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Abstract 
Nowadays, the inerter device has become one of most popular mechanical devices in the vibration absorption field for both stationary and 
non-stationary mechanical structures. One of the problems commonly reported in the literature is the force transmission control in the 
foundations that support the machines, which is generally addressed by using either isolators or classic dynamic vibration absorbers 
(DVAs). However, the mechanical energy dissipation capability of these two solutions is still limited. This work focuses on improving the 
control performance for the conventional absorber using the inerter’s inertial mass amplification and negative stiffness effects. In order to 
fairly evaluate the control performance of the DVA based on grounded inerter, the ℋ∞ and ℋ2 optimization criteria are proposed. When 
the dimensionless frequency response function (FRF) of the transmissibility is minimized at the resonant peaks, the ℋ∞ criterion reveals 
an improvement of 29.74% in mitigating harmonic vibration. Finally, the total vibration energy transmitted to the foundation is minimized 
via ℋ2 criterion that provides an improvement of 33.03%.  
 
Keywords: Inerter; control frequencies tuning; passive vibration control; invariant frequencies; ℋ∞ norm; ℋ2 norm. 

 
 

Absorbedor dinámico de vibración sintonizado con inercia 
rotacional para controlar transmisión de fuerza 

 
Resumen 
Hoy en día, el inersor se ha convertido en uno de los dispositivos mecánicos más populares en el campo de absorción de vibración tanto en 
estructuras mecánicas estacionarias como no estacionarias. Uno de los problemas comúnmente reportados en la literatura es el control de 
transmisión de fuerza en los cimientos que soportan a las maquinas, que generalmente se atacan utilizando ya sea aisladores o absorbedores 
dinámicos de vibración (DVAs). Sin embargo, la capacidad de disipación de energía mecánica de estas dos soluciones es aún limitada. 
Este trabajo se centra en mejorar el rendimiento de control del absorbedor convencional utilizando los efectos de amplificación de masa 
inercial y el de rigidez negativa del inersor.  Para evaluar justamente el rendimiento de control del DVA basado en inersor conectado a 
tierra, se proponen los criterios de optimización ℋ∞ y ℋ2. Cuando se minimiza la función de respuesta en frecuencia adimensional de la 
transmisibilidad en los puntos resonantes, el criterio ℋ∞ revela un mejoramiento del 29.74% de atenuación de vibración. Finalmente, se 
minimiza la energía total de vibración transmitida a los cimientos a través del criterio ℋ2 que proporciona un mejoramiento del 33.03%. 
 
Palabras clave: Inersor; sintonización de frecuencias de control; control pasivo de vibración; frecuencias invariantes; norma ℋ∞; norma 
ℋ2. 

 
 
 

1 Introduction 
 
Vibration attenuation is one of the most important and 

challenging tasks into stationary and non-stationary 
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mechanical structures subjected to the different kinds of 
environmental loads such as seismic excitation, wind loads, 
sea waves, vehicular traffic, among other excitation inputs. It 
is worth mentioning that most of these types of broadband 
power spectrum excitations are controlled via electronically 
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controlled devices. However, active control techniques 
demand high power consumption, sophisticated control laws, 
bulky actuators, and so on. On the other hand, semi-active 
control can emulate the dynamic behavior of an actively 
controlled actuator while the threshold or saturation point of 
the device is not exceeded, demanding a minimal energy 
consumption. In contrast, passive control is one of the most 
widely used technologies in structural engineering due to its 
low implementation cost, it does not require industrial 
maintenance, and simplicity in the design topology, among 
other important characteristics. Dynamic vibration absorbers 
(DVAs) are fully mechanical devices for the passive control, 
which is mainly composed of a tuned physical mass coupled 
to the parallel arrangement of a spring with a viscous fluid 
damper, which was proposed by Ormondroyd and Den 
Hartog over a hundred years ago [1, 2]. Certainly, the 
vibration mitigation effectiveness of the DVAs strongly 
depends on both the tuned physical mass and the suspension 
system’s mechanical energy dissipation capability. To 
address this drawback, different variant design topologies of 
the DVA have been proposed, which are: the non-traditional 
DVA designed by Ren [3], Maxweel element-based DVA 
studied by Nishihara and Anh [4, 5], Kelvin element-based 
DVA proposed by Kaul [6], as well as other layouts.  

When the target is to suppress broadband vibration, the 
aforementioned devices lack both robust frequency filtering 
and transient and steady-state vibration mitigation 
effectiveness. To address with these concerns, the DVA’s 
performance has been improved by Asami [7, 8] through the 
usage of multiple DVAs connected both in series and in 
parallel, and the Two-Degree-of-Freedom Tuned Mass 
Damper (TDOF-TMD) based on the stiff beam that 
undergoes translational and rotational dynamics which was 
analyzed by Zuo [9, 10]. The engineering applications of 
these devices are only limited to the installation space, to 
mention a few: horizontal axis wind turbines [11, 12], 
machining processes improvement [13], seismic vibration 
mitigation [14], as well as other substantial applications. In 
view of the vibration attenuation potential of these devices, 
the technology of multiple DVAs configured in series was 
hybridized by Barredo et al. [15] by means of the rotational 
inertia concept. This passive control technology is well 
known in the literature as The Inerter, which was proposed 
by Smith in 2002 [16, 17]. 

The inerter is a mechanical device that stores kinetic 
energy through a flywheel, which has been studied by 

Chen et al. [18]. When such a mechanical energy is 
released, the inerter’s terminals provide reaction forces 
directly proportional to the product of the inertance value 
with the acceleration difference value of its terminals. 
Recently, Ma et al. [19] reported the three important 
dynamic characteristics of such a device, which are the 
following: a) frequency isolation capacity, b) inertial 
mass improvement and c) negative stiffness effect. It is 
worth mentioning that, since the invention of the inerter, 
many different investigations have been conducted on its 
dynamic performance for both stationary and non-
stationary structures, which were reported by Wagg [20]. 
Although much research has been performed on the 
control performance for inerter-based DVAs considering 
different kinds of excitation sources, the control 
performance of DVA based on grounded inerter under 
base excitation has not yet been considered. In fact, it 
leads to the study of the inerter’s control effectiveness 
considering the frequency response function (FRF) of the 
force transmission from the structure to the mechanical 
structure’s foundation, which is one of the force 
transmissibility problems commonly reported in the 
literature [21]. Hence, in this paper the calibration process 
of the dimensionless transmissibility function is 
presented using the fixed-point technique (FPT) that is 
based on Krenk’s theory. Then, the ℋ∞ and ℋ2 criteria 
are proposed as dynamic performance measures for the 
performance evaluation of both harmonic and random 
vibration inputs. In the first instance, the double rack-
pinion inerter’s operating principle and motion equation 
is presented with the aim of analytically explaining its 
operation mechanism, which was developed by the 
authors. 

