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Abstract 
In this study, we determine the liquid limit (𝑊𝑙), plasticity index (PI), and plastic limit (𝑊𝑝) of several natural fine-grained soil samples 
with the help of machine-learning and statistical methods. This enables us to locate each soil type analysed in the Casagrande plasticity 
chart with a single measure in pressure-membrane extractors. These machine-learning models showed adjustments in the determination of 
the liquid limit for design purposes when compared with standardised methods. Similar adjustments were achieved in the determination of 
the plasticity index, whereas the plastic limit determinations were applicable for control works. Because the best techniques were based in 
Multiple Linear Regression and Support Vector Machines Regression, they provide explainable plasticity models. In this sense, 𝑊𝑙 =
(9.94 ± 4.2) + (2.25 ± 0.3) ∙ 𝑝𝐹4.2, PI = (−20.47 ± 5.6) + (1.48 ± 0.3) ∙ 𝑝𝐹4.2 + (0.21 ± 0.1) ∙ 𝐹, and 𝑊𝑝 = (23.32 ± 3.5) + (0.60 ± 0.2) ∙ 𝑝𝐹4.2 −
(0.13 ± 0.04) ∙ 𝐹. So that, we propose an alternative, automatic, multi-sample, and static method to address current issues on Atterberg limits 
determination with standardised tests.  
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Determinación automática de los límites de Atterberg con machine 

learning 
 

Resumen 
En este estudio, determinamos el límite líquido (𝑊𝑙), el índice de plasticidad (PI) y el límite plástico (𝑊𝑝) de suelos naturales finos con 
ayuda de machine-learning y métodos estadísticos. Ello permite localizarlos en la Carta de Plasticidad de Casagrande con una sola medida 
en extractores de presión-membrana. Los modelos de machine-learning mostraron ajustes en la determinación de 𝑊𝑙 apropiados para 
propósitos de diseño, comparados con métodos estandarizados. Ajustes similares se alcanzaron en la determinación de PI, mientras que las 
determinaciones de 𝑊𝑝 permiten ajustes apropiados para trabajos de control. Debido a que las técnicas más apropiadas se basaron en 
Regresión Lineal Múltiple y Máquinas de Soporte de Vectores, aportaron modelos de plasticidad explicables. En este sentido, 𝑊𝑙 =
(9.94 ± 4.2) + (2.25 ± 0.3) ∙ 𝑝𝐹4.2, 𝑃𝐼 = (−20.47 ± 5.6) + (1.48 ± 0.3) ∙ 𝑝𝐹4.2 + (0.21 ± 0.1) ∙ 𝐹 y 𝑊𝑝 = (23.32 ± 3.5) + (0.60 ± 0.2) ∙ 𝑝𝐹4.2 −
(0.13 ± 0.04) ∙ 𝐹. Por consiguiente, proponemos un método alternativo, automático, estático y multimuestra para enfrentar problemas 
frecuentes en la determinación de los Límites de Atterberg con ensayos normalizados. 
 
Palabras clave: machine learning; límites de Atterberg; extractor de presión membrana; determinación; suelo 

 

 

 

1 Introduction 
 
We know since the early works of Albert Atterberg (1846–

1916) and Arthur Casagrande (1902–1981) that the plasticity of 
fine-grained soils resembles a fundamental characteristic of them 
[1,2]. In this sense, the consistency of such soils varies with 
increasing moisture content from solid, semi-solid, plastic, and 
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liquid states, coined the arbitrary borders between them as the 
shrinkage limit, the plastic limit (𝑊𝑝), and the liquid limit (𝑊𝑙), 
respectively [3]. Moreover, the difference between 𝑊𝑙 and 𝑊𝑝 is 
named Plasticity Index (𝑃𝐼). Together with its granulometric 
analysis, the determination of the plasticity of the soil allows it to 
be classified according to international systems, such as the 
USCS [4] and the AASHTO [5,6], among other technical 
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applications in soil science. There are various laboratory methods 
for determining 𝑊𝑙, such as that of the Casagrande device [7] or 
through penetrometer tests [8], as well as a method for the 
determination of 𝑊𝑝  [7]. Nevertheless, it is unknown until date, a 
static, multisampling, and automatic test able to determine 
directly 𝑊𝑙, 𝑊𝑝, and 𝑃𝐼, with a single measure. In this sense, the 
method developed by [9] needs two measures, subjecting sieved 
samples to different suction pressures of −1,500 KPa (𝑝𝐹4.2) and 
−33 KPa (𝑝𝐹2.5) inside pressure-membrane extractors [10]. 

