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Abstract 
In low-power hardware implementations for classification algorithms, it is often essential to use physical resources efficiently. In this sense, 
the use of modulo-M integer operations instead of floating-point arithmetic, can lead to better performance, especially when M represents 
the dynamic range of an arithmetic block of the Residue Number System (RNS) [1,2]. Following this premise, this work is aiming to 
provide a methodology for implementing a classifier, specifically a Support Vector Machine (SVM) [3], using modulo-M integers and 
proposing a method for the use of Residue Number System. 

Keywords: modular arithmetic; pattern recognition; Residue Number System (RNS); Support Vector Machines (SVN); digital signal 
processing; radial basis function. 

Implementación de máquinas de vectores de soporte sobre enteros 
módulo-M y en el Sistema Numérico de los Residuos 

Resumen 
En las implementaciones en hardware de baja potencia para algoritmos de clasificación, a menudo es esencial utilizar los recursos físicos 
de manera eficiente. En este sentido, la utilización de operaciones con enteros módulo-M en lugar de aritmética de punto flotante puede 
conducir a un mejor rendimiento, especialmente cuando M representa el rango dinámico de un bloque aritmético del Sistema Numérico de 
los Residuos (RNS) [1,2]. Siguiendo esta premisa, el objetivo de este trabajo es proporcionar una metodología para implementar un 
clasificador, en concreto, una Máquina de Vectores de Soporte (SVM) [3], utilizando enteros módulo-M y proponer un método para la 
utilización del Sistema Número de Residuos. 

Palabras clave: aritmética modular; reconocimiento de patrones; Sistema Numérico de los Residuos (SNR); Máquinas de Vectores de 
Soporte (MVS); procesamiento digital de señales; funciones de base radial. 

1 1. Introduction 

Supervised learning techniques are commonly used in 
Machine Learning applications to design specific classifiers 
that can solve pattern recognition problems. One such 
classifier is the Support Vector Machine (SVM), which aims 
to find a decision surface that maximizes the margin between 
two distinct groups in binary categorization [3,4].  

In embedded systems, hardware limitations can pose 
restrictions on implementing sophisticated algorithms. 
However, methods such as modular arithmetic can assist in 
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overcoming these limitations by leading to less complex 
functional units compared to floating-point arithmetic. One 
specific approach to utilizing modular arithmetic in parallel 
hardware operations is the Residue Number System (RNS), 
which enables the representation of large numbers using a set 
of smaller numbers [5]. 

Although the RNS exhibits fast operations such as 
addition, subtraction, and multiplication, it poses challenges 
when dealing with non-linear operations like comparison and 
division [6]. Overcoming this limitation requires a specific 
approach: first, developing a method to represent input 
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features using integers modulo-M; second, mapping non-
linear functions such as the Kernel in SVM to integers 
modulo-M; and finally, utilizing the model to design an 
equivalent RNS-based implementation of SVM (SVM-
RNS).  

By leveraging the SVM-RNS equivalent as a 
foundational component in pattern recognition, it is indeed 
feasible to explore more complex architectures for multi-
class classifiers in subjects such as surface 
electromyographic (sEMG) signal analysis [7,8]. 

 
2 Support Vector Machines (SVM) 

 
In SVM classifiers, the surface decisions aim to the find 

optimal margin, which involves maximizing the minimum 
margin between two classes.  

This problem can be formulated in terms of optimization 
using dual problem formulation: 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜆𝜆) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜆𝜆𝑖𝑖

𝑁𝑁

𝑖𝑖=1

−
1
2 .�𝜆𝜆𝑖𝑖 . 𝜆𝜆𝑗𝑗 . 𝑙𝑙𝑖𝑖 . 𝑙𝑙𝑗𝑗 .𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ , 𝑚𝑚𝚥𝚥���⃗ �

𝑁𝑁

𝑖𝑖,𝑗𝑗

 

 

𝑠𝑠. 𝑡𝑡: 0 ≤ 𝜆𝜆𝑖𝑖 ≤ 𝐶𝐶;�𝜆𝜆𝑖𝑖

𝑃𝑃

𝑖𝑖=1

𝑙𝑙𝑖𝑖 = 0 

(1) 

 
Here, each λ corresponds to Lagrange Multipliers, K 

represents the Kernel function, C is the maximum bound for 
λ, x represents an input feature from training set, and l is the 
class label. Numerical optimization methods such as a 
simplified version of Sequential Minimal Optimization 
(SMO) algorithm [9] can be employed to obtain the Lagrange 
Multipliers and Support Vectors (S.V), which form a 
hyperplane: 

 

𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ � = � 𝜆𝜆𝑖𝑖 . 𝑙𝑙𝑖𝑖 .𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ , 𝑚𝑚𝚥𝚥���⃗ �
𝑇𝑇

𝑖𝑖∈𝑆𝑆.𝑉𝑉

+ 𝑏𝑏 (2) 

 
The Kernel function is a powerful tool that can be used to 

transform non-separable categories into separable ones. One 
well-known example is the Gaussian Kernel, which can map 
finite-dimensional features onto a space characterized by an 
infinite number of dimensions [10]. This transformation is 
achieved by calculating the Euclidean distance between the 
Support Vectors xi, which involves performing inner product 
operations: 

 
𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ , 𝑚𝑚𝚥𝚥���⃗ � = 𝑒𝑒−𝛾𝛾�𝑥𝑥𝚤𝚤���⃗ −𝑥𝑥𝚥𝚥����⃗ �

2
→ 0 < 𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ , 𝑚𝑚𝚥𝚥���⃗ � ≤ 1 (3) 

 
After training stage, the Lagrange Multipliers lie within 

the interval: 
 

