
  

 

 

 

 

© The author; licensee Universidad Nacional de Colombia.  
Revista DYNA, 89(224), pp. 28-33, October - December, 2022, ISSN 0012-7353 

DOI:  https://doi.org/10.15446/dyna.v89n224.103666 

Monitoring overdispersed process in clinical laboratories using 
control charts• 

 
José I. Valdés-Manuel a & Juan M. Cogollo-Flórez b 

 
a Tecnológico de Estudios Superiores de Jocotitlán, Jocotitlán, México. 2017150481112@tesjo.edu.mx 

b Instituto Tecnológico Metropolitano – ITM, Medellín, Colombia. juancogollo@itm.edu.co 
 

Received: July 13th, 2022. Received in revised form: August 24th, 2022. Accepted: September 9th, 2022 
 

Abstract 
Overdispersion is a phenomenon that generally occurs in the analysis of large sample sizes. In discrete data analysis, it refers to the presence 
of a variation higher than that implied by a reference Binomial or Poisson distributions. The proportion of nonconforming units in clinical 
laboratories presents high variability and, generally, overdispersion. Therefore, it is required to analyze the most appropriate control charts 
that overcome the limitations of traditional control charts to deal with overdispersed data. This paper performs an analysis of monitoring 
overdispersed process in clinical laboratories using control charts. The methodology consists of four steps: (i) Determination of the interest 
variable, (ii) Diagnosis of data overdispersion, (iii) Elaboration of control charts, and (iv) Analysis of results. The results show that the 
methodology can quantitatively determine the degree of data overdispersion and select the most appropriate control chart for monitoring 
the process. 
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Monitoreo de procesos sobredispersos en laboratorios clínicos 
usando cartas de control 

 
Resumen: 
La sobredispersión es un fenómeno que se produce generalmente en el análisis de muestras de gran tamaño. Se refiere, en el análisis de 
datos discretos, a la presencia de una variación superior a la que implica una distribución binomial o de Poisson de referencia. La proporción 
de unidades no conformes en los laboratorios clínicos presenta una alta variabilidad y, generalmente, sobredispersión. Por ello, se requiere 
analizar las cartas de control más adecuadas que superen las limitaciones de cartas tradicionales para tratar datos sobredispersos. En este 
trabajo se realiza un análisis del monitoreo de procesos sobredispersos en laboratorios clínicos usando cartas de control. La metodología 
consta de cuatro pasos: (i) Determinación de la variable de interés, (ii) Diagnóstico de la sobredispersión de los datos, (iii) Elaboración de 
cartas de control, y (iv) Análisis de los resultados. Los resultados muestran que la metodología permite determinar cuantitativamente el 
grado de sobredispersión de los datos y seleccionar el gráfico de control más adecuado para monitorear el proceso. 
 
Palabras clave: monitoreo de procesos clínicos; mejoramiento de cartas de control; análisis de datos sobredispersos; ingeniería estadística. 

 
 
 

1 Introduction 
 
Improving healthcare quality requires permanent 

monitoring of the processes performance and implementation 
of changes to benefit users. In this regard, data analysis 
approaches can be implemented, but this is not a simple 
matter from the process performance measurement in the 
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healthcare sector. Generally, it is required to meet some 
assumptions and conditions. One of the most relevant data 
characteristics in the health sector is the high variability in 
the results and the sample sizes [1]. 

Furthermore, the application of statistical quality control 
tools in the analysis of healthcare processes is not yet 
intensive due to the following aspects [2]: (i) There is 
resistance to accepting that an approach to improve the 
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quality of industrial processes can be applied to healthcare, 
(ii) Statistical quality control is missing from the most 
popular books on medical statistics, and, (iii) Statistical 
quality control faces fundamental assumptions about how to 
develop documented improvements in healthcare. 

However, quality control generates application interest in 
medicine and healthcare. For this, the traditional concepts of 
quality control of industrial processes have been adapted and 
transformed to be useful in monitoring health processes [3]. 