Regarding 𝑊𝑙 measurements, made with the percussion-
cup test method, [11] showed that they can vary depending 
on the technician using them, whether they are performed in 
different laboratories as well as the device used, or the 
material in which the cup hits. The correct calibration of the 
device, the cadence of hitting, and the used grooving tool also 
have an impact on this reproducibility [12]. Besides, greater 
reproducibility of the results was found in tests carried out 
with penetrometers [8]. Regarding the determination of 𝑊𝑝 
using the rolling test, [11] showed that its reproducibility is 
even lower than that obtained for 𝑊𝑙, which shows a 
subjective component in the measurements. Moreover, [13] 
stated that 𝑊𝑝 is a measure of soil brittleness. These authors 
also revealed that this behaviour depends on the continuity of 
water circulation into the soil rods, and therefore, cavitation 
occurs.  To follow up, 𝑃𝐼 is related to friction and 
permeability in fine-grained soils. In this regard, friction in 
soils decreases when 𝑃𝐼 increases whereas permeability 
exhibits contrary behaviour [14]. Next, based on the 
instructions of [15,16] to classify soils, become tacitly and 
qualitatively deduced that the ability of a soil to retain water 
increases with its plasticity through a characteristic called 
dilatency, performed by means of simple and well-known 
procedure. Besides, [17] established that 𝑊𝑙 and 𝑃𝐼 remain 
strongly and mainly influenced by the ability of clay minerals 
to interact with liquids. Since the water-holding capacity of 
the soil seems to increase with its plasticity [18], we wonder 
if it is possible to use a pressure-membrane apparatus, which 
quantifies said capacity [10], to determine the Atterberg 
limits. Therefore, in this study, we will probe 23 fine-grained 
soil samples from the Betic Cordillera (Spain), presenting a 
range of values of their 𝑊𝑙 between 26% and 62%. 
Subsequently, we will apply conventional statistical 
techniques and machine learning to the results obtained with 
the percussion-cup test and the thread-rolling test [19] to 
identify models that could determine 𝑊𝑙, 𝑊𝑝, and 𝑃𝐼 using 
only one measure with Richards extractors at −1,500 kPa. 

 

2 Materials and methods 
 
The laboratory and data analysis techniques used as well 

as the geological locations of the soil samples analysed are 
described below. 

 

2.1 Geological and geographical locations of the 

samples  
 
The samples were obtained from the towns of Vélez-

Málaga, Granada, Jaén, Linares, Baza, and Caravaca de la 
Cruz, belonging to the Betic Cordillera (Spain). The 
geotechnical classifications along with other characteristics  

 
Figure 1. Geological locations of the samples in the Betic Cordillera.  

Source: simplified scheme of Sanz de Galdeano et al., 2007. 

 
 

are collected in the Table 1; each location is signified by the 
first letter of its initials, as shown in Fig. 1. 

The Betic Cordillera is located in the south-east of Spain, in 
a sloping strip that extends from Cádiz to the Balearic Islands, 
and they constitute the westernmost Alpine Mountain chain in 
the Mediterranean, beside the Rif [20]. 

 

2.2 Laboratory techniques 
 
In the next sections, we describe 𝑊𝑙, 𝑊𝑝, and 𝑃𝐼 

determination. Then we show relevant pressure-membrane 
apparatus fundamentals used for soil water retention 
measurement, and such procedure. 

 

2.2.1 Atterberg limits measurement 
 
All the soils analysed were extracted via undisturbed 

sampling using a push-in Shelby tube sampler with a 101.6 mm 
inner diameter and a 1.63 mm wall thickness. They were 
delivered undisturbed to a testing laboratory into PVC pipes, in 
which we classified the soils, performed granulometry, and 
determined the liquid limit and plastic limit of the samples. 

With a part of the sample, granulometry was performed 
through sieving following the NLT 104/91 standard [4]. 

The second part of the sample was sieved with an N40 
ASTM sieve to determine the Atterberg limits, and the sieved 
fraction was separated into two portions by quartering. With 
the first half, we applied the Casagrande device method, 
which allowed us to determine 𝑊𝑙 following the ASTM D 
4318-84 standard [19]. 

Next, the moisture of the precise part of the sample that slid 
into the groove was measured by oven-drying at 105°C, 
expressed as weight percentage (𝐻), by weight difference before 
(𝑃𝑤) and after drying (𝑃𝑠), following eq. (1). 

 
H = 100 ∙ (𝑃𝑠/𝑃𝑤) (1) 

 
On the other hand, the plastic limit (𝑊𝑝) is determined by 

ASTM D 4318-84 standard [19].   
In addition, PI is defined by [19] as the difference 

between 𝑊𝑙 and 𝑊𝑝 (eq. 2). 
 

PI = 𝑊𝑙 − 𝑊𝑝 (2) 
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Once determined 𝑊𝑙 and 𝑃𝐼 of each sample, the 
Casagrande plasticity chart allows to classify the soils 
according to its plasticity (see Fig. 2). Consequently, with 
granulometry, 𝑊𝑙 and 𝑃𝐼, the soils were classified using the 
USCS [5] and AASHTO [6] systems. 

 

2.2.2 Soil water holding capacity  
 
To clarify some aspects about the pressure-membrane 

extractors used in this study, the matric potential (𝐹) 
represents the tension that soils exert in sorption phenomena. 
In this regard, [21] defined 𝐹 as the free energy change in a 
unit volume of water when isothermally transferred from the 
soil water state to the free water state. Moreover, [22] 
reported that the decimal logarithm in absolute value of 𝐹, 
expressed as the height of a water column in centimetres, is 
the usual measure of the tension applied to the soils, and it is 
referred to as pF (eq. 3). 