 
2 Theoretical mechanical models 

 
Currently, there are several simple physical designs of the 

inerter, such designs are the following: the rack-pinion 
mechanism-based inerter, ball-screw type inerter and the last 
one based on the hydraulic transmission, among other 
modern inerters reported in [20, 22]. In order to provide a 
greater rotational inertia, a double rack-pinion type inerter 
could be used, see. Fig. 1.  The double rack-pinion type 
inerter is mainly composed of a rack that consists of teeth on 
both the top and bottom, a gear transmission system with a 
ratio of 2 to 1, and two flywheels.

 

 
Figure 1. Double rack-pinion type inerter. 
Source: Authors 
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In Fig. 1, 𝑓𝑓𝑒𝑒 (𝑡𝑡), 𝑥𝑥1(𝑡𝑡) and 𝑥𝑥2(𝑡𝑡) represent force input, rack’s 

displacement (terminal 1), and inerter’s terminal 2 displacement, 
respectively. With this in mind, the inerter’s dynamic equation 
can be easily obtained by applying the Euler-Lagrange 
formulism. By doing this, it results in the following: 

 
𝑓𝑓𝑒𝑒(𝑡𝑡) = 𝑏𝑏(�̈�𝑥2 − �̈�𝑥1) (1) 

 
where, 𝑏𝑏 is the inerter’s inertance in units of kilograms, 

which can be increased either by changing the gear 
transmission ratio or increasing the flywheel’s rotational 
inertia. From eq. (1), the force exerted by the inerter is 
directly proportional to the acceleration difference (�̈�𝑥2 − �̈�𝑥1) 
of its terminals. In the next section, the inerter’s intrinsic 
dynamic properties are explained, and how they can improve 
the control performance of classic DVAs. 

 
2.1 Inerter-based mechanical systems 

 
In this section, the theoretical mathematical models are 

obtained when the inerter is coupled to the single and two 
degree-of-freedom mechanical systems, in order to reveal its 
vibration mitigation effectiveness in base-excited structures. 

In Fig. 2, three undamped mechanical systems are 
described, of which b) and c) are of two degrees-of-freedom 
(DOF), while the first shown in a) is only of a single DOF. In 
addition, the dynamical system shown in Fig. 2 c) is 
analogous to the Tuned-Mass-Damper-Inerter (TMDI) [23]. 
Note that, the inerter’s terminals are strategically configured 
to reveal its operation principle, especially when the systems 

 
Figure 2. The inerter coupled to single and two degrees-of-freedom 
mechanical systems. a) grounded inerter-based vibration isolator, b) 
ungrounded inerter-based DVA and c) grounded inerter-based DVA 
(TMDI). 
Source: Authors 

 
shown in Fig. 2 are subjected to the resonance. Indeed, it 

implies to analyze the dimensionless frequency response 
function (FRF) of the force that is transmitted towards the 
base of the primary structure. To achieve such a target, it is 
necessary to write the motion equations for each dynamical 
system in a dimensionless form, as described in eq. (2). 

 
−(1 + 𝜇𝜇𝜇𝜇)Ω2𝑋𝑋𝑠𝑠(𝑗𝑗Ω) + 𝑗𝑗2𝜁𝜁𝑠𝑠Ω𝑋𝑋𝑠𝑠(𝑗𝑗Ω) + 𝑋𝑋𝑠𝑠(𝑗𝑗Ω) = 𝑓𝑓(𝑗𝑗Ω)𝐾𝐾𝑠𝑠−1     a)

(−2𝑗𝑗Ω𝜁𝜁1𝜇𝜇𝛽𝛽 + 𝜇𝜇𝜇𝜇Ω2 − 𝜇𝜇𝛽𝛽2)𝑋𝑋1(𝑗𝑗Ω) + (2𝑗𝑗Ω𝜁𝜁1𝜇𝜇𝛽𝛽 − 𝜇𝜇𝜇𝜇Ω2 + 𝜇𝜇𝛽𝛽2 − Ω2 + 1)𝑋𝑋𝑠𝑠(𝑗𝑗Ω) − 𝑋𝑋𝑒𝑒(𝑗𝑗Ω) = 0
(2𝑗𝑗Ω𝜁𝜁1𝛽𝛽 − 𝜇𝜇Ω2 − Ω2 + 𝛽𝛽2)𝑋𝑋1(𝑗𝑗Ω) + (−2𝑗𝑗Ω𝜁𝜁1𝛽𝛽 + 𝜇𝜇Ω2 − 𝛽𝛽2)𝑋𝑋𝑠𝑠(𝑗𝑗Ω) = 0

�      b)

(−2𝑗𝑗Ω𝜁𝜁1𝜇𝜇𝛽𝛽 − 𝜇𝜇𝛽𝛽2)𝑋𝑋1(𝑗𝑗Ω) + (2𝑗𝑗Ω𝜁𝜁1𝜇𝜇𝛽𝛽 + 𝜇𝜇𝛽𝛽2 − Ω2 + 1)𝑋𝑋𝑠𝑠(𝑗𝑗Ω) − 𝑋𝑋𝑒𝑒(𝑗𝑗Ω) = 0
(−Ω2(1 + 𝜇𝜇) + 2𝑗𝑗Ω𝜁𝜁1𝛽𝛽 + 𝛽𝛽2)𝑋𝑋1(𝑗𝑗Ω) + (−2𝑗𝑗Ω𝜁𝜁1𝛽𝛽 − 𝛽𝛽2)𝑋𝑋𝑠𝑠(𝑗𝑗Ω) + 𝜇𝜇Ω2𝑋𝑋𝑒𝑒(𝑗𝑗Ω) = 0

�       c)

 (2) 

 
From eq. (2), 𝜇𝜇 is absorber to primary structure mass ratio, 

while 𝜇𝜇 is inertance to absorber’s physical mass ratio. Then, 𝛽𝛽 is 
undamped circular frequency ratio. Furthermore, 𝜁𝜁𝑠𝑠 and 𝜁𝜁1 are 
the damping factors for the primary structure and the absorber, 
respectively. Finally, Ω is the forced frequency ratio. It is worth 
mentioning that if the system shown in Fig. 2 a) is undamped, it 
is easy to determine its natural frequency 𝜔𝜔𝑛𝑛 from the 
dimensionless eq. (2)-a). This results in: 

 

𝜔𝜔𝑛𝑛 = 𝜔𝜔𝑠𝑠�
1

1 + 𝜇𝜇𝜇𝜇 = �
𝑘𝑘𝑠𝑠

𝑀𝑀𝑠𝑠 + 𝑏𝑏 (3) 

 
Note that, if the inertance 𝑏𝑏 increases in eq. (3), the 

primary structure’s natural frequency 𝜔𝜔𝑛𝑛 decreases. It means 
that the inerter can modify the vibration isolator’s natural 
frequency, which allows it to work away of resonance. 
However, the primary system’s dynamic response increases 
by increasing the inerter’s inertance. This results in the 
inerter assisting the movement of the primary structure, 
providing a similar effect to that produced by the negative 
stiffness damper (NSD) [24, 25]. In fact, this can be easily 

proved by applying the Fourier transform to the inerter’s 
dynamic equation. It gives the following equation: 