0 ≤ 𝜆𝜆𝑖𝑖 ≤ 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀 (4) 
 
The class labels are defined as 1 for Class 1 and -1 for 

Class 2, indicating that labels belong to the set {-1,1}: 
 

𝑙𝑙𝑖𝑖 ∈ {−1,1} (5) 
 

For classification purposes, the hyperplane g is utilized as 
the input for the sign function: 

 

𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ � = �
≥ 0 → 𝑚𝑚𝚥𝚥���⃗ ∈ 𝐶𝐶𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠1

0 → 𝑚𝑚𝚥𝚥���⃗ ∈ 𝐶𝐶𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠2  (6) 

 
3 Residue Number Systems (RNS) 

 
In hardware implementations, several techniques are 

available to execute operations in parallel based on modular 
arithmetic [11]. For instance, considering an integer number 
X that can be decomposed into a set of residues {x1, x2, …, 
xn} with respect to moduli set {m1, m2, …, mn}. It is essential 
to note that each modulus mi is coprime with each other 
modulus mj. Similarly, when this procedure is applied to an 
integer Y, the following system can be defined: 

 
𝑋𝑋 → 𝑋𝑋 = ⟨𝑚𝑚1, 𝑚𝑚2,⋯ , 𝑚𝑚𝑛𝑛⟩ (7) 
𝑌𝑌 → 𝑌𝑌 = ⟨𝑦𝑦1, 𝑦𝑦2,⋯ , 𝑦𝑦𝑛𝑛⟩ 

𝑚𝑚𝑖𝑖 = 𝑋𝑋𝑚𝑚𝑋𝑋𝑋𝑋𝑚𝑚𝑖𝑖  
𝑦𝑦𝑖𝑖 = 𝑌𝑌𝑚𝑚𝑋𝑋𝑋𝑋𝑚𝑚𝑖𝑖 

𝑋𝑋 ∘ 𝑌𝑌 = ⟨𝑚𝑚1 ∘ 𝑦𝑦1, 𝑚𝑚2 ∘ 𝑦𝑦2,⋯ , 𝑚𝑚𝑛𝑛 ∘ 𝑦𝑦𝑛𝑛⟩ 

𝑀𝑀 = �𝑚𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 

 
Where ◦ denotes any operator from the set {+, -, *}, and 

M represents the Dynamic Range of the moduli set, which 
defines the number of possible representations in the ring [9]. 
Furthermore, the RNS is specified in this work under the 
following constraints: 

 
𝑚𝑚𝑋𝑋𝑋𝑋𝑠𝑠𝑒𝑒𝑡𝑡 = {𝑚𝑚3,𝑚𝑚2,𝑚𝑚1} = �2𝛽𝛽 − 1, 2𝛼𝛼 , 2𝛽𝛽 + 1� 

𝑀𝑀 = 𝑚𝑚1.𝑚𝑚2.𝑚𝑚3 = 22𝛽𝛽+𝛼𝛼 − 2𝛼𝛼 
𝑀𝑀 𝑖𝑖𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

(8) 

 
Each integer X represented in this finite field must satisfy 

the following condition: 
 

−𝑀𝑀
2 ≤ 𝑋𝑋 ≤

𝑀𝑀
2 − 1 (9) 

 
This main constraint is thoroughly analyzed in this work 

as it significantly influences every aspect of the SVM, as 
discussed in the following sections. 

 
4 Implementation constraints over integers 

 
Recalling the previous analysis, it can be inferred that the 

SVM hyperplane satisfies the following equation: 
 

𝐺𝐺1.𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ � = �
≥ 0 → 𝑚𝑚𝚥𝚥���⃗ ∈ 𝐶𝐶𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠1

0 → 𝑚𝑚𝚥𝚥���⃗ ∈ 𝐶𝐶𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠2  

𝐺𝐺1 > 0,𝐺𝐺1𝑖𝑖𝑠𝑠𝑚𝑚𝑖𝑖𝑋𝑋𝑒𝑒𝑠𝑠𝑡𝑡𝑚𝑚𝑒𝑒𝑡𝑡 
(10) 

 
Where G1 represents a gain that can assists in mapping 

g(xj) within a limited scale. In the case of integer 
implementation, there are more specific restrictions for each 
part of the hyperplane. Firstly, finite fields only allow the 
representation of a subset P composed of integers: 
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𝑃𝑃 = �
−𝑀𝑀

2 ,⋯ ,
𝑀𝑀
2 − 1� 

𝑃𝑃 ⊆ 𝑍𝑍 
(11) 

 
This implies that an equivalent representation in the 

subset P must be obtained for every component of the SVM, 
including Lagrange Multipliers, feature vectors, Kernel 
function, class labels and comparator function.  

 
5 Proposed Kernel function mapping over integers 

modulo-M 
 
The Kernel function is an essential component of Support 

Vector Machines (SVMs) which maps features into a space 
with higher dimensions. In Radial Basis Functions (RBFs), 
the distance between two finite-dimensional vectors is 
measured, forming an inner product between two infinite-
dimensional vectors. This approach enhances separability, 
and by utilizing the Kernel Trick [10] in SVM with RBF 
Kernel, the hyperplane can be calculated without explicitly 
computing the infinite-dimensional inner product. The 
calculations can be performed using the following equation, 
which proposes a mapping over integers modulo-M: 

 
𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ , 𝑚𝑚𝚥𝚥���⃗ � = 𝑒𝑒−𝛾𝛾�𝑥𝑥𝚤𝚤���⃗ −𝑥𝑥𝚥𝚥����⃗ �

2
 (12) 

 
Where γ is a positive constant parameter. The exponential 

function delimits the range of the function to: 
 

0 < 𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ ,𝑚𝑚𝚥𝚥���⃗ � ≤ 1 (13) 
 
This function can be interpreted as being dependent on 

the distance d: 
 

𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ , 𝑚𝑚𝚥𝚥���⃗ � = 𝑧𝑧(𝑋𝑋) = 𝑒𝑒−𝛾𝛾𝑑𝑑2 
𝑋𝑋2 = �𝑚𝑚𝚤𝚤���⃗ − 𝑚𝑚𝚥𝚥���⃗ �

2
 

(14) 

 
Based on this, the behavior of function z is illustrated in 

Fig.1. 
 