 
𝑝𝐹 = log10|𝐹| (3) 

 
In this paper, we assume the generalized Soil Water 

Retention Curve (SWRC) equation described by [21]. In this 
model, water is covering the mineral surfaces because of water 
adsorption phenomena and capillary effects in pores with 
different diameters. This is represented in eq. (4):  

 
𝜃(𝜓) = 𝜃𝑎(𝜓) + 𝜃𝑐(𝜓) (4) 

 
where total water retained (𝜃) equals adsorbed water (𝜃𝑎) 

plus capillary water (𝜃𝑐) under 𝜓 prevailing suction. 
The adsorbed water mainly depends on the specific 

surface area of the minerals of the soil as well as the cation 
exchange capacity (CEC) of its clays, colloids, and organic 
matter [23,24]. This moisture, according to the BET theory 
[25] could be represented as a multilayer of sorbito, covering 
the solid phase of a soil, where Van der Waals forces, 
electrically charged particles, osmotic and hydration 
components are involved [26].  

Furthermore, [27] computed for adsorbed water 𝜃𝑎(𝜓) 
with eq. (5): 

 

𝜃𝑎(𝜓) = 𝜃𝑎 𝑚𝑎𝑥 ∙ {1 − [𝑒𝑥𝑝 (
𝜓 + 𝜓𝑚𝑎𝑥

𝜓
)]

𝑚

} (5) 

 
where 𝜓 is the suction pressure, 𝜃𝑎 𝑚𝑎𝑥 is the adsorption 

capacity, 𝜓𝑚𝑎𝑥 is the higher matrix suction, and 𝑚 is the 
adsorption strength. In both the BET theory and Lu’s model 
[27], adsorption water presents a tightly adsorbed component 
closer to less intensely bonded soil particles and a film of 
adsorbed water. 

Moreover, [27] also determined in eq. (6) the capillary 
water retention 𝜃𝑐(𝜓), given by the following equation: 

 

𝜃𝑐(𝜓) =
1

2
∙ [1 − 𝑒𝑟𝑓 (√2 ∙

𝜓 − 𝜓𝑐

𝜓𝑐
)] ∙ [𝜃𝑠 − 𝜃𝑎(𝜓)]

∙ [1 + (𝛼 ∙ 𝜓)𝑛]1 𝑛−1⁄  

(6) 

 
It depends on porosity or saturated water content (𝜃𝑠), air 

entry suction (𝛼−1), pore size distribution (𝑛), and mean 

cavitation suction (𝜓𝑐).  
Moreover, water sorption–desorption curves are affected 

by hysteresis, yielding that θ(ψ) is greater when the soils 
absorb moisture than when drying [28]. Thus, the samples 
were tested before saturation. 

To sum up, when we subject a saturated sample to 
suction pressures of −1,500 KPa, a fraction of water is 
absorbed through the porous disk of the Richards 
apparatus used. So that it will contain adsorption moisture 
and water in pores up to 0.2 μm in diameter [29] . On the 
other hand, saturated samples subjected to −33 KPa, 
contain the moisture retained at −1,500 KPa plus the 
slow-flow gravitational water, which remains in pores 
between 0.2 and 8 μm in diameter [29]. Likewise, [30] 
relate shear strength with SWRC for unsaturated soils. 
Moreover, as  𝑊𝑙 is determined with shear strength–based 
tests and 𝑊𝑝 is related to cavitation [13], we measure soil 
water holding capacity next. 

 

2.2.3 Soil water holding capacity measurement 
 
Soil water holding capacity is measured with a Richards 

extractor. This is a device made up of hermetic circular 
chambers containing 300 mm porous porcelain plates with 
membranes. It could probe the samples by applying different 
suction pressures using a compressor, pipes, and gauges [10]. 

With more detail, the porcelain disks were saturated in 
deionized water for 24 hours. Then two quartered batches were 
taken from the dry soil samples, previously sieved with an ASTM 
N40 sieve. Later, those samples were placed carefully in rubber 
rings on the porcelain disks. Next, deionized water was poured 
onto the porcelain disks and they were left to rest in expanded 
polystyrene chambers for 2 days so that they could absorb the 
moisture. Subsequently, both batches of soil samples were 
subjected to the required suction pressure for 2 days into 
independent chambers of the Richards extractor. The water that 
the samples did not retain was evacuated through these porous 
disks and membranes. Finally, the moisture retained by the 
samples after the process was determined by weight difference 
by drying in an oven at 105°C, according to eq. (1). For this, 
weights substances with a lid, spatulas, and washing bottles were 
used. 

In this work, the prevailing suctions used (𝜓) were −1,500 
kPa (𝑝𝐹 = 4.2) and −33 kPa (𝑝𝐹 = 2.5), respectively. As a 
consequence, the moisture content of a soil expressed as a 
percentage by weight at probed pressure will be denoted as 
𝑝𝐹4,2 and 𝑝𝐹2.5 in tables and machine-learning model 
equations. 

