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Abstract 
The objective of this work is to use the autonomous learning methodology as a tool in vehicle maintenance management. In obtaining data, 
faults in the fuel supply system have been simulated, causing anomalies in the combustion process that are easily detectable by vibrations 
obtained from a sensor in the engine of an agricultural tractor. To train the classification algorithm, 4 engine states were used: BE (optimal 
state), MEF1, MEF2, MEF3 (simulated failures). The applied autonomous learning is of the supervised type, where the samples were 
initially characterized and labeled to create a database for the execution of the training. The results show that the training carried out within 
the classification algorithm has an efficiency greater than 90%, which indicates that the method used is applicable in the management of 
vehicle maintenance to predict failures in engine operation. 
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Gestión del mantenimiento de vehículos basada en el aprendizaje 
autónomo en motores de tractores agrícolas 

 
Resumen 
El objetivo del trabajo es utilizar la metodología de aprendizaje autónomo como herramienta en la gestión del mantenimiento de vehículos. 
En la obtención de datos se han simulado fallos en el sistema de alimentación de combustible que provocan anomalías en el proceso de 
combustión que son fácilmente detectables por vibraciones obtenidas de un sensor en el motor de un tractor agrícola. Para entrenar el 
algoritmo de clasificación se utilizaron 4 estados del motor: BE (estado óptimo), MEF1, MEF2, MEF3 (fallas simuladas). El aprendizaje 
autónomo aplicado es del tipo supervisado, donde inicialmente se caracterizó y rotuló las muestras para crear una base de datos para la 
ejecución del entrenamiento. Los resultados muestran que el entrenamiento realizado dentro del algoritmo de clasificación tiene una 
eficiencia superior al 90%, lo que indica que el método utilizado es aplicable en la gestión del mantenimiento de vehículos para predecir 
fallas en el funcionamiento del motor. 
 
Palabras clave: aprendizaje autónomo; algoritmo de clasificación; mantenimiento predictivo; vibraciones. 

 
 
 

1 Introduction 
 
Since their invention, automobiles have needed constant 

human intervention to guarantee their correct operation, for 
which vehicle maintenance processes are applied, the main 
ones being corrective [1] and preventive [2], although 
currently predictive maintenance is an option. which has been 
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developed efficiently [3]. Among the alternatives used in 
terms of the implementation of predictive maintenance, it has 
been proposed to start with maintenance according to the 
state of the vehicle [4] , for this Machine Learning has been 
of vital importance in the analysis and processing of data. 

Autonomous Learning algorithms have been 
implemented with different principles and functionalities, in 
which classification, regression and grouping can be named 
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[5,7], which when used correctly it is possible to diagnose 
and predict failures using only characteristic data of the 
engine, such as vibrations [8]. 

Machine Learning is a useful learning tool in many fields, 
using it in vehicle maintenance is a viable and helpful option 
in terms of fault diagnosis and prediction [9], however, it is 
necessary to have sufficient information to execute a really 
useful training that can be applied. Within autonomous 
learning there are two training alternatives: supervised and 
unsupervised [10], which differ only by the level of human 
intervention they have, the first option being the one applied 
within predictive maintenance. Supervised autonomous 
learning needs real data previously processed by a trainer, 
which must be correctly characterized and labeled [11], so it 
that they serve as an initial reference for the Machine 
Learning algorithm. 

In the present study, autonomous learning is applied to 
the management of vehicle maintenance in agricultural 
tractors, through the acquisition of vibration data obtained in 
the combustion engine and in this way to know its real state 
of operation. 

 
2 Materials and methods 

 
In this study, for the execution of autonomous learning, it 

is important to use a methodological process that includes 
data collection in the engine of the agricultural tractor in 
different states: good and bad state. 

The process seeks to implement the classification 
algorithm belonging to MATLAB® within vehicle 
maintenance management, predicting failures only using 
vibration data taken from the agricultural tractor engine. 

 
2.1 Fault simulation 

 
It is necessary to simulate faults in the agricultural tractor 

engine and each one must produce different data samples, 
which the algorithm can easily classify. The simulated faults 
were executed by varying the opening pressure of the 
injectors. 

Within the first fault (MEF1) simulated, the position of 
the adjustment screw has been varied homogeneously, 
turning it counterclockwise ¼ of a turn in every all the 
injectors, slightly lowering the opening pressure. While the 
engine is running, there is no noticeable change in sound and 
acceleration, but there are changes in the vibrations captured. 