 
𝑓𝑓𝑒𝑒(𝑗𝑗𝜔𝜔) = −𝑏𝑏𝜔𝜔2�𝑥𝑥2(𝑗𝑗𝜔𝜔) − 𝑥𝑥1(𝑗𝑗𝜔𝜔)� (4) 

 
From eq. (4), it is clear to note that the product −𝑏𝑏𝜔𝜔2 

results in negative stiffness physical units. This is one of the 
most inerter’s beneficial dynamic properties, which is worth 
exploiting in passive control systems. When the inerter’s 
terminals are not connected to the mechanical ground as 
shown in Fig. 2 b), it is not easy to qualitatively determine its 
control effect on the primary structure mass 𝑀𝑀𝑠𝑠. Meanwhile, 
control effect for the grounded inerter-based DVA depicted 
in Fig. 2 c), which is intuitive as it will increase the DVA’s 
control force causing the primary structure’s dynamic 
response reduction. This will be revealed in the next section 
through a frequency calibration process based on the FPT. 

 
3 Frequency calibration procedure 

 
To apply the FPT, it is necessary to compute the transmissibility 

𝑥𝑥𝑠𝑠 

𝑘𝑘𝑠𝑠 

𝑥𝑥1 
𝑓𝑓(𝑡𝑡) 

𝑘𝑘1 

𝑐𝑐1 

𝑥𝑥𝑒𝑒(𝑡𝑡) 

𝑀𝑀𝑠𝑠 𝑚𝑚1 

c) 
inerter 

𝑏𝑏 
 

𝑥𝑥𝑠𝑠 

𝑘𝑘𝑠𝑠 

𝑥𝑥1 
𝑓𝑓(𝑡𝑡) 

𝑘𝑘1 

𝑐𝑐1 
𝑥𝑥𝑒𝑒(𝑡𝑡) 

𝑀𝑀𝑠𝑠 𝑚𝑚1 

b) 

𝑏𝑏 

𝑘𝑘𝑠𝑠 

𝑐𝑐𝑠𝑠 
𝑀𝑀𝑠𝑠 

a) 
𝑏𝑏 
 

𝑥𝑥𝑠𝑠 
𝑓𝑓(𝑡𝑡) 
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FRFs for the dynamic systems described in Fig. 2 b) and c). Such 
dimensionless functions can be computed by simultaneously solving 
the sets of eqs. (2) (b) and (c). By doing this, the following are obtained. 

 
|𝑇𝑇𝑏𝑏(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1,Ω)| =

𝑋𝑋𝑠𝑠,𝑏𝑏

𝑋𝑋𝑒𝑒
=
𝐹𝐹𝑇𝑇
𝐹𝐹

= �
A𝑏𝑏(𝜇𝜇,𝛽𝛽,Ω) + B𝑏𝑏(𝛽𝛽, 𝜁𝜁1,Ω)

C𝑏𝑏(𝜇𝜇, 𝜇𝜇, 𝛽𝛽,Ω) + D𝑏𝑏(𝜇𝜇, 𝛽𝛽, 𝜁𝜁1,Ω)�

1
2
 

(5) 

|𝑇𝑇𝑐𝑐(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1,Ω)| =
𝑋𝑋𝑠𝑠,𝑐𝑐

𝑋𝑋𝑒𝑒
=
𝐹𝐹𝑇𝑇
𝐹𝐹

= �
A𝑐𝑐(𝜇𝜇, 𝛽𝛽,Ω) + B𝑐𝑐(𝛽𝛽, 𝜁𝜁1,Ω)

C𝑐𝑐(𝜇𝜇, 𝜇𝜇, 𝛽𝛽,Ω) + D𝑐𝑐(𝜇𝜇, 𝛽𝛽, 𝜁𝜁1,Ω)�

1
2
 

(6) 

 
Note that, eq. (5) represents the dimensionless 

transmissibility FRF for the system shown in Fig. 2 (b), while 
the eq. (6) denotes that of the system depicted in Fig. 2 (c). Then 
the subfunctions of these FRFs can be written as follows: 

 
A𝑏𝑏(𝜇𝜇, 𝛽𝛽,Ω) = �(1 + 𝜇𝜇)Ω2 − 𝛽𝛽2�

2; B𝑏𝑏(𝛽𝛽, 𝜁𝜁1,Ω) = (−2𝛽𝛽𝜁𝜁1Ω)2 
A𝑐𝑐(𝜇𝜇, 𝛽𝛽,Ω) = �(𝜇𝜇𝜇𝜇𝛽𝛽2 + 𝜇𝜇 + 1)Ω2 − 𝛽𝛽2�

2 
B𝑐𝑐(𝛽𝛽, 𝜁𝜁1,Ω) = �2Ω𝛽𝛽𝜁𝜁1(𝜇𝜇𝜇𝜇Ω2 − 1)�

2 
C𝑏𝑏(𝜇𝜇, 𝜇𝜇, 𝛽𝛽,Ω) = (−(𝜇𝜇𝜇𝜇 + 𝜇𝜇 + 1)Ω4 + (𝜇𝜇𝛽𝛽2 + 𝛽𝛽2 + 𝜇𝜇 + 1)Ω2 − 𝛽𝛽2)2 
C𝑐𝑐(𝜇𝜇, 𝜇𝜇, 𝛽𝛽,Ω) = �−(𝜇𝜇 + 1)Ω4 + �(𝜇𝜇𝜇𝜇 + 𝜇𝜇 + 1)𝛽𝛽2 + 𝜇𝜇 + 1�Ω2 − 𝛽𝛽2�

2 

D𝑏𝑏(𝜇𝜇,𝛽𝛽, 𝜁𝜁1,Ω) = �2𝛽𝛽𝜁𝜁1Ω�(1 + β)Ω2 − 1��
2
 

D𝑐𝑐(𝜇𝜇,𝛽𝛽, 𝜁𝜁1,Ω) = �2𝛽𝛽𝜁𝜁1Ω�(1 + (𝜇𝜇 + 1)𝜇𝜇)Ω2 − 1��
2
 

 
The FPT basically consists of two operating modes of the 

absorber’s damper. The first mode is when the damping factor 
𝜁𝜁1 approaches zero, which means that the resulting system 
becomes a two-DOF mechanical system with two undamped 
resonant frequencies. The second mode is when the damping 
factor 𝜁𝜁1 approaches infinite value, which implies that the 
damper is blocked causing the masses 𝑚𝑚1 and 𝑀𝑀𝑠𝑠 are virtually 
clamped together. By applying these conditions to the FRFs 
given by eqs. (5) and (6), the following are produced. 
 

lim
𝜁𝜁1→0

(|𝑇𝑇𝑏𝑏(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1,Ω)|) = lim
𝜁𝜁1→∞

(|𝑇𝑇𝑏𝑏(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1,Ω)|) 

                                                    ⇒
A𝑏𝑏(𝜇𝜇, 𝛽𝛽,Ω)