 
Figure 1. RBF Kernel function 
Source: The authors 

 

This function has its domain and range in real numbers, 
but they can be mapped into integers by determining their 
respective bounds. The first step is to find the bounds of the 
domain. Essentially, d2 represents the Euclidean distance 
between two k-dimensional vectors xi and xj: 

 
𝑚𝑚𝚤𝚤���⃗ = �𝑚𝑚𝑖𝑖0𝑚𝑚𝑖𝑖1𝑚𝑚𝑖𝑖2 ⋯𝑚𝑚𝑖𝑖(𝑘𝑘−1)� 
𝑚𝑚𝚥𝚥���⃗ = �𝑚𝑚𝑗𝑗0𝑚𝑚𝑗𝑗1𝑚𝑚𝑗𝑗2 ⋯𝑚𝑚𝑗𝑗(𝑘𝑘−1)� 

(15) 

𝑋𝑋2 = ��𝑚𝑚𝐼𝐼 − 𝑚𝑚𝑗𝑗𝑗𝑗�
2

𝑘𝑘−1

𝑗𝑗=0

  

 
If the x vectors are normalized, their components must be 

within in interval [0,1]. Under this assumption, the maximum 
distance between each pair of components is 1. Therefore, it 
can be inferred that the maximum distance between vectors 
is: 

 

𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀2 = � (1)2
𝑘𝑘−1

𝑗𝑗=0

= 𝑘𝑘 (16) 

 
This implies that: 
 

0 ≤ 𝑋𝑋2 ≤ 𝑘𝑘 (17) 

0 ≤ �
𝑋𝑋2

𝑘𝑘 � ≤ 1  

 
Taking this inequality into account, and defining the 

mapping function as 𝑋𝑋2� : 
 

𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥 =
𝑀𝑀
2 − 1 (18) 

𝑋𝑋2� =
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘 .𝑋𝑋2  

 
Then: 
 

0 ≤ 𝑋𝑋2� ≤ 𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥 (19) 
 
This last inequality is useful for achieving the mapping of 

d2 to integers, indicating that: 
 

𝑋𝑋2� =
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
.𝑋𝑋2 = �𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. �𝑚𝑚𝚤𝚤���⃗ − 𝑚𝑚𝚥𝚥���⃗ �

𝑇𝑇.�
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. �𝑚𝑚𝚤𝚤���⃗

− 𝑚𝑚𝚥𝚥���⃗ � 

(20) 

 
By utilizing the floor function to approximate the mapped 

distance, the following relationship is obtained: 
 

�𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. �𝑚𝑚𝚤𝚤���⃗ − 𝑚𝑚𝚥𝚥���⃗ � ≈ ��

𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. 𝑚𝑚𝚤𝚤���⃗ � − ��

𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. 𝑚𝑚𝚥𝚥���⃗ � (21) 

 
This approximation provides a method for converting a 

normalized feature vector into its integer equivalent: 
 

�⃗�𝑚� = � �
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘 . �⃗�𝑚� (22) 
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Where M represents the dynamic range of the RNS and k 
is the number of dimensions in feature vectors. This analysis 
provides an integer equivalent for the distance, and the next 
step is to convert γ and the function z(d) to integers. 

To convert γ into an equivalent integer, it is necessary to 
compensate for the effect of  𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘
 in the exponent. 

Therefore, it is advisable to use the following mapping 
function: 

 

𝛾𝛾� = �
𝑘𝑘

𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥
. 𝛾𝛾� (23) 

 
These approximations lead to the following model for the 

exponential function: 
 

𝑧𝑧(𝑋𝑋) ≈ 𝑒𝑒−𝛾𝛾�𝑑𝑑2�  (24) 
 
Finally, to adjust the RBF kernel, the following integer-

based equivalent is proposed: 
 

�̂�𝑧��̂�𝑋� = ��
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘.𝐺𝐺𝑒𝑒
� . 𝑒𝑒−𝛾𝛾�𝑑𝑑2�� (25) 

𝐺𝐺𝑒𝑒 ≥ 1 

�̂�𝑧��̂�𝑋� ≈ �
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘.𝐺𝐺𝑒𝑒
� 𝑧𝑧(𝑋𝑋)  

 
In this case, �̂�𝑧��̂�𝑋� represents a function with a range 

contained in the interval�0, �𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘.𝐺𝐺𝑒𝑒

��, which is a valid 
subset within the finite field. Ge is a positive constant gain 
that allows adjusting the amplitude of the exponential 
function according to the subsequent mapping of the SVM 
hyperplane. 

For example, if M = 510, Ge = 5 and k=2, the integer-
based exponential equivalent will have the following bounds: 

 

𝐴𝐴𝑚𝑚𝑝𝑝𝑒𝑒 = �
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘.𝐺𝐺𝑒𝑒
� =

254
2.5 = 25,4 (26) 

⌊𝐴𝐴𝑚𝑚𝑝𝑝𝑒𝑒⌋ = 25 

𝑋𝑋2�𝑀𝑀𝑀𝑀𝑀𝑀 = ⌊𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥⌋ = �
510

2 − 1� = ⌊254⌋ 

𝑋𝑋2�𝑀𝑀𝑀𝑀𝑀𝑀 = 254 

 

 
Thus, the integer exponential function will produce 

values within the range [0,25], which is within the valid 
subset of the finite field P. 