The second failure (MEF2) has been carried out with the 
same procedure in the variation of the opening pressure of the 
injectors, the adjustment screws have been turned ¾ of a turn 
in an anticlockwise direction, producing an easily perceptible 
change in the engine speed and the amount of smoke it 
produces. 

A more realistic scenario is sought to be created with fault 
number 3 (MEF3), in which the injectors are decalibrated in 
such a way that each one has a different setting. Thus, the 
injector belonging to cylinder 1 has turned the adjustment 
screw ¼ of a turn counterclockwise, the injector of cylinder 
number 2 has maintained the correct adjustment and the 
injector of cylinder number 3 has turned its adjustment screw 
¾ of a turn. counterclockwise. In this way, each cylinder will  

 
Figure 1. Vibration sensor located in the engine block. 
Source: The authors. 

 
 

have a different fuel dosage, producing a failure 
corresponding to irregular wear between injectors, a 
noticeable change in engine running can be seen. 

 
2.2 Obtaining vibration data 

 
Vibration data is obtained through a piezoelectric sensor 

capable of obtaining data between 0.5 kHz and 10 kHz, in addition, 
a 2-channel data acquisition card with an update rate of 102.4 kS/ 
s, commanded by programming in LabVIEW. 

The sensor has a magnetized coupling which allows it to 
adhere to any ferrous metal surface. To capture cylinder 
combustion data, the sensor must be placed at TDC [12] and 
preferably in a completely flat area, as indicated in Fig.1. The states 
of the engine that have been taken into account for data collection 
are good condition of the engine (BE) where no failure is recorded 
within its operation, simulated failure number 1 (MEF1), simulated 
failure number 2 (MEF2) and simulated failure number 3 (MEF3). 

The program used by LabVIEW allows acquiring and 
saving the values in the form of voltage points throughout the 
entire vibration. 40 data samples have been taken from each 
engine state, each with an amount of 40,000 data. 

 
2.3 Data processing 

 
The data captured by the sensor is not completely useful 

in machine learning, it needs to be processed in such a way 
that the classification algorithm can use it in its training. To 
do this, programming in MATLAB® allows this activity to 
be carried out automatically. 

The learning is of a supervised type, so it needs a greater 
intervention characterizing and labeling the vibration data so that 
the algorithm can learn from them. Statistical characteristics of the 
time domain have been used, such as: mean, median, mode, root 
mean square, standard deviation, variance, asymmetry, kurtosis, 
maximum and minimum, as was done in the investigation of [13]. 
Regarding the labels, one belonging to each state of the engine has 
been used, as expressed in point 2.2. 

Fig. 2 shows the result obtained in the data processing, this 
table format is necessary for the training of the classification 
algorithm since it contains the 10 characteristics as independent 
variables and the 4 labels as dependent variables, useful within 
autonomous learning. supervised. In the example, only 2 data 
samples of each state are found, the number of samples increases 
in the final training. 
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Figure 2. Vibration data processing results (2 samples of each state). 
Source: The authors. 

 
 

2.4 Classification algorithm training 
 
Training is used directly, importing the table obtained 

from data processing with samples belonging to each state. 
The classification algorithm is executed using decision trees 
as the most useful alternative in terms of learning efficiency. 
Once the training is complete, it is possible to obtain a 
prediction model, a classification function and multiple 
graphs of the process. 

Initially, 3 individual training sessions pertaining to each 
fault were carried out, the BE data was used as a reference 
for the good condition of the engine in each one and later the 
3 different faults simulated with the ME characteristic were 
used, that is, they worked with 3 different training tables of 0 
samples each, with the aim of verifying an existing difference 
between data in good condition and data in poor condition. 
Finally, it is necessary to compile the 4 captured states and 
unify them in a single training, with the labels proposed in 
point 2.2, a data table of 80 samples is used, 20 belonging to 
each state.  

In this process, the MATLAB® software is applied, 
which allows multiple calculation and programming actions 
within matrices and vectors, currently has several tools 
within Machine Learning, such as Classification Learner, 
which allows classifying data according to its characteristics, 
being a of the tools used in this research. 

 
3 Results and discussion 

 
The results obtained in the application of the 

classification algorithm in the different tests carried out are 
shown below. 