C𝑏𝑏(𝜇𝜇, 𝜇𝜇, 𝛽𝛽,Ω)

= ±
1

𝐷𝐷𝑏𝑏(𝜇𝜇,Ω) 

(7) 

 

lim
𝜁𝜁1→0

(|𝑇𝑇𝑐𝑐(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1,Ω)|) = lim
𝜁𝜁1→∞

(|𝑇𝑇𝑐𝑐(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1,Ω)|) 

                                                        ⇒
A𝑐𝑐(𝜇𝜇, 𝛽𝛽,Ω)

C𝑐𝑐(𝜇𝜇, 𝜇𝜇, 𝛽𝛽,Ω)

= ±
𝐵𝐵𝑐𝑐(𝜇𝜇, 𝛽𝛽,Ω)
𝐷𝐷𝑐𝑐(𝜇𝜇,𝜇𝜇,Ω) 

(8) 

 
Considering the plus sign into eq. (7), the trivial solution 

for the dimensionless variable 𝛽𝛽 is yielded. While the minus 
sign yields the transmissibility FRF’s invariant frequencies, 
see the first equation of the set of eq. (9). Additionally, these 
invariant frequencies can also be expressed in terms of the 

tuning magnitude |𝑇𝑇𝑏𝑏|, as described by the second equation 
of eq. (9). 

 
�(2𝜇𝜇 + 1)𝜇𝜇 + 2𝜇𝜇 + 2�Ω𝑏𝑏4                           
−(2𝜇𝜇𝛽𝛽2 + 2𝛽𝛽2 + 2𝜇𝜇 + 2)Ω𝑏𝑏2 + 2𝛽𝛽2 = 0
|𝑇𝑇𝑏𝑏|2(1 + 𝜇𝜇)2Ω𝑏𝑏4                                            
        −2|𝑇𝑇𝑏𝑏|2(1 + 𝜇𝜇)Ω𝑏𝑏2 + |𝑇𝑇𝑏𝑏|2 − 1 = 0⎭

⎪
⎬

⎪
⎫

 para b) (9) 

 
Taking into consideration that the ratio 𝜇𝜇 ∈ ℝ+, the 

biquadratic equations of eq. (9) yield positive real roots that 
are generally well known in the literature as dynamic 
system’s invariant frequencies [26]. The fixed-point 
technique holds that vibration amplitudes yielded at the 
transmissibility FRF’s invariant frequencies must be equal. 
To achieve this target, it is necessary to apply Vieta’s 
theorem to the set of equations of eq. (9). This leads to the 
calibration of the invariant frequencies by means of the 
optimal variable 𝛽𝛽 which is given by the following 
mathematical expression. 

 

𝛽𝛽ópt = �
(1 + 𝜇𝜇)𝜇𝜇 + 1

(1 + 𝜇𝜇)2

|𝑇𝑇𝑏𝑏(𝜇𝜇)| = �
(1 + 2𝜇𝜇)𝜇𝜇 + 2(1 + 𝜇𝜇)

𝜇𝜇 ⎭
⎪
⎬

⎪
⎫

∀{𝜇𝜇, 𝜇𝜇} ∈ ℝ+ (10) 

 
In eq. (10), 𝛽𝛽𝑏𝑏,ópt and |𝑇𝑇𝑏𝑏(𝜇𝜇)| represent the optimal 

tuning frequency and the maximum tuning magnitude at the 
dynamical system’s invariant frequencies for the ungrounded 
inerter-based DVAs depicted in Fig. 2 (b). It is clear to see 
that the optimal fixed magnitude |𝑇𝑇𝑏𝑏(𝜇𝜇)| is a monotonic 
function that increases when the inertance to the DVA’s 
physical mass ratio 𝜇𝜇 increases, meaning that the ungrounded 
inerter does not work well when connected between the 
masses 𝑚𝑚1 and 𝑀𝑀𝑠𝑠. Note that the FPT quickly revealed the 
dynamic performance of the ungrounded inerter-based DVA. 
Now, it is also possible to reveal the performance for 
grounded inerter-based DVA by applying the EFP to eq. (8). 
It results in, 

 
Ω𝑐𝑐6 

−
� 2𝛽𝛽2𝜇𝜇(𝜇𝜇 + 1)𝜇𝜇2 + 2𝜇𝜇 + 2

+(2𝜇𝜇𝛽𝛽2 + 2𝜇𝜇2 + 3𝜇𝜇 + 1)𝜇𝜇
�

𝜇𝜇𝜇𝜇(1 + 𝜇𝜇) Ω𝑐𝑐4 

+
(𝛽𝛽2(4𝜇𝜇 + 2)𝜇𝜇 + 2𝛽𝛽2 + 2𝜇𝜇 + 2)

𝜇𝜇𝜇𝜇(1 + 𝜇𝜇) Ω𝑐𝑐2 

−
2𝛽𝛽2

𝜇𝜇𝜇𝜇(1 + 𝜇𝜇) = 0 

(11) 

 
Eq. (11) reveals that the transmissibility FRF contains 

three invariant frequencies that can be denoted as Ω𝑃𝑃2 , Ω𝑄𝑄2  and 
Ω𝑅𝑅2 . The existence of the third invariant frequency Ω𝑅𝑅2  does 
not directly allow the application of the FPT in a 
conventional way. Inspired by the methodology developed 
by Hu et al. [27], the invariant frequencies of eq. (11) can be 
written as follows. 
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Ω𝑃𝑃2 + Ω𝑄𝑄2 + Ω𝑅𝑅2 =
(2𝛽𝛽2𝜇𝜇(𝜇𝜇 + 1)𝜇𝜇2 + (2𝜇𝜇𝛽𝛽2 + 2𝜇𝜇2 + 3𝜇𝜇 + 1)𝜇𝜇 + 2𝜇𝜇 + 2)

𝜇𝜇𝜇𝜇(1 + 𝜇𝜇)

Ω𝑃𝑃2Ω𝑄𝑄2 + Ω𝑃𝑃2Ω𝑅𝑅2 + Ω𝑄𝑄2Ω𝑅𝑅2 =
(𝛽𝛽2(4𝜇𝜇 + 2)𝜇𝜇 + 2𝛽𝛽2 + 2𝜇𝜇 + 2)

𝜇𝜇𝜇𝜇(1 + 𝜇𝜇)

Ω𝑃𝑃2Ω𝑄𝑄2Ω𝑅𝑅2 =
2𝛽𝛽2

𝜇𝜇𝜇𝜇(1 + 𝜇𝜇) ⎭
⎪⎪
⎬

⎪⎪
⎫

 (12) 

 
The auxiliary equation that relates to the invariant 

frequencies Ω𝑃𝑃2  and Ω𝑄𝑄2  is obtained when eq. (8) is evaluated 
at 𝜁𝜁1 → ∞, creating the possibility to compute the optimal 
variable 𝛽𝛽. This equation is the following: 

 
(2𝜇𝜇(1 + 𝜇𝜇)𝜇𝜇2 + 2𝜇𝜇𝜇𝜇)Ω𝑃𝑃2Ω𝑄𝑄2

− (2𝜇𝜇𝜇𝜇 + 𝜇𝜇 + 1)�Ω𝑃𝑃2 + Ω𝑄𝑄2 � + 2
= 0 

(13) 

 
Both square invariant frequency Ω𝑅𝑅2  and the optimal 

variable 𝛽𝛽𝑐𝑐,ópt can be determined by combining the set of 
equations of eq. (12) together with that given by (13). By 
performing this, the following are yielded. 