This relationship is illustrated in Fig. 2. 
The kernel function is typically stored in a Look-Up Table 

(LUT) or an equivalent form to simplify its approximation. 
Although other methods, such as using Taylor Series for finite 
fields, exist, they can be challenging to implement. One major 
issue with the Taylor Series approach is the difficulty of finding 
a modular multiplicative inverse for the factorial function, which 
is needed to calculate the series coefficient. If the modulo is not a 
prime number and is not coprime with all Taylor coefficients, the 
existence of a modular multiplicative inverse cannot be 
guaranteed [12]. In the case of a composite number like M, it is 
not certain that all the Taylor Series coefficients will be available.  

 
Figure 2. Integer exponential equivalent. 
Source: The authors 

 

 
Figure 3. Block diagram for integer exponential approximation. 
Source: The authors 

 
 
To visualize the integer exponential approximation, a 

block diagram is provided in Fig. 3. 
 

6 Proposed support vector machine mapping over 
integers modulo-M 

 
Building on the analysis presented in the previous sections, it 

is feasible to map the SVM hyperplane into integers by mapping 
all its components individually. Starting with the Kernel function 
represented in the modulo-M finite field, similar steps can be 
taken to convert the other parameters. A summary of these 
conversions is provided in Table 1. 

 
Table 1. 
Conversion functions summary.  

Parameter Range Conversion 
Function 

Conversion 
Function Range 

Feature vector 
�⃗�𝑚 0 ≤ 𝑚𝑚𝚤𝚤���⃗ ≤ 1 

�⃗̂�𝑚

= ��
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. �⃗�𝑚� 

0 ≤ �⃗�𝑚�̂�𝚤

≤ ⌊�
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. �⃗�𝑚⌋ 

Lagrange 
Multipliers 

𝜆𝜆𝑖𝑖 

0 ≤ 𝜆𝜆𝑖𝑖
≤ 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀 
 

𝜆𝜆�̂�𝚤
= �𝐺𝐺𝑙𝑙𝑚𝑚𝑗𝑗𝑙𝑙𝑑𝑑𝑚𝑚 .

𝜆𝜆𝑖𝑖
𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀

� 0 ≤ 𝜆𝜆�̂�𝚤 ≤ 𝐺𝐺𝑙𝑙𝑚𝑚𝑗𝑗𝑙𝑙𝑑𝑑𝑚𝑚 

    
Gamma 
parameter 

𝛾𝛾 
𝛾𝛾 > 0 𝛾𝛾 = ⌊

𝑘𝑘
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

. 𝛾𝛾⌋ 𝛾𝛾 > 0 

Class labels 
𝑙𝑙𝑖𝑖 

𝑙𝑙𝑖𝑖 ∈ {−1,1} 𝑙𝑙�̂�𝚤 = 𝑙𝑙𝑖𝑖 𝑙𝑙�̂�𝚤 ∈ {−1,1} 

Bias 
𝑏𝑏 𝑏𝑏 > 0 𝑏𝑏 = ⌊𝐺𝐺𝑙𝑙𝑖𝑖𝑚𝑚𝑏𝑏.𝑏𝑏⌋ 𝑏𝑏 > 0 

Source: The authors. 
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Figure 4. Scheme for two-dimensional feature space and its hyperplane g.  
Source: The authors 

 
 

 
Figure 5. Scheme for 𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗 estimation.  
Source: The authors 

 
 
By utilizing these conversion functions, it becomes 

possible to obtain the approximated bound of the hyperplane, 
referred as glim. This parameter represents the maximum 
value of g within a specific area of interest, which 
corresponds to the vector space encompassing all possible 
feature vectors. In the case of a two-dimensional normalized 
feature, for instance, the area of interest is a square defined 
within the range of [0,1] in both dimensions, as depicted in 
Fig. 4. 

To approximate the value of 𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗, the absolute value of g 
can be evaluated at q randomly selected points within the area 
of interest. By comparing these evaluations, the maximum 
value can be determined, yielding the value of 𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗: 

 
𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 {|𝑔𝑔𝑖𝑖|}} (27) 

0 ≤ 𝑖𝑖 ≤ 𝑞𝑞  
 
While using numerical analysis techniques such as SMO 

(Sequential Minimal Optimization) or genetic algorithms 
could potentially provide a more precise estimation of 
𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗 ,for the sake of simplicity, this work utilizes the q random 
points method, as depicted in Fig. 5. Although it may not 
guarantee an optimal solution, it offers a practical and 
straightforward approach for approximating 𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗. 

Looking back on the fact that the hyperplane can be 
multiplied by a positive gain G1 without altering its sign, one 
can utilize the following inequality: 
 

��𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ ��� ≤ 𝑔𝑔lim (28) 
 
Then: 
 

𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ �^ = 𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒 .
𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ �
𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗

 

𝐺𝐺1 =
𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒
𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗

 
 

−𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒 ≤ 𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ �^ ≤ 𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒 (29) 
 
In principle, Gplane can be used to map g into the range 

�−𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘

, 𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘

�. However, considering the raw 
approximation in 𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗, a slack of 20% is applied in Gplane, 
which corresponds to the 80% of the total range: 

 
𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒 = 0,8.

𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘  (30) 

 
Nevertheless, Glambda is a parameter that scales the 

Lagrange Multipliers in hyperplane function. If the Lagrange 
Multipliers are significantly smaller compared to the range 
�−𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘
, 𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘
�, Glambda can be defined as a small portion 

of Gplane: 
 

𝐺𝐺𝑙𝑙𝑚𝑚𝑗𝑗𝑙𝑙𝑑𝑑𝑚𝑚 = 0,01.𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒  (31) 
 
Next, combining all the components of the SVM, the 

integer SVM can be expressed as follows: 
 

𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ �^ = � 𝜆𝜆�̂�𝚤. 𝑙𝑙�̂�𝚤. 𝑧𝑧𝚤𝚤�̂�𝚥

𝑇𝑇

𝑖𝑖∈𝑆𝑆.𝑉𝑉

+ 𝑏𝑏 (32) 

 
Then, replacing gains:  
 

𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒
𝑔𝑔lim

 

𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ � = � 𝜆𝜆𝑖𝑖 . 𝑙𝑙𝑖𝑖 .𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ ,𝑚𝑚𝚥𝚥���⃗ �
𝑇𝑇

𝑖𝑖∈𝑆𝑆.𝑉𝑉

.𝐺𝐺𝑙𝑙𝑚𝑚𝑗𝑗𝑙𝑙𝑑𝑑𝑚𝑚. �
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀.. 𝑘𝑘.𝐺𝐺𝑒𝑒
�

+ 𝐺𝐺𝑙𝑙 . 𝑏𝑏 

(33) 

 
From this model, the system gains can be determined 

based on the following conditions: 
 

𝐺𝐺𝑙𝑙 =
𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒
𝑔𝑔lim

 

𝐺𝐺𝑙𝑙𝑚𝑚𝑗𝑗𝑙𝑙𝑑𝑑𝑚𝑚. �
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀.. 𝑘𝑘.𝐺𝐺𝑒𝑒
� =

𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒
𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗

 
(34) 

 
7 Proposed SVM model using Residue Number Systems 

 
Based on the previous approaches, a new objective can be 

achieved: constructing an SVM classifier using RNS when 
the SVM is modeled in a modulo-M ring. The initial step in 
this approach is to select a suitable set of moduli. Using 
moduli that are powers of two is often a suitable choice to 
simplify the hardware implementation: 
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Table 2. 
Parameters conversion between modulo-M and RNS residues.  

Model Integer 
representation RNS representation 

Lagrange multiplier in 
modulo-M 𝜆𝜆�̂�𝚤 �𝜆𝜆�̂�𝚤�𝑗𝑗𝑖𝑖

 

Class label in modulo-M 𝑙𝑙�̂�𝚤 �𝑙𝑙�̂�𝚤�𝑗𝑗𝑖𝑖
 

Integer exponential in 
modulo-M 𝑧𝑧𝚤𝚤�̂�𝚥 �𝑧𝑧𝚤𝚤�̂�𝚥�𝑗𝑗𝑖𝑖

 

Source: The authors. 
 
 
𝑚𝑚𝑋𝑋𝑋𝑋𝑠𝑠𝑒𝑒𝑡𝑡 = {𝑚𝑚3,𝑚𝑚2,𝑚𝑚1} = �2𝛽𝛽 − 1, 2𝛼𝛼 , 2𝛽𝛽 + 1� 

𝑀𝑀 = 𝑚𝑚1.𝑚𝑚2.𝑚𝑚3 = 22𝛽𝛽+𝛼𝛼 − 2𝛼𝛼 
(35) 

 
RNS residues for SVM parameters in the modulo-M 

system can be obtained by applying the conversions outlined 
in Table 2. 

 
In Table 2, for each parameter p, there is a corresponding 

3-tuple where each component is defined as follows: 
 

⟨𝑝𝑝𝑖𝑖⟩𝑗𝑗𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑚𝑚𝑋𝑋𝑋𝑋𝑚𝑚𝑖𝑖 
𝑖𝑖 ∈ {1,2,3} 

(36) 

 
When using a Look-Up Table with ⌊𝑀𝑀

2
⌋𝑚𝑚⌊𝑀𝑀

2
⌋ dimensions 

to represent an integer exponential, there will be a 
corresponding ⌊𝑀𝑀

2
⌋𝑚𝑚⌊𝑀𝑀

2
⌋𝑚𝑚3 size matrix in RNS representation. 

With this parameter conversion, it becomes suitable to 
create an equivalent hyperplane in RNS. However, it is 
necessary to define a new function in RNS that can replace 
the sign function: 

 
𝑠𝑠𝑖𝑖𝑔𝑔𝑒𝑒{𝑔𝑔} → 𝑠𝑠𝑖𝑖𝑔𝑔𝑒𝑒𝑅𝑅𝑁𝑁𝑆𝑆{𝑔𝑔} (37) 

 
Implementing the sign function, which involves 

comparing a number with zero to determine whether it is less 
than, greater than, or equal to zero, is not a straightforward 
task in RNS. However, a variant of the LPN algorithm [13] 
that is specifically designed for the chosen modulus set can 
be utilized to accomplish the goal of performing the 
comparison in RNS. 

