, an excavation section geometry 10 (ten) meters high 
was fixed. The excavation rates of 3, 5 and 10 meters were 
assessed. Regarding the ESR, it was set at a value of 1.0 for civil 
road-rail use. The Jw index was translated as a continuous 
variable in order to generate the distribution values. 

Simultaneously with simulation of Q-values, simulations 
of rock mass classes and support classes were generated. To 
determine the self-support time, RMR values as a function of 
Q were inferred using eq. (2).  

 
4. Results and discussion 

 
4.1 Q-system and support classes 

 
Fig. 4 presents the histogram of simulated Q-values, 

based on the input parameters and their basic statistics. It is 
observed that simulated values ranged from 2.79 * 10-4 to 
49.96, presenting a distribution behavior of Lognormal type. 
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Figure 4. Histogram of the simulated Q-values. 
Source: Authors 

 
 

 
Figure 5. Simulation of mass classes according to Q-values 
Source: Authors 

 
 
There was a higher frequency of mass framing with Class 

5, corresponding to Class D, depending on the Q-value. 
However, there were also other classifications such as Class 
C and E. Regarding the simulated support classes, there was 
a greater distribution among classes 4 to 6, but more 
frequently for classes 4 and 5 (Fig. 5).  

Fig. 6 shows the distribution in support classes, which 
considers, in addition to the Q interval, the ESR value and the 
height of the excavation. 

 
4.2 Self-support time 

 
Considering the RMR self-support time graph and RMR 

values inferred from Q (eq. 2), the excavation self-support 
times, in hours, were simulated for excavation rates of 10, 5, 
and 3 meters. The automation of the calculation of the self-
support times for these advances was performed by adjusting 
exponential equations, in this case, those with the highest 
correlation, to the graph of self-support times. 

 
𝑡𝑡10 = 0,0007𝑒𝑒0,2224𝑅𝑅𝑅𝑅𝑅𝑅 (9) 

𝑡𝑡5 = 0,0013𝑒𝑒0,2343𝑅𝑅𝑅𝑅𝑅𝑅 (10) 

𝑡𝑡3 = 0,001𝑒𝑒0,2608𝑅𝑅𝑅𝑅𝑅𝑅 (11) 

 
Figure 6. Simulation of the support classes according to Q-values, height and 
ESR of excavation. 
Source: Authors 

 
 

 
Figure 7. Simulation for self-support time as a function of the RMR values 
inferred as a function of Q-values considered for a span of 10 meters. 
Source: Authors 

 
 
Figs. 7, 8, and 9 show the simulations of self-support 

times for excavation rates of 10, 5, and 3 meters, respectively. 
The simulated values start from time zero (referring to 
immediate collapse). There is an increase in the occurrence 
of scenarios with self-support time greater than 5 hours and 
an increase in averages of the simulations; with the decrease 
of the excavation span. The simulations indicate that if  
 

 
Figure 8. Simulation for self-support time as a function of the RMR values 
inferred as a function of Q-values considered for a span of 5 meters. 
Source: Authors 
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Figure 9. Simulation for self-support time as a function of RMR values 
inferred as a function of Q-values considered for a span of 3 meters. 
Source: Authors 

 
 

working with a 3-meter excavation rate, we are less likely to 
collapse in less than 5 hours, without carrying out support in the 
excavation. Such simulations are of great value for 
compatibility with the estimated times of operation cycles, with 
the time for cleaning the front and development of support. In 
this way, it is possible to identify situations with risk of 
collapse, when it is significant (project definition) the 
probability that the self-support time is less than the cycle time. 

 
5. Conclusion  

 
Risk Analysis methodology can be applied and tends to 

contribute a lot in the elaboration of conceptual projects of 
feasibility and pre-feasibility of underground excavations. 
Considering the nature of these design phases, with their data 
limitations, the use of design methodologies and empirical 
checks, such as in the example from this article, makes it 
relatively simple to apply variability to input data, as long as 
a minimal range of data is known and allows for adjustments 
of probability distributions. In other words, where surveys 
and geotechnical characterizations are carried out or where 
geological-geotechnical context of the study area is known in 
depth. Considering the range of studies aimed at 
characterization, statistical and probabilistic treatments of 
rock masses, the quantitative risk analysis in underground 
excavations is promising. 

Regarding the application example, the methodology was 
effective for the measurement of mass and support class 
scenarios. This measurement is practical in the sense of 
providing an estimate for scenarios to be found in the real 
case and their respective associated treatments, minimizing 
unforeseen expenses and production delays. About the 
measurement of costs from simulation, it was seen that this, 
if developed in relation to geomechanical class intervals (as 
shown in Table 2), becomes hardly representative, as in the 
example of this study, where the distribution would be 
truncated in two cost values. In this case, we would have 
costs related to Class A and B, from Table 2. We concluded 
that the best form of cost simulation would be with the use of 
equations that have the numerical value of the geomechanical 
class as input, avoiding a truncated distribution between two 
or three values. 

Monte Carlo Simulations have quality levels correlated to 
those of the input data. This corroborates for a more restricted 
application to the preliminary design phases, considering 
that, in the details and execution of design phases, it is 
expected that the reliability of drilling data and geological-
geotechnical modeling will allow the elaboration of a 
productive project and above all of a support system 
compatible with reality to be found in the field (using three-
dimensional models and numerical analysis, for example). 
However, the risk analysis methodology can continue to be 
used in parallel with Risk Management of the project. 
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