According to [4], control charts are used widely in 
different sectors such as banks, hospitals, and financial 
services, among others. Control charts can be applied in the 
healthcare sector to improve outpatient care, operating room 
efficiency, and also to reduce unnecessary costs and length 
of stay. They can also contribute to the need to monitor and 
control healthcare performance and minimize adverse events 
[5]. 

Additionally, control charts can help stakeholders 
manage change in healthcare and improve patient health [6]. 
Control charts allow locating and identifying the root cause 
of process variability to eradicate or control it [7]. The causes 
of variability can be classified into common and special 
causes. 

Common or random causes are inherent to the process 
characteristics and eliminating or reducing them depends on 
modifying the system. Special or assignable causes are due 
to situations outside the process, that is, external factors that 
can be identified and eliminated [8]. 

The main objective of control charts is to monitor and 
analyze the variability behavior of a process over time [9]. 
Depending on the type of data, control charts can be 
classified into two main groups: control charts for variables 
(continuous data) and control charts for attributes (discrete 
data) [10]. This paper focuses on the control charts for 
attributes, specifically on the p or defective ratio control 
chart. 

The elaboration of a p-chart is based on the fulfillment of 
several assumptions. First, the data are assumed to have a 
binomial distribution with independent events having a 
constant underlying probability of occurrence. In addition, 
the mean defective proportion must be constant over time, 
implying that it should not vary between subgroups [11]. 

Overdispersed data occur when there is excessive 
variability within or between subgroups. Overdispersion 
makes it difficult to monitor processes with traditional p-
charts since some subgroups are likely to be out of control 
when they are not (type 1 error). Overdispersed data do not 
satisfy the constant defectives proportion assumption and are 
characteristic of processes with large sample sizes. 

Monitoring of overdispersed data requires a control chart 
that considers variation within and between subgroups. Thus, 
it is possible to differentiate between common and special 
causes of variation [12]. For example, an analysis of data on 
survival after coronary artery bypass grafts, emergency 
readmission rates, and teenage pregnancies is made in [13]. 
It is established that the treatment of overdispersed data leads 
to the conclusion that these processes are not under control 
using the traditional control chart approach.  

In [14], control charts are used to monitor infections and 
mortality in surgical facilities, concluding that when dealing 

with large sample sizes there could be dependence between 
results, and new statistical methods need to be applied. 
Traditional control charts have limitations for analyzing 
infrequent events [6]. 

Also, in [15], a study on the number of patients seen in 
the first four hours in accident and emergency departments 
was performed. It concludes that traditional control charts 
lose effectiveness when dealing with overdispersed data, and 
a combined charting strategy should be used. 

Although several previous academic works analyze the 
problem of overdispersed data in traditional control charts 
[16], the research gap on control chart applications suitable 
for this data characteristic remains considerable. Therefore, 
in this article, we analyze the monitoring of overdispersed 
processes in clinical laboratories and determine the most 
appropriate data analysis procedure and control charts. 

This work constitutes an academic contribution to the 
processes analysis under conditions closer to reality and 
promotes the use of appropriate statistical tools that allow the 
treatment of data that do not meet the assumptions of 
traditional control charts. 

 
2 Methodology 

 
The methodology includes four steps: (i) Determination 

of the interest variable, (ii) Diagnosis of data overdispersion, 
(iii) Elaboration of control charts, and (iv) Analysis of results. 

 
2.1 Determination of the interest variable 

 
The sample processing in clinical laboratories requires 

adequate sample collection for the following tests and 
avoiding false negatives and false positives in the results. 
When the sample does not meet the established requirements, 
it is discarded and becomes a defective product from the 
perspective of statistical quality control. 

Discarded samples generate waste of clinical laboratory 
resources and can cause user dissatisfaction because a new 
sampling is required. Therefore, it is essential to implement 
programs to monitor and control the sampling effectiveness 
to prevent errors in clinical tests and make decisions to 
improve the health service. 

The data of this article are from a clinical laboratory in 
Colombia, with continuous monitoring for one year. The 
interesting variable is the number of clinical samples 
discarded per week, with a total monitoring time of 50 weeks. 
Thus, the monitoring parameter (p) in the control charts is the 
proportion of samples discarded in each subgroup (week). 