 

𝛽𝛽𝑐𝑐,ópt = �
(𝜅𝜅 − 2𝜇𝜇𝜇𝜇2 − 𝜇𝜇2 − 𝜇𝜇𝜇𝜇 − 𝜇𝜇)(2𝜇𝜇𝜇𝜇2 + 𝜇𝜇2 + 3𝜇𝜇𝜇𝜇 + 3𝜇𝜇 + 𝜅𝜅 + 2)(𝜇𝜇 + 1)

2(𝜇𝜇 + 1)��(4𝜇𝜇2 + 6𝜇𝜇 + 4)𝜇𝜇 + 1�𝜇𝜇4 + �(6𝜇𝜇2 + 12𝜇𝜇 + 13)𝜇𝜇 + 5�𝜇𝜇3 + 𝜀𝜀�

Ω𝑅𝑅2 =
�(2𝜇𝜇 + 3)𝜇𝜇 + 𝜇𝜇 + 3�𝜇𝜇 + 2 + 𝜅𝜅

2𝜇𝜇𝜇𝜇(1 + 𝜇𝜇) ⎭
⎪
⎬

⎪
⎫

∀{𝜇𝜇, 𝜇𝜇} ∈ ℝ+ (14) 

 
where, 
 

𝜅𝜅 = �
(4𝜇𝜇3 + 14𝜇𝜇2 + 14𝜇𝜇 + 4)𝜇𝜇𝜇𝜇 + 𝜇𝜇2(2𝜇𝜇 + 3)2𝜇𝜇2

+(𝜇𝜇 + 2)2(𝜇𝜇 + 1)2  

𝜀𝜀 = ��(2𝜅𝜅 + 6)𝜇𝜇 + (2𝜅𝜅 + 14)�𝜇𝜇 + 𝜅𝜅 + 9�𝜇𝜇2 

+�(2𝜅𝜅 + 5)𝜇𝜇 + 2𝜅𝜅 + 7�𝜇𝜇 + 𝜅𝜅 + 2 
 
Thus, the remaining invariant frequencies can be 

computed by substituting Ω𝑅𝑅2  into eq. (12). For the specific 
mass ratios 𝜇𝜇 = 0.1 and 𝜇𝜇 = 1, the optimal tuning variable 
𝛽𝛽𝑐𝑐,ópt = 1.2028 is computed by eq. (14). Then, the three 
invariant frequencies for the grounded inerter-based DVA are 
described in Fig. 3. 

 

 
Figure 3. Invariant frequencies and maximum tuning magnitude for the 
grounded inerter-based DVA’s dimensionless transmissibility FRF. 
Source: Authors 
 

Table 1. 
Numerical solutions for both  ℋ∞ and FPT 

a) 𝓗𝓗∞ criterion 
 𝜇𝜇 𝛽𝛽ópt 𝜁𝜁1,ópt 𝑟𝑟min ℋ∞ norm 

𝜇𝜇 = 0.1 

0 0.9090 0.1854 0.9759 4.5891 
0.5 1.0760 0.2745 0.9633 3.7299 
1 1.2023 0.3607 0.9506 3.2240 
1.5 1.3023 0.4443 0.9379 2.8835 
2 1.3838 0.5252 0.9252 2.6360 

b) Fixed-points technique |𝑇𝑇𝑐𝑐|fijo 

𝜇𝜇 = 0.1 

0 0.9090 0.2132 --- 4.5825 
0.5 1.0762 0.3124 --- 3.7103 
1 1.2028 0.4070 --- 3.1944 
1.5 1.3033 0.4973 --- 2.8465 
2 1.3853 0.5837 --- 2.5939 

Source: Authors 
 
 

 
Figure 4. Optimal transmissibility FRF curves considering the mass ratio 
of the 𝜇𝜇 = 0.1 and 𝜇𝜇 ∈ [0.5,2]. 
Source: Authors 

 
 
In Fig. 3, it is possible to note that the transmissibility 

FRF presents two well-calibrated invariant points which are 
both denoted as the optimal tuning magnitude |𝑇𝑇𝑐𝑐|fijo. 
Moreover, the invariant frequency Ω𝑅𝑅2  is always higher than 
the Ω𝑃𝑃2  and Ω𝑄𝑄2 . Based on this observation, in order to 
compute the optimal damping factor, the Krenk’s damping 
factor tuning technique is employed here [28]. This theory 
holds the existence of a singular frequency when the 
absorber’s dashpot is blocked, yielding a vibration amplitude 
must have the same vibration magnitude as those produced at 
the invariant frequencies Ω𝑃𝑃2  and Ω𝑄𝑄2 . Because the analytical 
solution for the optimal damping factor 𝜁𝜁1,ópt is a very long 
rational mathematical expression, the optimal numerical 
values of such a solution are presented in Table 1 for the 
range of 𝜇𝜇 ∈ [0.5,2]. 

In order to differentiate the inerter’s control effect in the 
anti-vibration devices shown in Fig. 2 (b) and (c), it is 
necessary to perform a numerical simulation considering the 
optimal numerical solutions depicted in Table 1. By 
performing this, the undamped primary structure’s optimal 
FRF curves evolution is shown in Fig. 4. 

When observing the optimal transmissibility FRF curves 
in Fig. 4, the transmissibility FRF’s vibration amplitude 
increases for ungrounded inerter-based DVA coupled to the 
primary structure, while for the grounded inerter-based DVA 
decreases. This is mainly due to the inerter’s inertial mass 
amplification and the negative stiffness effects. Therefore, 
the classic DVA’s control performance can be improved by 
using a grounded inerter. To fairly assess the control 
performance for grounded inerter-based DVA, it is necessary 
to apply the performance measures ℋ∞ and ℋ2. 

 

| 𝑻
𝒄(
𝜷𝜷

,𝝁𝝁
,𝒒𝒒

,𝜻𝜻
𝟏𝟏

,𝛀
) |

 

𝛀𝑹 ≫ 𝛀𝑸 > 𝛀𝑷 
 

𝛀 = 𝝎/𝝎𝒔 
𝛀𝑸 𝛀𝑷 

|𝑻𝒄|𝐟𝐢𝐣𝐨 
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4 Performance evaluation 
 
To evaluate the vibration mitigation potential for anti-

vibration systems subjected to both harmonic and random 
vibrations, many researchers often use control performance 
measures ℋ∞ and ℋ2. When the dynamical system is under 
harmonic vibration, the ℋ∞ criterion is more convenient to 
use than the ℋ2 criterion. In addition, ℋ∞ criterion focuses 
on minimizing the control signal’s supreme value, 
meanwhile the ℋ2 criterion is used to minimize the total 
vibration energy into the system under random vibration [29]. 