 
3.1 Training efficiency 

 
• Individual workouts 

Within the individual trainings, one was considered for 
each failure state together with the BE data, that is, 3 trainings 
corresponding to the characteristics of MEF1, MEF2 and 
MEF3 were carried out, obtaining an efficiency of 97.5% in 
each of the binary classification tests. 
• Glitch compilation 

Although the individual training of each failure contains 
high efficiency percentages, they are not the best alternative 
within a diagnosis, the technician would take too much time 
verifying the failures, so a total compilation of all the failures 
in a single table is necessary. data. The initial trainings were 
only trained with 2 categories, good condition (BE) and poor 
condition (ME), if the number of failures recorded in the 
training table goes up, the categories will go up in the same 
way, thus having an efficient prediction and fast in a single 
workout. 

Within this investigation, we worked with data from 4 
states of the engine, good state (BE) with the engine in 
optimal operating conditions, bad state of fault 1 (MEF1), 
bad state of fault 2 (MEF2) and bad state of fault 3 (MEF3). 
For this training and respective predictions, the categories 
rise to 4 and the number of samples to 80. 

The classification algorithm has no difficulty in 
differentiating the data of each category and initially an 
efficiency result of 95% is obtained, the algorithm has 
difficulty in classifying 4 of the 80 samples, 1 belonging to 
the MEF1, 1 to the fault MEF2 and 2 to MEF3 fault. 

 

 
Figure 3. Training scatter diagram. 
Source: The authors. 
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Figure 4. Confusion matrix. 
Source: The authors. 

 
 

 
Figure 5. ROC curve. 
Source: The authors. 

 
 
The Machine Learning application offers some graphics 

as a result of the training process, these are linked to 
efficiency and help the trainer to understand the data groups 
that created confusion or incorrect classification. 
• Dispersion diagram 

The entered data are dispersed within Fig. 3 in groups by 
colors, with the points being each sample correctly classified 
and the X being the samples where the algorithm had 
difficulty. Colors belong; blue for OK data (BE), orange for 
fault 1, yellow for fault 2, and purple for fault 3. 
• Confusion matrix 

The confusion matrix in Fig. 4 expresses graphically 
where exactly there is a confusion on the part of the algorithm 
when performing the data classification. Each crossing  

 
Figure 6. Parallel coordinate graph. 

Source: The authors. 
 
 

between 2 categories of different denomination is an 
incorrect classification by the algorithm, in this case there are 
4 failures out of 80 samples and the result of 95% efficiency 
is verified. 

ROC curve 
The ROC curve of Fig. 5 within a plane expresses the 

variation in efficiency obtained by training, with the 
coordinates 1:1 being the value equivalent to 100%. Initially 
it is observed that the curve approaches 0:0.9 and then rises 
to 0:0.95, in the same way an efficiency of 95% is obtained. 
• Parallel coordinate graph 

The parallel coordinate matrix of Fig. 6 indicates the path 
of each data sample through its characteristics, it is noticeable 
how each category follows the same path and varies 
markedly from the others. The continuous lines are those that 
have been correctly classified while the broken lines belong 
to the samples that created confusion within the algorithm. 

 
3.2 Vibration results 

 
In the results, a graph is generated with the data belonging 

to the vibrations, here it is possible to appreciate the form and 
the ranges of values in which it is found, as well as its 
irregularities normally produced by the simulated faults. 
• BE Chart 

In Fig. 7, the vibrations belonging to the good condition 
data show symmetry and homogeneity along their trajectory, 
containing a maximum value of 0.021 V at their peak and a 
minimum value of -0.017 V at their lower peak, if It is taken 
into account that the origin of its amplitude begins at the point 
0.0013 V as the midpoint of the vibration, the graph is 
distributed equally in both directions. In most of the graphs 
belonging to the category of good condition it is given this 
form. 
• Graph ME fails 1 

Fault number 1 in Fig. 8, it is noticeable that the number 
of vibrations captured have increased and at certain points the 
distribution of oscillations is disproportionate, in addition the 
maximum and minimum peaks have changed, the maximum  
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Figure 7. Vibrations of the motor in optimal state of operation. 

Source: The authors. 
 
 

 
Figure 8. Motor vibrations when simulating fault 1. 

Source: The authors. 
 
 

value captured being 0.013 V and the minimum value -0.009 
V, if the point of origin of the oscillations remains at 0.0013 
V, it indicates a variation in both directions. 
• Graph ME fails 2 

Fault number 2 indicated in Fig. 9, being more severe than number 
1, shows a completely asymmetric variation in oscillations, the amount 
of vibrations has also increased and its maximum and minimum peak 
values have varied in the same way, the point of origin of the 
oscillations is 0.0015 V and from here the maximum value recorded 
reaches 0.026 V, while its minimum value registers -0.025 V. 
• Graph ME fails 3 

In Fig. 10, the results of fault number 3 are indicated, where it is 
observed that there is a variation in the number of data obtained in 
the same test time, in addition, it contains in its central zone a greater 
amount of vibrations and a certain symmetry in the rest of its form. 
This fault is the most severe simulated and a difference is noted in 
the central zone with respect to the good condition results, where its 
maximum and minimum peaks are different, its maximum value 
reached is 0.023V, its minimum value recorded is -0.019 V and its 
origin is given at the point 0.014. 