 
2.2 Diagnosis of data overdispersion 

 
The diagnosis of process data overdispersion is 

performed using the Jones and Govindaraju [17] and 
Heimann [18] methods. 

Jones and Govindaraju [17] proposed a graphical method 
based on the variance ratio test (VRT), comparing the 
observed variation in a data sample and the expected 
variation of the corresponding binomial distribution. Let 𝑑𝑑𝑖𝑖 
be considered a number of nonconforming units in 𝑖𝑖 
subgroups of size 𝑛𝑛 that follow a binomial distribution with 



Valdés-Manuel & Cogollo-Flórez / Revista DYNA, 89(224), pp. 28-33, October - December, 2022. 

30 
 

parameter 𝑝𝑝 (proportion of the nonconforming units), then: 
 

𝑦𝑦𝑖𝑖 = sin−1 �(𝑑𝑑𝑖𝑖 + 3/8)/(𝑛𝑛𝑖𝑖 + 0.75) (1) 
 
follows a normal distribution with mean 𝑦𝑦�  and variance 

𝜎𝜎𝑦𝑦2: 
 

𝑦𝑦� = sin−1 ��̅�𝑝 (2) 
𝜎𝜎𝑦𝑦2 = 1/4𝑛𝑛 (3) 

 
where �̅�𝑝 is the average proportion of nonconforming units: 
 

�̅�𝑝 =  
∑ 𝑑𝑑𝑖𝑖𝑖𝑖=𝑚𝑚
𝑖𝑖=1

∑ 𝑛𝑛𝑖𝑖𝑖𝑖=𝑚𝑚
𝑖𝑖=1

  (4) 
 

 
The procedure of this method begins by transforming data 

using (1) and then constructing the normal probability plot of 
the transformed data and its fitting line. Subsequently, the 
actual variation of the process is estimated as the distance on 
the yi axis that intercepts with the scores +1 y -1 of Z in the 
fitting line. If the actual variation is greater than the expected 
variation, estimated as 1.5/√𝑛𝑛, it is concluded that the data 
are overdispersed and it is not possible to state that they 
follow a binomial distribution. 

On the other hand, Heimann [18] proposes a method 
based on decomposing the total variance and its 
representation as the sum of the sampling variance and the 
process variance. The sampling variance represents the 
difference between the estimate of the probability of 
producing nonconforming units (from the sample) and the 
actual value (from the process). The underlying process 
variance represents the variation in the probability of 
producing nonconforming units. 

Thus, the sampling variance 𝜎𝜎𝑆𝑆2 is determined by: 
 

𝜎𝜎𝑆𝑆2 =
�̅�𝑝(1 − �̅�𝑝)

𝑛𝑛  (5) 

 
Similarly, let 𝑝𝑝𝑖𝑖  be the proportion of nonconforming units 

for each subgroup 𝑖𝑖, with a total of 𝑚𝑚 subgroups, the total 
variance 𝜎𝜎𝑇𝑇2 is determined as follows: 

 

𝜎𝜎𝑇𝑇2 = �
(𝑝𝑝𝑖𝑖 − �̅�𝑝)2

𝑚𝑚 − 1

𝑚𝑚

𝑖𝑖=0

 (6) 

 
and the underlying process variance 𝜎𝜎𝑝𝑝2 results from: 
 

𝜎𝜎𝑝𝑝2 = 𝜎𝜎𝑇𝑇2 − 𝜎𝜎𝑆𝑆2 (7) 
 
Then, r is defined as the variance ratio, between the total 

variance and the sampling variance: 
 

𝑟𝑟 = 𝜎𝜎𝑇𝑇2/𝜎𝜎𝑆𝑆2 (8) 
 
If 𝑟𝑟 > 1.357, it is concluded that there is extra variability 

in the data, greater than a binomial distribution implies, and 
it is not appropriate to choose a p-chart for process 
monitoring and control. 