 

3 Calculation 
 
For data analysis, SPSS 25 [31] and a Multiple Classifier 

System (MCS) are used together [32, 33].  MCSs combines 
regression algorithms from heterogenous theoretical 
backgrounds programmed with Python 3.0 [34]. So that we 
used the Pandas [35], Seaborn [36], Matplotlib [37], Scikit-
learn [38], and Statsmodels [39] libraries. The commented 
source code is suitable for the Jupyter Notebook environment 
[40]. The starting data in CSV format and a code example can 
be consulted in the GitHub repository that is cited in the 
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appendix A. Those techniques were Multiple Linear 
Regression (MLR), Decision Tree Regression (DTR), 
Random Forest Regression (RFR), and Support Vector 
Machines Regression (SVMR). 

First, MLR is coded since it provides intelligible models. 
In this regard, [41] implemented MLR models according to 
eq. (7): 

 
�̂�(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 +. . . + 𝑤𝑛𝑥𝑛 (7) 

 
which represents a linear model of coefficients 𝑤 =

(𝑤0 , 𝑤1, . . . , 𝑤𝑛) and characteristics 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), 
where �̂�(𝑤, 𝑥) is the variable predicted by the model. 

To do this, scikit-learn [41] minimises the residual of the 
sum of squares between the observed objective 
characteristics and those predicted by the linear model, 
solving the following minimizing function (8): 

 
𝑚𝑖𝑛

𝑤
||𝑋𝑤 − 𝑦||2

2 (8) 

 
On the other hand, the Statsmodels library [39] 

implements the ordinary least squares technique capable to 
fit the data model, providing additional statistical parameters 
used in our MCS. Furthermore, the parameters of the models 
and their statistical adjustments were evaluated, bearing in 
mind a level of statistical significance 𝛼 = 0.05. 

Besides, DTR was implemented with scikitlearn. Briefly, 
DTR algorithms generate recursive partitions of the feature 
space, following rules that maximize the differentiation of the 
splits. Such splits set the nodes of a tree structure. So that, a 
DTR model learns local linear regressions on the basis of 
such nodes [41]. The depth of the tree was set by default in 
the code. 

Moreover, using scikit-learn, the RFR technique was 
implemented. So, 100 of the previously said decision trees 
were selected, taking different subsets of the whole original 
dataset, and then, two estimators of the predictive accuracy 
were obtained by averaging. This time, Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE) were 
computed to control over-adjustment, yielding better 
predictive capability than a DTR [42]. On the contrary, 
DTRs may provide intelligible models [41]. 

Next, SVMR capabilities were provided to the code 
using scikit-learn. So that, bearing in mind eq. (7), where 
𝑤0 = 𝑏, the aim is to find a function as flat as possible with 
the most ε deviation from the training data [43], computed 
as in eq. (9). In this sense, C is a regularization parameter 
and 𝜙 is a linear kernel function.  

 

𝑚𝑖𝑛
𝑤,𝑏

 
1

2
 𝑤𝑇𝑤 + 𝐶 ∑ 𝑚𝑎𝑥(0, |𝑦𝑛 − (𝑤𝑇 𝜙(𝑥𝑛) + 𝑏)| − 𝜀)

𝑖=1

 (9) 

 
To sum up, following [44] we perform MLR with the 

whole dataset to establish explainable empirical 
relationships for 𝑊𝑙, 𝑊𝑝, and 𝑃𝐼 to choose the 
characteristics of the models. Once selected the 
characteristics of each model, the beforementioned four 
regression techniques are used to predict 𝑊𝑙, 𝑊𝑝,  and PI. 
Then, using scikit-learn and following [45, 46], a K-folded 

double cross-validation score with K = 10 is computed in 
terms of RMSE (eq. 10) and MAE (eq. 11), to estimate the 
accuracy of the candidate models. In this sense, K-folded 
cross-validation is implied to split n observations into K 
equal subsets so that the (k − 1)/k fraction of the 
observations is used for model construction, while the 1/k 
portion of the data is used for validation. In eq. (10, 11), n 
is the number of observations, �̂�𝑛 the predicted values of 
the model, and 𝑦𝑛 the observed values. 

 

𝑅𝑀𝑆𝐸(𝑦, �̂�) = √
∑ (�̂�𝑛 − 𝑦𝑛)2𝑛

𝑛=1

𝑛
 (10) 

 

𝑀𝐴𝐸(𝑦, �̂�) =
1

𝑛
∑|𝑦𝑛 − �̂�𝑛|

𝑛−1

𝑛=1

 (11) 

 

4 Results  
 
Before continuing, we must show that the analyzed 

samples had a higher concentration of materials that passed 
through an N200 ASTM sieve than the starting soils because 
to determine the Atterberg limits, the samples were sieved 
with an N40 ASTM sieve. That is why we must define the 𝐹 
characteristic. This represents fine material with a diameter 
of less than 0.074 mm that contains a sample, following eq. 
(12): 

 

𝐹 = 100 ∙   (
𝑁200

𝑁40
) (12) 

Later, Table 1 summarises the experimental results 
obtained. The quantities are expressed as percentages by 
weight. 𝑊𝑙 is the liquid limit. 𝑊𝑝 is the plastic limit. The 
water retained at −33 KPa is pF25. The water retained at 
−1,500 KPa is pF42. 𝑃𝐼 is the plasticity index. F is the 
calculated portion of soil particles in a sample sieved with 
an N40 ASTM sieve that passes through an N200 ASTM 
sieve. USCS is the classification of the soil samples in the 
USCS system. AASHTO is the classification of the soil 
samples in the AASHTO system with the group index 
(GI). 