 
4.1  𝓗𝓗∞ criterion 

 
The transmissibility FRF’s supreme values for the 

grounded inerter-based DVA can be calculated through eq. 
(8), which basically represent the dynamical system’s 
resonant peaks. In the literature, it has been reported that the 
system’s best dynamic balance can be achieved when the 
resonant peaks reach the same Dynamic Magnification 
Factor (DMF) [30]. In order to achieve this dynamic trade-
off between the resonant peaks, a constrained nonlinear 
multivariable optimization problem needs to be formulated 
herein, 

 

⎩
⎪
⎨

⎪
⎧min �max

𝑞𝑞,𝜁𝜁1
(|𝑇𝑇𝑏𝑏(Ω)|)� = max(|𝑇𝑇𝑏𝑏(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1,Ω)|)

sujeto a:
𝜕𝜕|𝑇𝑇𝑏𝑏(Ω)|2

𝜕𝜕Ω2 = 0

{𝛽𝛽, 𝜁𝜁1} ≥ 0

 (15) 

Note that the nonlinear optimization problem given by 
formulation (17) can be numerically solved as in [31]. 
However, in order to achieve a high precision in the 
minimization process of the system’s resonant points, it is 
convenient to use the methodology recently developed by 
Asami et al. [32]. For two-DOF mechanical systems, Asami’s 
methodology holds that the primary structure’s FRF becomes 
a fourth-order algebraic equation 𝑓𝑓𝑛𝑛(𝜇𝜇,𝜇𝜇, 𝛽𝛽, 𝜁𝜁1, 𝑟𝑟,Ω) in terms 
of Ω2 when the magnitude |𝐻𝐻𝑀𝑀| is replaced by function ℎ =
1/√1 − 𝑟𝑟2. Now, by defining the control square resonant 
frequencies as ΩA2  and ΩB2 , then 𝑓𝑓𝑛𝑛(𝜇𝜇,𝜇𝜇, 𝛽𝛽, 𝜁𝜁1 , 𝑟𝑟,Ω) =
(Ω − ΩA)2(Ω − ΩB)2. The variable Ω can be deleted by 
properly applying Vieta’s theorem, resulting in an 
overdetermined system with two nonlinear equations 
𝑓𝑓𝑛𝑛(𝜇𝜇,𝜇𝜇, 𝛽𝛽, 𝜁𝜁1, 𝑟𝑟) 𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1, … 2. It is worth emphasizing that 
the overdetermined system provides a necessary condition, 
but not sufficient to yield a trade-off between the two 
resonant peaks. The remaining condition can be obtained by 
using the Jacobian matrix 𝐽𝐽𝑓𝑓𝑛𝑛(𝛽𝛽, 𝜁𝜁1) = 𝜕𝜕𝑓𝑓𝑛𝑛(𝑞𝑞,𝜁𝜁1)

𝜕𝜕(𝑞𝑞,𝜁𝜁1)
 of the 

infinitesimal variation of unknown variable 𝑟𝑟 with respect to 
the design parameters {𝛽𝛽, 𝜁𝜁1}. Then, the optimality criteria 
approach is satisfied when any 2x2 minor determinant of the 
Jacobian matrix is equalized zero. By calculating such a 
determinant, a constitutive equation is obtained that 
completes the conditions to solve the overdetermined system. 
Therefore, the objective function given by eq. (8) can be 
precisely minimized at two resonant peaks by solving the 
following set of nonlinear equations. 

 
𝑓𝑓1(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1, 𝑟𝑟) = G1(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1, 𝑟𝑟)�G4(𝜇𝜇, 𝛽𝛽, 𝑟𝑟) − G3(𝜇𝜇,𝜇𝜇,𝛽𝛽, 𝜁𝜁1, 𝑟𝑟) = 0

𝑓𝑓2(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1, 𝑟𝑟) =
1
4 G12(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1, 𝑟𝑟) − G2(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1, 𝑟𝑟) + 2�G4(𝜇𝜇, 𝛽𝛽, 𝑟𝑟) = 0

𝑓𝑓3(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1, 𝑟𝑟) = �
𝜕𝜕(𝑓𝑓1, 𝑓𝑓2)
𝜕𝜕(𝛽𝛽, 𝜁𝜁1) � = det

⎝

⎜
⎛
𝜕𝜕𝑓𝑓1
𝜕𝜕𝛽𝛽

𝜕𝜕𝑓𝑓1
𝜕𝜕𝜁𝜁1

𝜕𝜕𝑓𝑓2
𝜕𝜕𝛽𝛽

𝜕𝜕𝑓𝑓2
𝜕𝜕𝜁𝜁1⎠

⎟
⎞

= 0

⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

∀{𝜇𝜇, 𝜇𝜇} ∈ ℝ+ (16) 

 
where G𝑖𝑖(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1 , 𝑟𝑟) for 𝑖𝑖 = 1, . .4 are rational functions 

described in Appendix A. Then, the set of nonlinear 
equations of eq. (18) can be solved through the Newton–
Raphson method, considering the numerical solutions 
described in Table 1 as convergence initial points. For the 
sake of the fair comparison, a numerical simulation 
comparison between the FPT and ℋ∞ criteria needs to be 
performed. By selecting the mass ratios 𝜇𝜇 = 0.1 and 𝜇𝜇 = 1, 
the optimal FRFs are shown in Fig. 5. 
From Fig. 5, the maximum tuning magnitude |𝑇𝑇𝑏𝑏|fijo yielded 
at invariant frequencies is approximately equal to that 
produced at resonant frequencies which can be denoted as 
ℋ∞ norm, meaning that the FPT is an approximation to the 
ℋ∞ optimization. Additionally, the percentage of the 
dynamic magnification factor reduction (%DMFR) is 
approximately 29.74% when the inerter’s inertial force effect 
is the same as that produced by the DVA’s physical mass. 
Indeed, it is evident that the grounded inerter’s intrinsic 
dynamic characteristics significantly improve the control  

performance of the classic DVA under harmonic vibration. 
When the system is subjected to random vibration, the 
optimal parameters change because the control objective is 
the minimization of the total vibration energy instead of 
resonant peaks. In this regard, the ℋ2 criterion is more 
convenient than ℋ∞ norm. 