2.3 Elaboration of control charts 
 
Various control chart types are developed and compared 

in order to select the most suitable one for monitoring 
overdispersed processes in clinical laboratories. Therefore, 
we develop the p-chart with variable limits, normalized p-
chart (Z), moving range chart (X-MR), p´-chart of Laney, and 
the chart proposed by Goedhart and Woodall.  

The construction procedures of the first three control 
charts are not described in this article since they are widely 
known and extensively detailed in textbooks on statistical 
quality control [10] [19]. The construction procedures for the 
last two control charts are detailed below.  

 

2.3.1.  p´-chart of Laney 
 
This control chart considers both intra-sample and inter-

sample variation, with a multiplicative effect for calculating 
the control limits (CLs) [11]: 

 
𝐶𝐶𝐶𝐶𝐶𝐶 = �̅�𝑝 ± 3𝜎𝜎𝑧𝑧𝜎𝜎𝑝𝑝𝑖𝑖 (9) 

 
where 𝜎𝜎𝑧𝑧 is the inter-sample variation and 𝜎𝜎𝑝𝑝𝑖𝑖 is the intra-

sample variation: 
 

𝜎𝜎𝑧𝑧 =
𝑀𝑀𝑀𝑀�����

1.128 (10) 

𝜎𝜎𝑝𝑝𝑖𝑖 = �
�̅�𝑝(1 − �̅�𝑝)

𝑛𝑛𝑖𝑖
 (11) 

 
where 𝑛𝑛𝑖𝑖 is the variable sample size, �̅�𝑝 is the average 

proportion, and 𝑀𝑀𝑀𝑀����� is the average moving range of the z-
scores for each subgroup, 𝑧𝑧𝑖𝑖:  

 

𝑧𝑧𝑖𝑖 =
𝑝𝑝𝑖𝑖 − �̅�𝑝
𝜎𝜎𝑝𝑝𝑖𝑖

 (12) 

 
2.3.2. p-chart of Goedhart and Woodall  

 
In this control chart, the control limits (CLs) are 

calculated based on an adding ratio of the intra-sample and 
inter-sample variations, considering the average standard 
deviation of the proportion 𝜎𝜎�𝑝𝑝𝑖𝑖 [20]: 

 
𝐶𝐶𝐶𝐶𝐶𝐶 = �̅�𝑝 ± 3𝜎𝜎�𝑝𝑝𝑖𝑖 (13) 

𝜎𝜎�𝑝𝑝𝑖𝑖 = �𝜎𝜎�𝑝𝑝𝑖𝑖2  (14) 

𝜎𝜎�𝑝𝑝𝑖𝑖2 = 𝜎𝜎�𝑊𝑊,𝑖𝑖
2 + 𝜎𝜎�𝐵𝐵,𝑖𝑖

2 =
�̅�𝑝(1 − �̅�𝑝)

𝑛𝑛𝑖𝑖
+ 𝜎𝜎�𝑝𝑝2(1 −

1
𝑛𝑛𝑖𝑖

) (15) 

𝜎𝜎�𝑝𝑝2 =

1
𝑚𝑚∑ (�̅�𝑝2𝑖𝑖 − �̅�𝑝2𝑖𝑖−1)2𝑚𝑚/2

𝑖𝑖=1 − 1
𝑚𝑚∑ �̅�𝑝(1 − �̅�𝑝)

𝑛𝑛𝑖𝑖
𝑚𝑚
𝑖𝑖=1   

1 − 1
𝑚𝑚∑ 1

𝑛𝑛𝑖𝑖
𝑚𝑚
𝑖𝑖=1

 (16) 

 
where 𝜎𝜎�𝑊𝑊,𝑖𝑖

2  is the intra-sample variance, 𝜎𝜎�𝐵𝐵,𝑖𝑖
2  is the inter-

sample variance and 𝜎𝜎�𝑝𝑝2 is the mean variance of the 
proportions. 
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Table 1. 
Total samples and Nonconforming samples per week. 