Next, in Fig. 2, the analysed samples are presented, 

following the USCS system. Of the 23 soils, three are high-

plasticity clays (CH), two are low-plasticity silts (ML), one 

is a low-plasticity clayey silt (CL-ML), and the remaining 17 

are low-plasticity clays (CL). 
After, non-parametric linear correlation tests were 

performed among the study variables (model 
characteristics) with SPSS 25. Said correlation 
coefficients were taken into account to preselect the 
characteristics to be used in the construction of the 
models, with certain precautions. Table 2 summarises the 
results obtained after applying Spearman’s ρ test. 
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Table 1. 
Experimental results for the samples analysed. 

Soil Wl (%) Wp (%) pF25 (%) pF42 (%) PI (%) F (%) USCS AASHTO GI 

J1 44.0 20.4 27.6 18.3  23.8 92.1 CL A-7-A-7-A 20 

J2 34.8  18.8 23.3 10.3 15.9 91.0 CL A-6 9 
G1 41.1 25.7 26.4 16.5 15.4 96.3  ML A-7-A-7 1 

G2 36.8 18.4 23.7 12.4 18.3 89.4 CL A-6 15 

G3 36.6 18.6  26.4  12.7 17.9  91.1 CL A-6 13 
G4 42.8 20.9 26.1 15.1 21.9 93.7 CL A-7-A-7 21 

VM 28.4 27.0 23.5 10.9 1.43  41.9 SM A-2-4 0 

L1 30.1 23.9 17.9 7.5  6.20 84.2 ML A-4 4 
C1 52.4 26.1 25.6 15.1 26.2 88.1 CH A-7-A-7-A 20 

C2 37.8 23.2 23.7 12.0 14.6 63.1 SC A-2-6 0 

C3 38.7  25.0  25.7 15.5 13.7 82.6  SM A-6 3 
C4 41.5 17.3 24.1 14.3  24.2  98.0 CL A-7-A-7-A 11 

C5 40.3 24.5 23.9 14.3 15.7 95.5 CL A-7-A-7-A 8 

C6 43.5  22.8 23.5 15.3 20.7  89.5 CL A-7-A-7-A 15 
C7 50.5  25.8  25.9 16.3 24.7 87.5 CH A-7-A-7-A 14 

J3 47.3 24.4 24.7  14.3 22.9 96.2 CL A-7-A-7-A 20 

J4 46.6  23.7 27.0 15.4 22.8 96.9 CL A-7-A-7-A 26 
J5 61.8  25.7 28.9 18.0  36.1 99.3 CH A-7-A-7-A 42 

B1 29.1 19.1 22.4 10.2 10.0 85.5 SC A-6 2 

B2 32.6 18.2 23.3 10.3 14.4 97.4 CL A-6 14 
B3 26.0 20.6 22.7 6.4  5.4 58.7 CL-ML A-4 0 

B4 32.2 18.1 24.2 9.6  14.1 97.6 CL A-6 14 

B5 45.7 19.7 28.7 16.7 25.9 97.6 CL A-7-A-7-A 27 

Source: self-made. 

 

 
Figure 2. Locations of the samples in the plasticity chart. 
Source: self-made, following the D- 2487-06 ASTM standard.  

 
 

Table 2. 

Spearman’s ρ correlation coefficients and level of bilateral significance. 

N = 23 in All 

Cases 
Wl Wp PI pF2.5 pF4.2 F 

Wl 

Correl. 1.000 0.375 0.915** 0.732** 0.838** 0.439* 

Next 

(bilat.) 
. 0.078 <0.001 <0.001 <0.001 0.036 

Wp 

Correl. 0.375 1.000 0.077 0.222 0.399 −0.348 

Next 

(bilat.) 
0.078 . 0.727 0.308 0.059 0.104 

PI 

Correl. 0.915** 0.077 1.000 0.684** 0.713** 0.540** 

Next 
(bilat.) 

<0.001 0.727 . <0.001 <0.001 0.008 

pF2.5 

Correl.  0.732** 0.222 0.684** 1.000 0.851** 0.534** 

Next 

(bilat.) 
<0.001 0.308 <0.001 . <0.001 0.009 

pF4.2 

Correl. 0.838** 0.399 0.713** 0.851** 1.000 0.364 

Next 

(bilat.) 
<0.001 0.059 <0.001 <0.001 . 0.088 

F 

Correl. 0.439* −0.348 0.540** 0.534** 0.364 1.000 

Next 
(bilat.) 