The first step in this process is to represent an integer 
number in modulo-M, denoted as X, and its equivalent in 
RNS, denoted as ⟨𝑅𝑅1,𝑅𝑅2,𝑅𝑅3⟩.The relationship between them 
can be expressed as follows: 

 
𝑋𝑋 → ⟨𝑅𝑅1,𝑅𝑅2,𝑅𝑅3⟩ 

⟨𝑋𝑋⟩2𝛽𝛽−1 = 𝑋𝑋𝑚𝑚𝑋𝑋𝑋𝑋�2𝛽𝛽 − 1� = 𝑅𝑅1 
⟨𝑋𝑋⟩2𝛼𝛼 = 𝑋𝑋𝑚𝑚𝑋𝑋𝑋𝑋(2𝛼𝛼) = 𝑅𝑅2 

⟨𝑋𝑋⟩2𝛽𝛽+1 = 𝑋𝑋𝑚𝑚𝑋𝑋𝑋𝑋�2𝛽𝛽 + 1� = 𝑅𝑅3 

(38) 

 
A periodicity is evident in the set of residues with respect 

to the m1 and m3 moduli. This can be observed by defining: 
 

𝑋𝑋′ = 𝑋𝑋 + 𝑚𝑚1.𝑚𝑚3 = 𝑋𝑋 + �2𝛽𝛽 − 1�. �2𝛽𝛽 + 1� 
⟨𝑋𝑋′⟩2𝛽𝛽−1 = 𝑋𝑋′𝑚𝑚𝑋𝑋𝑋𝑋�2𝛽𝛽 − 1� = 𝑅𝑅1′𝑅𝑅1 
⟨𝑋𝑋′⟩2𝛽𝛽+1 = 𝑋𝑋′𝑚𝑚𝑋𝑋𝑋𝑋�2𝛽𝛽 + 1� = 𝑅𝑅3′ 𝑅𝑅3 

(39) 

⟨𝑋𝑋′⟩2𝛼𝛼 = 𝑋𝑋′𝑚𝑚𝑋𝑋𝑋𝑋(2𝛼𝛼) = 𝑅𝑅2′  
 
The last residue in the set can be defined as: 
 

⟨𝑋𝑋′⟩2𝛼𝛼 = �𝑋𝑋 + �2𝛽𝛽 − 1�. �2𝛽𝛽 + 1��2𝛼𝛼
= ⟨𝑋𝑋 + (−1). (+1)⟩2𝛼𝛼 = ⟨𝑋𝑋 − 1⟩2𝛼𝛼 
𝑅𝑅2′ = ⟨𝑅𝑅2 − 1⟩2𝛼𝛼 

(40) 

 
By generalizing and assuming a period T, where 𝑇𝑇 = 𝑚𝑚1.𝑚𝑚3, 

it can be observed that if multiple periods of length kT are added 
or subtracted to an integer number X, the residue R2 will be affected 
in k units: 

 

𝑋𝑋′ = 𝑋𝑋 ± 𝑘𝑘.𝑇𝑇 → �
𝑅𝑅1′ = 𝑅𝑅1

𝑅𝑅2′ = ⟨𝑅𝑅2 ∓ 𝑘𝑘⟩2𝛼𝛼
𝑅𝑅3′ = 𝑅𝑅3

 

𝑇𝑇 = 𝑚𝑚1.𝑚𝑚3 
𝑘𝑘 ∈ 𝑁𝑁 

(41) 

 
To compare numbers in RNS, periodicity can be 

leveraged by defining the following terms: 
− Least Possible Number (LPN): this is the smallest 

integer whose residues R1 and R3 match those of the 
number being represented. 

− Reference Residue (RR): this is the R2 residue of LPN. 
Representing an integer in RNS using a modulus set can 

be thought of as a linear combination of its LPN (LPNx) and 
RR (RRx). This is illustrated by considering two integers, X 
and X', and their corresponding RNS residues: 
 

𝑋𝑋 → ⟨𝑅𝑅1,𝑅𝑅2,𝑅𝑅3⟩ 
𝑋𝑋′ → ⟨𝑅𝑅1′ ,𝑅𝑅2′ ,𝑅𝑅3′ ⟩ 

(42) 

 
Now, X’ can be defined as a linear combination of LPNx, R2 

and RRx: 
 

𝑋𝑋′ = 𝑚𝑚1.𝑚𝑚3. (𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅2) + 𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥
= �2𝛽𝛽 − 1�. �2𝛽𝛽 + 1�. (𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅2)
+ 𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 

(43) 

 
By means of modular arithmetic, it can be concluded that 

X is equivalent to X’ in RNS representation: 
 

⟨𝑅𝑅1′ ⟩ = ⟨𝑋𝑋′⟩2𝛽𝛽−1 = ⟨𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥⟩2𝛽𝛽−1 = 𝑅𝑅1 
⟨𝑅𝑅2′ ⟩ = ⟨𝑋𝑋′⟩2𝛼𝛼 = ⟨𝑅𝑅2 − 𝑅𝑅𝑅𝑅𝑥𝑥 + 𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥⟩2𝛼𝛼

= ⟨𝑅𝑅2 − 𝑅𝑅𝑅𝑅𝑥𝑥 + 𝑅𝑅𝑅𝑅𝑥𝑥⟩2𝛼𝛼 = 𝑅𝑅2 
⟨𝑅𝑅3′ ⟩ = ⟨𝑋𝑋′⟩2𝛽𝛽+1 = ⟨𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥⟩2𝛽𝛽+1 = 𝑅𝑅3 

→ 𝑋𝑋′ = 𝑋𝑋 
𝑋𝑋 = 𝑘𝑘.𝑚𝑚1.𝑚𝑚3 + 𝑟𝑟 = 𝑚𝑚1.𝑚𝑚3. (𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅2) + 𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥

→ ⟨𝑋𝑋⟩𝑗𝑗1.𝑗𝑗3 = ⟨𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥⟩𝑗𝑗1.𝑗𝑗3 

(44) 

 
Since LPNx is within the first period T = m1.m3, it follows that: 
 

⟨𝑋𝑋⟩𝑗𝑗1.𝑗𝑗3 = 𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 (45) 
 