Week Total 
samples 

Nonconforming 
Samples Week Total 

samples 
Nonconforming 

Samples 
1 1467 105 26 1591 34 
2 1789 68 27 1726 112 
3 1345 140 28 1279 25 
4 2347 217 29 2430 132 
5 1734 61 30 275 6 
6 2378 158 31 1784 96 
7 1893 80 32 2694 74 
8 2992 260 33 3583 101 
9 1935 81 34 6945 276 

10 1967 87 35 2895 184 
11 1524 98 36 7492 351 
12 2592 91 37 1764 155 
13 3890 254 38 3790 226 
14 1469 79 39 2578 101 
15 2693 67 40 3895 114 
16 2936 72 41 4895 415 
17 1798 66 42 2654 78 
18 2348 109 43 4569 62 
19 1633 67 44 2697 200 
20 1376 80 45 2589 143 
21 1234 88 46 2478 62 
22 1357 98 47 2737 49 
23 1594 158 48 1839 129 
24 3789 238 49 1426 84 
25 1598 135 50 1925 75 
   TOTAL 124208 6241 

Source: The authors. 
 
 
3 Results 

 
3.1 Data description of the interest variable 

 
Table 1 shows the data collected from monitoring the 

total number of samples collected and the number of samples 
discarded per week in the clinical laboratory under study. The 
average proportion of nonconforming units, �̅�𝑝, is equal to 
0.05. This relatively low value, regarding the standards set by 
the laboratory, could lead to preliminary inferences that the 
process has large sample sizes or a low number of 
nonconforming units per subgroup. 

Table 1 shows that both the sample sizes and the number 
of nonconforming units per subgroup have a high variation. 
However, the average sample variance is 0.00002559, a 
relatively low value. This requires a detailed analysis of the 
data dispersion, as detailed in the next step. 

 
3.2 Results of data overdispersion diagnosis 

 
Fig. 1 shows the normal probability plot of the data transformed 

by applying the Jones and Govindaraju method, described in section 
2.2. According to the results, the actual process variation is equal to 
0.1073 and the expected variation is equal to 0.0905. Since the actual 
variance is greater than the expected variance, it is possible to state 
that the process data are overdispersed. 

Moreover, applying the Heimann method, it is obtained that 
𝜎𝜎𝑆𝑆2 = 0.000026 and 𝜎𝜎𝑇𝑇2 = 0.000537. Therefore, the variance 
ratio r is equal to 20.65. Since r > 1.357, it can be stated that the data 
have a higher variation than expected for a binomial distribution. 

Finally, it is possible to state that the highest variation 
corresponds to the underlying process variation. Data 
overdispersion is identified in both diagnostic methods, 
therefore, it is not appropriate to choose a traditional p-chart 
for process monitoring and control.  

 
Figure 1. Normal plot of the transformed data. 
Source: The authors. 

 
 

3.3 Elaboration of control charts 
 
In order to compare performance and select the most 

appropriate control chart(s) for monitoring overdispersed 
processes in clinical laboratories, we developed the p-chart 
with variable limits (Fig. 2), the normalized p-chart (Fig. 3), 
X-MR chart (Fig. 4), p´-chart of Laney (Fig. 5) and the p-
chart of Goedhart and Woodall (Fig. 6). The control charts 
were made using Microsoft Excel©. 

 

 
Figure 2. p-chart with variable limits 
Source: The authors. 

 
 

 
Figure 3. Normalized p-chart (Z) 
Source: The authors. 
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Figure 4. X-MR chart 
Source: The authors. 

 
 

 
Figure 5. p´-chart of Laney. 
Source: The authors. 

 
 

 
Figure 6. p-Chart of Goedhart &Woodall 
Source: The authors. 

 
 

3.4 Analysis of results 
 
Traditional control charts have limitations for monitoring 

overdispersed data due to the assumptions required for their 
construction [21]. The p-chart with variable limits and the 
normalized p-chart assume a binomial distribution of the data 
and that the mean remains constant over time. 

The above two assumptions are not satisfied in 
overdispersed data. Therefore, many points fall outside the 
control limits, as shown in Figs. 2 and 3. Because of that, it 
is not appropriate to use either of these two control charts for 
monitoring overdispersed processes since the data 
assumptions are not satisfied, and type 1 errors may occur.  