0.036 0.104 0.008 0.009 0.088 . 

** — The correlation is significant at the 0.01 level (bilateral). 

* — The correlation is significant at the 0.05 level (bilateral). 
 

Source: self-made. 

5 Discussion 
 
First, we will use the information in Table 2 to select the 

appropriate characteristics to build the models, avoiding 
collinearities between them. Such is the case between 𝑝𝐹2.5 
and 𝑝𝐹4.2, (ρ = 0.851; p. < 0.001), so they will not be included 
in the same model. However, 𝐹 shows collinearity with 𝑝𝐹2.5 
(ρ = 0.534; p. = 0.009), although it does not seem to present 
it with respect to 𝑝𝐹4.2 (ρ = 0.534; p. = 0.088). 

Consequently, 𝑝𝐹2.5 and 𝑝𝐹4.2 can be selected to build 
single-feature models, and 𝐹 and 𝑝𝐹4.2 can be selected for 
two-feature models. To avoid over-adjustments, models that 
do not use powers of any of their characteristics have been 
chosen, especially when the range of values of the liquid limit 
of the samples is limited (from 26 to 62). Further, the 
adjustments to a linear model seem adequate. 

 

5.1 Determination of the liquid limit 
 
Table 2 shows that the linear correlations between the liquid 

limit (𝑊𝑙) and the variables 𝑝𝐹2.5 (ρ = 0.732; p. < 0.001), 𝑝𝐹4.2 (ρ 
= 0.838; p. < 0.001) and 𝐹 (ρ = 0.439; p. = 0.036) are significant, 
with a confidence level greater than 95% in all cases. 
Consequently, characteristics F, 𝑝𝐹2.5, and 𝑝𝐹4.2 were selected to 
build linear models with a single characteristic, whereas 𝐹 and 
𝑝𝐹4.2 were used to build a model with two characteristics, which 
are reflected in table 3. 

Considering the data collected in Table 5, the model with 
a unique characteristic 𝑝𝐹4.2 has been selected since it is the 
only one in which all of its coefficients are statistically 
significant, with a confidence level of at least 95%. It also 
presents a considerable adjustment expressed as 𝑅2 (0.722) 
and is statistically significant, with a confidence level greater 
than 99%. The fit between the measured 𝑊𝑙 values and those 
calculated through eq. (13) are shown in Fig. 3.  

 
𝑊𝑙 = (9.94 ± 4.2) + (2.25 ± 0.3) ∙ 𝑝𝐹4.2  

(𝑅 = 0.85;  𝑝. < 0.001) 

(13) 
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Table 3.  

Linear models studied to determine Wl. 

Characteristics 

of the Model 
Coefficients 

Std. 

Err. 
P > |t| 

R2 and Next 

Change in F 

F 
W0 = 13.31 

W1 = 0.31 

10.0 

0.1 

0.199  

<0.013 

0.258  

(p. = 0.013) 

pF4.2 
W0 = 9.94 
W1 = 2.25 

4.2 
0.3 

0.028  
<0.001 

0.722  
(p. < 0.001) 

pF2.5 
W0 = −23.9 

W1 = 2.58 

13.8 

0.6 

0.099  

<0.001 

0.505  

(p. < 0.001) 

pF4.2 

 F 

W0 = 4.85 
W1 = 2.07 

W2 = 0.08 

6.3 
0.3 

0.1 

0.448  

<0.001 

0.290 

0.737  

(p. < 0.001) 

Source: self-made. 

 

Figure 3. Fit of the selected model to determine the liquid limit (Wl). 

Measures expressed as percentages by weight.  

Source: self-made. 

 

 
Table 4. 

Different liquid limit models scores with the 𝑝𝐹4.2 characteristic and double 

Cross-validation (K=10) in terms of mean RMSE with mean standard 

deviation. 

Regression model Mean RMSE 
Mean RMSE Standard 

deviation 

MLR 4.15 2.73 

DTR 7.06 2.98 

RFR 6.03 2.88 

SVMR 3.65 2.92 

Source: self-made. 

 
 

Table 5. 

Proposed model to determine PI. 

Characteristics 

of the Model 
Coefficients 

Std. 

Err. 
P > |t| 

R2 and Next 

Change in F 

F 
W0 = −14.45 

W1 = 0.37 

7.9 

0.1 

0.080  

<0.001 

0.451  

(p. < 0.001) 
 

pF4.2 
W0 = −7.72 

W1 = 1.92 

4.4 

0.3 

0.096  

<0.001 

0.628  

(p. < 0.001) 

pF2.5 
W0 = −41.99 

W1 = 2.42 

12.3 

0.5 

0.003  

<0.001 

0.531  

(p. < 0.001) 

pF4.2  
F 

W0 = −20.47 

W1 = 1.48 

W2 = 0.21 

5.6 

0.3 

0.1 

0.002  

<0.001 

0.007 

0.745  
(p. < 0.001) 

Source: self-made. 