 

 
Figure 5. Numerical comparison between the tuning FPT and the ℋ∞ 
criterion, considering the mass ratios 𝜇𝜇 = 0.1 and 𝜇𝜇 = 1. 
Source: Authors 
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4.2  𝓗𝓗𝟐𝟐 criterion 
 
The performance measure ℋ2 is mainly based on the 

minimization of the expected value of the system’s dynamic 
response subjected to a stationary stochastic process whose 
power spectral density (PSD) is uniform at the whole 
excitation frequency band. Considering the input PSD of the 
signal 𝑥𝑥𝑒𝑒(𝑡𝑡) is S𝑥𝑥𝑒𝑒(𝜔𝜔) = S𝑥𝑥𝑒𝑒 , then the output PSD is Sxs =
S𝑥𝑥𝑒𝑒|𝑇𝑇𝑐𝑐(𝜔𝜔)|2. Therefore, the expected value is given by the 
following mathematical expression, 

 

E[Sxs
2 ] = S𝑥𝑥𝑒𝑒 � |𝑇𝑇𝑐𝑐(𝜔𝜔)|2dω

+∞

−∞
 (17) 

 
Note that eq. (17) represents the total vibrational energy 

of the dynamic system over the whole range of excitation 
frequencies, which can be expressed in a dimensionless form 
when the response |𝑇𝑇𝑐𝑐(𝜔𝜔)|2 becomes in |𝑇𝑇𝑐𝑐(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1,Ω)|2 
[33]. It gives, 

 

𝜎𝜎�𝑐𝑐2(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1) =
1

2𝜋𝜋�
|𝑇𝑇𝑐𝑐(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1,Ω)|2dΩ

+∞

−∞
 (18) 

 
In eq. (18), the mathematical term 𝜎𝜎�𝑐𝑐2(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1) is not 

only commonly known as the dimensionless variance of the 
system’s dynamic response, but also as the control 
performance index ℋ2 [34]. Then, the improper integral can 
be calculated either by the integration method of residues 
[35] or obtaining the unique solution of the Lyapunov 
equation [36]. When the integration method of residues is 
applied in eq. (18), it becomes: 

 
𝜎𝜎�𝑐𝑐2(𝜇𝜇,𝜇𝜇,𝛽𝛽, 𝜁𝜁1)

=
1

2𝜋𝜋�
𝑎𝑎0Ω6 + 𝑎𝑎1Ω4 + 𝑎𝑎2Ω2 + 𝑎𝑎3

(Ω4 − 𝑏𝑏2Ω2 + 𝑏𝑏4)2 + (−𝑏𝑏1Ω3 + 𝑏𝑏3Ω)2 dΩ
+∞

−∞
 (19) 

 
where, 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑎𝑎0 = (2𝛽𝛽𝜇𝜇𝜇𝜇𝜁𝜁1)2(1 + 𝜇𝜇)−2

𝑎𝑎1 = (1 + (𝜇𝜇𝛽𝛽2 + 1)2𝜇𝜇2 + (2 + (−8𝜁𝜁12 + 2)𝛽𝛽2𝜇𝜇)𝜇𝜇)(
𝑎𝑎2 = −2𝛽𝛽2(𝜇𝜇𝜇𝜇𝛽𝛽2 − 2𝜁𝜁12 + 𝜇𝜇 + 1)(1 + 𝜇𝜇)−2

𝑎𝑎3 = 𝛽𝛽4(1 + 𝜇𝜇)−2

𝑏𝑏1 = 2𝛽𝛽𝜁𝜁1(1 + (1 + 𝜇𝜇)𝜇𝜇)(1 + 𝜇𝜇)−1

𝑏𝑏2 = (𝜇𝜇𝜇𝜇𝛽𝛽2 + 𝜇𝜇𝛽𝛽2 + 𝛽𝛽2 + 1 + 𝜇𝜇)(1 + 𝜇𝜇)−1

𝑏𝑏3 = 2𝛽𝛽𝜁𝜁1(1 + 𝜇𝜇)−1

𝑏𝑏4 = 𝛽𝛽2(1 + 𝜇𝜇)−1

 (20) 

 
It is easy to see that the rational function of the integrand 

of eq. (19) has four simple poles (Ω1,Ω2,Ω3 y Ω4) that are 
located in the upper middle part of the complex plane. Then, 
the residues yielded at each simple pole can be written as 
follows: 

 

𝜎𝜎�𝑐𝑐2(𝜇𝜇,𝜇𝜇,𝛽𝛽, 𝜁𝜁1) =
𝑗𝑗
2��Res[|𝑇𝑇𝑐𝑐(Ω)|2;Ω𝑖𝑖]

4

𝑖𝑖=1

�

= −
−𝑎𝑎0Ω16 + 𝑎𝑎1Ω14 − 𝑎𝑎2Ω12 + 𝑎𝑎3

Ω1(Ω12 − Ω22)(Ω12 − Ω32)(Ω12 − Ω42) 

(21) 

                                     +
−𝑎𝑎0Ω26 + 𝑎𝑎1Ω24 − 𝑎𝑎2Ω22 + 𝑎𝑎3

Ω2(Ω12 − Ω22)(Ω22 − Ω32)(Ω22 − Ω42) 

                                     −
−𝑎𝑎0Ω36 + 𝑎𝑎1Ω34 − 𝑎𝑎2Ω32 + 𝑎𝑎3

Ω3(Ω12 − Ω32)(Ω22 − Ω32)(Ω32 − Ω42) 

                                     +
−𝑎𝑎0Ω46 + 𝑎𝑎1Ω44 − 𝑎𝑎2Ω42 + 𝑎𝑎3

Ω4(Ω12 − Ω42)(Ω22 − Ω42)(Ω32 − Ω42)
 

 
In eq. (21) 𝑗𝑗 = √−1 is the imaginary unit. Then, the 

residues of eq. (21) can be simplified by using Vieta’s 
theorem, yielding the analytical mathematical expression for 
the dimensionless variance 𝜎𝜎�𝑐𝑐2(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1) given in terms of 
the coefficients described in eq. (20). It results in the 
following: 

 
𝜎𝜎�𝑐𝑐2(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1)

=
𝑎𝑎3(𝑏𝑏1𝑏𝑏2 − 𝑏𝑏3)− 𝑎𝑎0𝑏𝑏1𝑏𝑏42 + �𝑎𝑎2𝑏𝑏1 + 𝑏𝑏3(𝑎𝑎0𝑏𝑏2 + 𝑎𝑎1)�𝑏𝑏4

2𝑏𝑏4(−𝑏𝑏12𝑏𝑏4 + 𝑏𝑏1𝑏𝑏2𝑏𝑏3 − 𝑏𝑏32)  (22) 

 
Finally, the dimensionless variance 𝜎𝜎�𝑐𝑐2(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1) is, 
 

𝜎𝜎�𝑐𝑐2(𝜇𝜇,𝜇𝜇,𝛽𝛽, 𝜁𝜁1)

=

(4𝜇𝜇2𝜇𝜇2𝜁𝜁12 + (𝜇𝜇 − 1)(−4𝜁𝜁12 + 𝜇𝜇 + 1)𝜇𝜇 + 4𝜁𝜁12 − 2𝜇𝜇 −
+(𝜇𝜇 + 1)2 + (𝜇𝜇 + 1)2𝛽𝛽4

4𝛽𝛽𝜇𝜇𝜁𝜁1(𝜇𝜇 + 1)2  
(23) 

 
Now, it is necessary to formulate an unconstrained 

nonlinear multivariable optimization problem to minimize 
the dimensionless variance 𝜎𝜎�𝑐𝑐2(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1), as follows: 

 

�
min
𝑞𝑞,𝜁𝜁1

𝜎𝜎�𝑐𝑐2(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1)

sujeto a:
{𝛽𝛽, 𝜁𝜁1} ≥ 0

 (24) 

 
The optimal variables 𝛽𝛽ópt and 𝜁𝜁1,ópt satisfy to eq. (24), are 

obtained by solving the following set of nonlinear equations. 
 