Then, an algorithm based on these principles can be 

utilized to compare two integer numbers, denoted as X and 
Y, represented in RNS: 
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𝑋𝑋 = 𝑘𝑘𝑥𝑥 .𝑚𝑚1.𝑚𝑚3 + 𝑟𝑟𝑥𝑥 → 𝑋𝑋 ≡ ⟨𝑅𝑅𝑥𝑥1,𝑅𝑅𝑥𝑥2,𝑅𝑅𝑥𝑥3⟩ 
𝑌𝑌 = 𝑘𝑘𝑦𝑦 .𝑚𝑚1.𝑚𝑚3 + 𝑟𝑟𝑦𝑦 → 𝑋𝑋 ≡ �𝑅𝑅𝑦𝑦1,𝑅𝑅𝑦𝑦2,𝑅𝑅𝑦𝑦3� 

(46) 

 
Then: 
 

𝑖𝑖𝑖𝑖⟨𝑘𝑘𝑥𝑥⟩𝑗𝑗2 > �𝑘𝑘𝑦𝑦�𝑗𝑗2
→ 𝑋𝑋 > 𝑌𝑌 

𝑖𝑖𝑖𝑖⟨𝑘𝑘𝑥𝑥⟩𝑗𝑗2 < �𝑘𝑘𝑦𝑦�𝑗𝑗2
→ 𝑋𝑋 < 𝑌𝑌 

𝑖𝑖𝑖𝑖⟨𝑘𝑘𝑥𝑥⟩𝑗𝑗2 = �𝑘𝑘𝑦𝑦�𝑗𝑗2
�
𝑟𝑟𝑥𝑥 > 𝑟𝑟𝑦𝑦 → 𝑋𝑋 > 𝑌𝑌
𝑟𝑟𝑥𝑥 < 𝑟𝑟𝑦𝑦 → 𝑋𝑋 < 𝑌𝑌
𝑟𝑟𝑥𝑥 = 𝑟𝑟𝑦𝑦 → 𝑋𝑋 = 𝑌𝑌

 
(47) 

 
In terms of LPNs and RRs: 
 

𝑖𝑖𝑖𝑖⟨(𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥2)⟩𝑗𝑗2 > ��𝑅𝑅𝑅𝑅𝑦𝑦 − 𝑅𝑅𝑦𝑦2��𝑗𝑗2
→ 𝑋𝑋 > 𝑌𝑌 

𝑖𝑖𝑖𝑖⟨(𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥2)⟩𝑗𝑗2 < ��𝑅𝑅𝑅𝑅𝑦𝑦 − 𝑅𝑅𝑦𝑦2��𝑗𝑗2
→ 𝑋𝑋 < 𝑌𝑌 

𝑖𝑖𝑖𝑖⟨(𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥2)⟩𝑗𝑗2 = ��𝑅𝑅𝑅𝑅𝑦𝑦

− 𝑅𝑅𝑦𝑦2��𝑗𝑗2
�
𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 > 𝑚𝑚𝑃𝑃𝑁𝑁𝑦𝑦 → 𝑋𝑋 > 𝑌𝑌
𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 < 𝑚𝑚𝑃𝑃𝑁𝑁𝑦𝑦 → 𝑋𝑋 < 𝑌𝑌
𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 = 𝑚𝑚𝑃𝑃𝑁𝑁𝑦𝑦 → 𝑋𝑋 = 𝑌𝑌

 

(48) 

 
To simplify the comparison function in RNS, the 

subtraction of RRs with their corresponding 𝑅𝑅2 residues is 
carried out in modulo m2 to ensure positive values. In terms 
of hardware implementation, if LPNs and RRs are obtained 
from a memory-based LUT, the comparison function can be 
calculated solely using the LUTs and the residues from X and 
Y. This approach overcomes the main challenge in RNS, 
which is the conversion from RNS to Binary using methods 
such as the Chinese Remainder Theorem. The comparison 
function can be defined as follows: 

 
𝑖𝑖𝑋𝑋𝑚𝑚𝑝𝑝𝑅𝑅𝑁𝑁𝑆𝑆{𝑋𝑋,𝑌𝑌}

=

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑖𝑖𝑖𝑖⟨(𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥2)⟩𝑗𝑗2 > ��𝑅𝑅𝑅𝑅𝑦𝑦 − 𝑅𝑅𝑦𝑦2��𝑗𝑗2

→ 𝑋𝑋 > 𝑌𝑌

𝑖𝑖𝑖𝑖⟨(𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥2)⟩𝑗𝑗2 < ��𝑅𝑅𝑅𝑅𝑦𝑦 − 𝑅𝑅𝑦𝑦2��𝑗𝑗2
→ 𝑋𝑋 < 𝑌𝑌

𝑖𝑖𝑖𝑖⟨(𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥2)⟩𝑗𝑗2 = ��𝑅𝑅𝑅𝑅𝑦𝑦 − 𝑅𝑅𝑦𝑦2��𝑗𝑗2
�
𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 > 𝑚𝑚𝑃𝑃𝑁𝑁𝑦𝑦 → 𝑋𝑋 > 𝑌𝑌
𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 < 𝑚𝑚𝑃𝑃𝑁𝑁𝑦𝑦 → 𝑋𝑋 < 𝑌𝑌
𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 = 𝑚𝑚𝑃𝑃𝑁𝑁𝑦𝑦 → 𝑋𝑋 = 𝑌𝑌

 (49) 

 
This last function can be implemented efficiently using adders 

and comparators. In signed RNS, positives numbers are 
represented in the range  �0, 𝑀𝑀

2
− 1�, while negative numbers are 

represented in the range �−𝑀𝑀
2

,−1�, or equivalently in the nominal 

range �𝑀𝑀
2

,𝑀𝑀 − 1�. Using complete nominal range [0,𝑀𝑀 − 1], 
the decision boundary between positive and negative numbers is 
𝑀𝑀
2

. Therefore, sign function in RNS can be defined as follows: 
 

𝑠𝑠𝑖𝑖𝑔𝑔𝑒𝑒{𝑋𝑋} ≡ 𝑖𝑖𝑋𝑋𝑚𝑚𝑝𝑝𝑅𝑅𝑁𝑁𝑆𝑆 �𝑋𝑋,
𝑀𝑀
2 � 

(50) 

 
This property enables the use of RNS for representing 

SVM-RBF classifiers. 
 