According to [17], the acceptable solution for decades to 
monitor overdispersed data was the development of the X-
MR chart (Fig. 4). Although this control chart also assumes a 
binomial distribution of the data, it incorporates 
compensation for the inter-sample variation by considering 
the average moving range as a factor for calculating the 
control limits. However, it does not consider inter-sample 
variation and presents constant control limits. 

The  p'-chart of Laney (Fig. 5) and the p-chart of Goedhart 
and Woodall (Fig. 6) overcome the limitations of previous 
control charts and have variable control limits that adjust 
depending on inter-sample and intra-sample variation. As 
mentioned in section 2.3, the main difference between these 
two control charts lies in the effect of inter-sample and intra-
sample variations in calculating the control limits. While the 
p'-chart of Laney has a multiplicative approach, the p-chart 
of Goedhart and Woodall has an additive approach. 

The latter is shown in Fig. 7. The multiplicative effect of 
the variances causes higher variability in the width of the 
control limits in the Laney control chart. The maximum range 
of variation of the control limits, obtained as the difference 
between the extreme values of the control limits in each 
control chart, is higher in the p'-chart of Laney (0.255) than 
in the p-chart of Goedhart and Woodall (0.129). The p-chart 
of Goedhart and Woodall has control limits that do not 
overestimate the effect of variances and therefore have lower 
variability over time. 

Finally, Table 2 shows a comparative summary of the 
control charts analyzed based on the results of this work. The 
decision on the control chart adequate to monitor 
overdispersed processes depends on fulfilling two main 
conditions: (i) The control chart must be applicable without 
data distributional, and stability of the process mean 
assumptions, and (ii) The control chart must consider both 
intra-sample and inter-sample variances. 

Accordingly, it is appropriate to monitor overdispersed 
processes in clinical laboratories using the p'-chart of Laney 
or the p-chart of Goedhart and Woodall. The different effects 
of the variances in the two control charts should be 
considered in the selection. However, as mentioned by [15], 
determining which control chart is more appropriate requires 
more experimental than a theoretical review. 

 

 
Figure 7. p´-chart of Laney versus p-chart of Goedhart & Woodall. 
Source: The authors. 
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Table 2. 
Comparative overview of control charts for monitoring overdispersed 
processes.  

Control 
chart 

Applicable 
without data 
distributional 
assumptions? 

Consider both 
intra-sample and 

inter-sample 
variances? 

Adequate for 
overdispersed 

data 
monitoring? 

p-chart No No No 
Z-chart No No No 

X-MR chart No No No 
p´-Laney Yes Yes Yes 

p-Goedhart 
& Woodall Yes Yes Yes 

Source: The authors. 
 
 

4 Conclusions 
 
Monitoring the proportion of nonconforming units in clinical 

laboratories is important for quality assurance in patient service and 
proper process management. Process data in clinical laboratories 
present high variability because the number of samples taken varies 
over time since it depends on patient demand. Human intervention 
in sample collection and processing also increases the variability of 
the results. 

Excessive variability in clinical processes means that the data 
are overdispersed and do not fulfill the assumptions required for 
monitoring using traditional control charts. In these cases, using 
control charts can lead to erroneous conclusions about the process 
behavior. For this reason, it is necessary to develop comprehensive 
studies that consider the data characteristics for implementing 
quality control tools in the health sector. 

In this paper, we performed a comparative study of the 
application of different control charts for monitoring overdispersed 
processes in clinical laboratories. We also proposed a 
methodological scheme for adequate monitoring, focused on the 
diagnosis of data overdispersion through a graphical and an 
analytical method. 

The proposed methodological approach and the developed 
case study led to conclude that the main criterion for applying 
control charts in overdispersed processes is to consider both the 
inter-sample and intra-sample variations and their effect on the 
calculation of the control limits. 

This article is a product of ongoing research whose main 
objective is to improve statistical process management programs in 
the health sector. The following research stage will apply the 
methodology considering other attributes such as non-
conformities.  

It is also of interest to make applications in areas such as patient 
care in hospitals, monitoring of drug prescriptions, climatic or 
environmental phenomena, and, overall, processes where the 
sample size has a high variability between batches. 
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