 
 
In Table 4, we can see the scores of MLR, DTR, RFR and 

SVMR models calculated as the mean RMSE of a cross-
validation procedure with 10 K-folds. 

The SVMR model exhibits the lower mean RMSE (4.15) 
followed by MLR model (4.15), but the MLR model has an 
inferior standard deviation (2.73) vs (2.92). DRT and RFR 

demonstrate the worst scores. On the other hand, [11] 
established the tolerance limits in the reproducibility required 
for the determination of the liquid limit in ±5% for control 
processes and in ±10% for design work. Accordingly, MLR 
and SVMR models would be acceptable for design purposes. 

 

5.2 Determination of the plasticity index  
 
Table 2 shows that the linear correlations between the 𝑃𝐼 

and the variables 𝑝𝐹2.5 (ρ = 0.684; p. < 0.001), 𝑝𝐹4.2 (ρ = 
0.713; p. < 0.001), and 𝐹 (ρ = 0.540; p. = 0.008) are 
significant, with a confidence level greater than 99% in all 
cases. Consequently, the characteristics 𝐹, 𝑝𝐹2.5, and 𝑝𝐹4.2 
were selected to build linear models of a single characteristic, 
and 𝐹 and 𝑝𝐹4.2 were selected for a model of two 
characteristics, which are reflected in Table 5. 

In view of the data collected in Table 5, the model with 

the characteristics 𝑝𝐹4.2 and 𝐹 was selected since all of its 

coefficients are statistically significant, with a confidence 

level higher than 99%, and present the highest 𝑅2 (0.745) that 

is statistically significant, with a confidence level greater than 

99%. The fit between the measured 𝑃𝐼 values and those 

calculated through eq. (14) is shown in Fig. 4.  
 

PI = (−20.47 ± 5.6) + (1.48 ± 0.3) ∙ 𝑝𝐹4.2

+ (0.21 ± 0.1) ∙ 𝐹 

(𝑅 = 0.86; 𝑝. < 0.001) 

(14) 

 
Next, in Table 6, we show the scores of MLR, DTR, RFR 

and SVMR models calculated as the mean RMSE of a cross-
validation procedure with 10 K-folds. 

 
Figure 4. Fit of the selected model to determine the Plasticity Index (PI).  
Source: self-made. 

 
 

Table 6.  

Different plasticity index models scores with 𝑝𝐹4.2  and F characteristics and 

double Cross-validation (K=10) in terms of mean RMSE with mean standard 

deviation. 

Regression model Mean RMSE 
Mean RMSE Standard 

deviation 

MLR 3.81 2.36 

DTR 5.93 3.41 
RFR 4.41 2.26 

SVMR 4.04 2.31 

Source: self-made.  
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Table 7.  

Proposed model to determine 𝑊𝑝. 

Characteristics 

of the Model 
Coefficients 

Std. 

Err. 
P > |t| 

R2 and Next 

Change in F 

pF4.2 
F 

W0 = 25.32 

W1 = 0.60 

W2 = −0.13 

3.5 

0.2 

0.04 

<0.001 

 0.006 

 0.009 

0.380  
(p. = 0.008) 

Source: self-made. 

 
 
This time, the MLR model exhibits the lower mean 

RMSE (3.81) followed by SVMR model (4.04), but the 
SVMR model has an inferior standard deviation (2.31) vs 
(2.36). DTR and RFR have the worst scores and they are not 
considered, because DTR models showed over-adjustment 
without cross-validation (RMSE = 0). Although [11] did not 
establish an acceptable tolerance margin for the 
determination of  𝑃𝐼, and this measure carries, by definition, 
the errors in the determination of  𝑊𝑙 and 𝑊𝑝, the tolerance 
margins that this researcher considered acceptable for the 
measurement of 𝑊𝑙 will be selected as reference, as the most 
restrictive. Accordingly, MLR and SVMR models would be 
acceptable for design purposes (±10%). 

 

5.3 Determination of the plastic limit 
 
In order to determine  𝑊𝑝 we have selected 𝑝𝐹4.2 and 𝐹 as 

the characteristics of the model, as we show in Table 7. 
In this regard, the model is defined by eq. (15), to the 

detriment of indirect measurement, since it carries the errors 
of the determinations of 𝑊𝑙 and 𝑃𝐼. Further, 𝑊𝑙 and 𝑊𝑝 are 
determined with very different standards and methods. In this 
way, using the whole dataset, the following experimental 
relation is achieved (eq. 15): 

 

 
Figure 5. Fit of the selected model to determine the plastic limit (𝑊𝑝).  

Source: self-made. 

 
 

Table 8.  

Different plasticity index models scores with 𝑝𝐹4.2 and F characteristics and 

double cross-validation (K=10) in terms of mean RMSE with mean standard 

deviation. 

Regression model Mean RMSE Mean RMSE 

Standard deviation 

MLR 2.47 0.91 

DTR 3.57 1.34 

RFR 2.64 1.46 

SVMR 2.32 1.30 

Source: self-made.  