𝜕𝜕𝜎𝜎�𝑐𝑐2(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1)
𝜕𝜕𝛽𝛽 = 0

𝜕𝜕𝜎𝜎�𝑐𝑐2(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1)
𝜕𝜕𝜁𝜁1

= 0
⎭
⎪
⎬

⎪
⎫

∀{𝜇𝜇, 𝜇𝜇} ∈ ℝ+ (25) 

 
therefore, 
 

𝛽𝛽ópt = �
−𝜇𝜇𝜇𝜇2 + 𝜇𝜇 + 2𝜇𝜇 + 2

2(1 + 𝜇𝜇)2

𝜁𝜁1,ópt = �
𝜇𝜇(1 + 𝜇𝜇)2(−4 + (𝜇𝜇 − 3)𝜇𝜇)

8(1 + 𝜇𝜇2𝜇𝜇2 + (1− 𝜇𝜇)𝜇𝜇)(−2 + (𝜇𝜇 − 1)𝜇𝜇)⎭
⎪
⎬

⎪
⎫

∀{𝜇𝜇,𝜇𝜇}

∈ ℝ+ 

(26) 

 
The analytical solutions given by eq. (26) minimize the 

system’s total vibration energy, which also yields the 
significant reduction of the primary structure’s dynamic 
displacement. It is worth performing a numerical simulation 
to evaluate the control performance for the grounded inerter-
based DVA considering the numerical solutions 𝜇𝜇 = 0.1, 
𝜇𝜇 = 1, 𝛽𝛽ópt = 1.2856 and 𝜁𝜁1,ópt = 0.3224, see Fig. 6. 
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Figure 6. Optimal FRF curves computed via ℋ2 criterion. The classic 
DVA’s optimal parameters are 𝛽𝛽ó𝑝𝑝𝑝𝑝 = 0.9315 and 𝜁𝜁1,ó𝑝𝑝𝑝𝑝 = 0.1525. 
Source: Authors 

 
From Fig. 6, it is clear to observe that by increasing the 

inerter’s rotational inertia, the vibration amplitudes are 
considerably reduced. Therefore, the grounded inerter-based 
DVA can effectively mitigate random vibration and 
consequently reduces the energy transmitted to the 
foundation. In addition, the control performance ℋ2 can be 
calculated similarly as in [31], being approximately 33.03%. 

 
5 Conclusion 

 
In this work, the inerter’s dynamic was coupled to single 

and two DOF mechanical systems with the aim of revealing 
its control effect under harmonic and random vibrations. It 
was theoretically demonstrated by means of the FPT that the 
inerter does not provide a good control performance when its 
terminals are connected between the primary structure mass 
and that of the absorber, demonstrating a detrimental effect 
on the system’s dynamic response. However, when one of its 
terminals is connected to the ground and the another to the 
absorber mass, the inerter provides excellent control 
performance. To demonstrate the vibration attenuation 
effectiveness of the inerter device coupled to harmonically 
and randomly excited mechanical systems, the performance 
criteria ℋ∞ and ℋ2 were computed from formulation of the 
constrained and unconstrained nonlinear multivariable 
optimization problems. When the inerter’s inertial force 
effect is equal to that yielded by the absorber physical mass, 
the numerical solutions for the ℋ∞ criterion revealed that the 
grounded inerter-based DVA provides an improvement of 
approximately 29.74% in reducing the transmissibility FRF’s 
resonant peaks; whereas, the analytical solutions for ℋ2 
criterion revealed a dynamic improvement of approximately 
33.03% in minimizing the total vibration energy transmitted 
to the foundation. Therefore, the control performance of 
classic DVA can be significantly improved by the inerter’s 
inertial mass amplification and the negative stiffness effects. 
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Appendix A. Dimensionless functions 𝐆𝐆𝒊𝒊(𝜷𝜷,𝝁𝝁,𝒒𝒒, 𝜻𝜻𝟏𝟏, 𝒓𝒓) for 𝒊𝒊 = 𝟏𝟏, . .𝟒𝟒. 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ G1(𝜇𝜇,𝜇𝜇, 𝛽𝛽, 𝜁𝜁1, 𝑟𝑟) = �

�2(𝜇𝜇𝜇𝜇𝛽𝛽2 + 𝜇𝜇𝛽𝛽2 + 𝛽𝛽2 + 𝑚𝑚𝑚𝑚 + 1)�(−𝜇𝜇 − 1) +
4(1 + (1 + 𝜇𝜇)𝜇𝜇)2𝜁𝜁12𝛽𝛽2 − 4𝜁𝜁12𝛽𝛽2𝜇𝜇2𝜇𝜇2(−𝑟𝑟2 + 1)

� (−𝜇𝜇 − 1)−2

G2(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1, 𝑟𝑟) = �
(𝜇𝜇𝜇𝜇𝛽𝛽2 + 𝜇𝜇𝛽𝛽2 + 𝛽𝛽2 + 𝜇𝜇 + 1)2 + �4�−2− �2(1 + 𝜇𝜇)�𝜇𝜇�� 𝜁𝜁12𝛽𝛽2

−(−8𝜁𝜁12𝛽𝛽2𝜇𝜇𝜇𝜇 + (𝜇𝜇𝜇𝜇𝛽𝛽2 + 𝜇𝜇 + 1)2)(−𝑟𝑟2 + 1) − 2𝛽𝛽2(−𝜇𝜇 − 1)
� (−𝜇𝜇 − 1)−2

G3(𝜇𝜇, 𝜇𝜇, 𝛽𝛽, 𝜁𝜁1, 𝑟𝑟) = �
−2𝛽𝛽2(𝜇𝜇𝜇𝜇𝛽𝛽2 + 𝜇𝜇𝛽𝛽2 + 𝛽𝛽2 + 𝜇𝜇 + 1) + 4𝜁𝜁12𝛽𝛽2

−�4𝜁𝜁12𝛽𝛽2 − 2𝛽𝛽2(𝜇𝜇𝜇𝜇𝛽𝛽2 + 𝜇𝜇 + 1)�(−𝑟𝑟2 + 1)�
(−𝜇𝜇 − 1)−2

G4(𝜇𝜇, 𝛽𝛽, 𝑟𝑟) = 𝛽𝛽4𝑟𝑟2(−𝜇𝜇 − 1)−2

 (A.1) 
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