 
Figure 9. Motor vibrations when simulating fault 2. 

Source: The authors. 
 
 

 
Figure 10. Motor vibrations when simulating fault 3. 

Source: The authors. 
 
 

3.3 Training Validation 
 

• Individual workouts 
Training on the 3 flaws created registers an efficiency of 

97.5%, that is, the algorithm has difficulty classifying 1 out 
of 40 tests. To verify this percentage, each training session is 
evaluated using 40 tests (20 in BE and 20 in ME) data 
samples that were not used initially. 

 
Table 1. 
Results of the validation of the 3 training sessions. 

N° Category Correct 
classification 

Incorrect 
classification Validity Training 

Validity 
1 BE 19 1 95% 85% 2 ME 15 5 75% 
3 BE 19 1 95% 97.5% 4 ME 20 0 100% 
5 BE 20 0 100% 97.5% 6 ME 19 1 95% 

Source: The authors. 
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Table 2. 
Results of the validation of the 3 training sessions. 

Nº Category Correct 
classification 

Incorrect 
classification Validity Training 

Validity 
1 BE 20 0 100% 

92.5% 2 FEM1 15 5 75% 
3 MEF2 20 0 100% 
4 MEF3 19 1 95% 

Source: The authors. 
 
 
Table 1 shows the results of the tests carried out in the 

training sessions belonging to each fault. In the first training 
session, a slight fault was simulated, which did not generate 
much difference between the BE and ME data, although it 
has an initial validity of 97.5% it can be seen that this 
percentage drops to 85%, mostly the algorithm has problems 
in classifying the bad condition data and it is acceptable, 
since it is not a fault with many variations with respect to the 
good condition of the engine. The tests carried out on the 
training sessions belonging to faults 2 and 3 verify the 
validity percentage given initially, the algorithm has 
difficulty in classifying 1 of the 40 samples, since the faults 
are more severe and real, the difference between BE and ME 
values is notorious. 

Glitch compilation 
It is necessary to verify the values obtained and validate 

them through tests with new data, 20 samples are used for 
each state and in this way the classification applied with the 
algorithm is validated individually and collectively. Table 2 
contains the results of the tests of each state, being tests 1, 2 
and 3 the ones that show the best efficiency and only test 2 is 
the one that presents an efficiency of 75%, in any case, the 
validity of collective training is greater than 90%. 

 
4 Conclusions 

 
The individual trainings carried out simulate 3 engine 

failures that have resulted in an efficiency of 97.5% in each 
case, that is, 1 out of 40 data samples will not be correctly 
classified. When validating each training individually, it is 
noticeable that this percentage varies in the first failure, 
where a slight injector problem was simulated, reducing 
efficiency to 85%, in the 2 remaining failures that were more 
severe, the initially given percentage of 97 is preserved, 5 %. 
The greater the amount of data within the training table, the 
better its validation will be, within the final training a 
compilation of all the states was made, obtaining as a result 
an initial efficiency of 95%, which when validated was 
reduced to 92, 5%, being a reliable percentage and capable of 
being used within a real automotive diagnosis. 

The figures belonging to the vibrations of each category 
are a complementary visual aid that correctly expresses the 
state they represent, it is identified within the category BE 
that the oscillations produced are symmetrical and 
homogeneous along their path, meanwhile in the vibrations 
belonging to the simulated faults it is noticeable that said 
symmetry has been lost and also the values between 
maximum and minimum peaks have altered reaching 0.025 
V and -0.015 V in the most severe fault, compared to those 
in good condition 0.021 V and -0.017 V, where a noticeable 

change is observed within the amplitude of the oscillations. 
Predictive maintenance is possible thanks to the 

classification algorithm used, when introducing new data 
they do not necessarily have to be the same as those already 
used in training, the algorithm will simply classify it within 
the group that it most closely resembles. In this way, if the 
engine approaches a state of failure conditions, quick actions 
can be taken and maintenance can be carried out based on the 
real state of the vehicle, saving time and money. The 
efficiency obtained greater than 90% in all the tests carried 
out, is a sufficient basis to trust this new diagnostic method. 
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