𝑊𝑝 = (23.32 ± 3.5) + (0.60 ± 0.2) ∙ 𝑝𝐹4.2

− (0.13 ± 0.04) ∙ 𝐹 

(𝑅 = 0.62; 𝑝. = 0.008)   

(15) 

 
Next, the fit between the measured 𝑊𝑝 values and those 

calculated by means of eq. (15) are presented in Fig. 5. 
Subsequently, in Table 8, we collect the scores of MLR, 

DTR, RFR and SVMR models with 𝑝𝐹4.2 and F 
characteristics, calculated as the mean RMSE of a cross-
validation procedure with 10 K-folds. 

Now, the SVMR model exhibits the lower mean RMSE 
(2.32) followed by MLR model (2.47), but the MLR 
technique yields an inferior standard deviation (2.31) vs 
(2.36). DRT and RFR show higher scores and exhibit over-
adjustments without cross-validation (RMSE = 0), so they 
are rejected. Moreover [11] found a tolerance margin of 
reproducibility for the rolling test method of ±10% for 
control purposes. Therefore, using pressure-membrane 
extractors offers an acceptable uncertainty, especially when 
all of them are below a tolerance margin of ±5, so MLR and 
SVMR models appear very precise. Furthermore, [47] found 
an uncertainty of ±20% in the determination of 𝑊𝑝, using 
penetrometers. Consequently, MLR and SVMR models 
would be acceptable for control purposes. 

 

6 Conclusions 
 
The aim of this study was to develop an alternative 

method suitable for the determination of Atterberg limits 
using a pressure-membrane apparatus and MCSs.  

In addition, tree models have been described using MLR 
and SVMR techniques that would allow the determination of 
𝑊𝑙, 𝑊𝑝, and 𝑃𝐼 in the analysed soils. In this regard, the 
selected characteristics were 𝑝𝐹4.2 and F. The tolerance 
margins shown for 𝑊𝑙 and 𝑃𝐼 seem appropriate for design 
purposes. On the other hand, in the determination of 𝑊𝑝, we 
have found appropriate tolerance margins for control work. 

Likewise, in view of the experimental results, machine-
learning techniques simplify the method proposed by [9], 
offering models that conceptually make sense with respect to 
the Atterberg limits. Thus, 𝑊𝑝, and PI increase proportionally 
as the capacity to retain water strongly bound to the soil 
particles and in pores with a diameter less than 0.2 μm 
increases. In contrast, the amount of fine material with a 
maximum diameter of less than 0.074 mm also affects these 
plasticity indices but to a lesser extent. However, estimating 
the liquid limit only requires measuring the capacity of the 
samples to retain water in fine pores smaller than 0.2 μm and 
form films around their mineral grains (𝑝𝐹4.2), and we have 
found that the first increases with the second. 

Furthermore, while the precision of the method could be 
improved in later studies, using it could entail certain 
advantages. For instance, it allows several static tests of 
different samples to be carried out at the same time, 
eliminating subjectivity in the determinations and increasing 
the productivity of the laboratories. Likewise, it could 
prevent the need to carry out such frequent trial–error tests in 
standardized methods if it is used as an indicative test of the 
moisture required for the determination of  𝑊𝑙, 𝑊𝑝, and 𝑃𝐼. 
Besides, cheaper methods may be developed. 
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Appendice 
 
A. Python code example for Jupyter Notebook and 

dataset in CSV format, available at this GitHub repository:  
https://github.com/davidantoniorosas/Dyna   

 
 

D.A. Rosas, is a PhD. candidate and researcher in Computer Science at 

UNIR iTED (Universidad Internacional de la Rioja-Spain), where he 
received an Excellence Grant. He also was CEO of GTD, a Spanish R&D 

company devoted to Engineering Geology and Environmental Projects. 

ORCID: 0000-0002-9722-2659 
 

D. Burgos, is the Vice Chancellor of International Projects at the 

Universidad Internacional de la Rioja (Spain). He is also professor at the 
Departamento de Ciencias de la Computación y de la Decisión, Facultad de 

Minas, Universidad Nacional de Colombia, Sede Medellín, Colombia.  

Besides, he is Director of the Research Institute UNIR iTED, and director of 
the UNESCO chair in eLearning. He received several Ph.D. in different 

fields, such as Computer Science, Education, Communication, Management 

and Anthropology. 
ORCID: 0000-0003-0498-1101 

 

J.W. Branch-Bedoya, received a PhD. in Computer Science. He is 
professor at the Departamento de Ciencias de la Computación y de la 

Decisión, Facultad de Minas, Universidad Nacional de Colombia, Sede 

Medellín, Colombia. He is also the leader of the Grupo de Investigación y 
Desarrollo en Inteligencia Artificial (GIDIA).  

ORCID: 0000-0002-0378-028X  

 
A. Corbi, received a PhD. in Corpuscular Physics and a Diploma in 

Advanced Studies in Physical Oceanography.  He is a professor and 

researcher at UNIR iTED (ESIT-Universidad Internacional de la Rioja-
Spain).  

ORCID: 0000-0002-7282-4557 