8 Results 
 
The previous methods discussed in the sections were 

implemented to demonstrate the feasibility of SVMs with 

Radial Basis Function in both modulo-M and RNS 
representations. The implementation was carried out using 
the Python programming language along with various 
libraries such as Numpy, sklearn, and matplotlib. The SVM 
training method used was a simplified SMO-algorithm-based 
approach (SMO-lite). 

Python proved to be a versatile and widely used platform 
for implementing SVM-RBF models. The powerful 
numerical computing library, Numpy, facilitated efficient 
mathematical operations and array manipulation. The sklearn 
library provided convenient tools for machine learning, 
including SVM implementations. Matplotlib was utilized for 
visualizing the results and analyzing the performance of the 
models. 

As an example, a dataset of 25 two-dimensional feature 
vectors was analyzed, which were divided into two distinct 
groups with the main group centered around a cluster. To 
ensure consistency, all samples were normalized and 
subjected to Gaussian noise with a standard deviation of 0.1. 
The Radial Basis Function (RBF) kernel used a γ parameter 
set to 1.  

Figs. 6-8 compare the decision boundaries of the SVM-
RBF approximation in modulo-M to the original SMO-lite 
algorithm, sklearn SVM, and a Maclaurin Series 
approximation with a ninth-degree polynomial. The effect 
of changing the dynamic range (M) is also depicted, with α 
and β parameters influencing the shape of the decision 
boundaries. 

Fig. 9 shows the plot of the sign function in Python using 
the LPN-method. The plot labels the first half of the 
nominal range as positive 1, the second half of the nominal 
range as negative 1, and zero value in the input represents a 
0 sign according to the Dirichlet Conditions. 

Finally, Fig. 10 compares four previous methods to a 
fifth SVM approach, known as SVM-RNS, which maps the 
modulo-M equivalent to the RNS representation. The figure 
provides a visual comparison of the performance and 
accuracy of these different methods. The implementation 
was carried out using the Python programming language 
and libraries such as Numpy, Scikit-learn, and Matplotlib, 
which facilitated efficient mathematical operations, 
machine learning tools, and data visualization. 

 

 
Figure 6. SVM in integers modulo-M using α= 2, β= 6, M = 16380.  
Source: The authors. 
 
 



Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 90(226), pp. 17-26, April - June, 2023. 

24 

 
Figure 7. SVM in integers modulo-M using α= 4, β= 5, M = 16368.  
Source: The authors. 

 

 
Figure 8. SVM in integers modulo-M using α= 5, β= 7, M = 524256. 
Source: The authors. 

 

 
Figure 9. Sign function developed in Python for RNS using α= 4, β= 5, M = 
16368 
Source: The authors. 

 

 
Figure 10. SVM in RNS using α= 4, β= 5, M = 16368 
Source: The authors. 
 

Table 3. 
Literature review  

Autor Year Main objective Comments 

[14] 2020 
To reduce the resources 
required to build and operate 
CNN based on RNS. 

RNS proves to be 
advantageous for 
enhancing the 
efficiency of 
arithmetic operations 
in CNNs. 

[15] 2021 

To design a CNN accelerator 
that operates entirely in 
RNS, handling data, stored 
weights, and 
communication/computation 
tasks. 

The results 
demonstrate that 
integrating RNS into 
a CNN based on a 
Processing-in-
Memory architecture 
leads to enhanced 
computational 
performance and 
reduced energy 
consumption. 

[16] 2022 

To propose a systematic 
methodology called 
ReFACE for the efficient 
implementation of 
computing-in-memory 
(CIM) accelerators for FIR 
filters. ReFACE leverages 
the benefits of the residue 
number system (RNS) to 
enhance the performance of 
digital filters. 

The utilization of 
RNS in FIR filters 
resulted in significant 
reductions in power 
consumption and 
latency. 

[17] 2023 

To present a novel design 
approach for ultralow-power 
arithmetic circuits, which 
leverages the Residue 
Number System (RNS) in 
combination with 
deterministic bit-streams 

The proposed method 
offers a cost-efficient 
design in terms of 
area occupancy and 
power consumption. 
These features make 
it an ideal choice for 
edge devices, 
particularly energy 
harvesting and bio-
implantable devices. 

Source: The authors. 
 
 
The results obtained indicate that the SVM in RNS and SVM 

in modulo-M demonstrate similar performance to the other 
methods, with decision boundaries that are almost identical 
across different modulo sets. In contrast, the LPN method for 
implementing the sign function has been shown to be effective 
for classification purposes in SVM-RNS. This suggests that the 
LPN-based approach provides a viable solution for implementing 
the sign function in RNS-based SVM classifiers. 

 
9 Literature review 

 
Table 3 provides a summary of recent research studies 

that have focused on utilizing of RNS in machine learning 
applications to enhance computing performance. The 
literature review reveals that incorporating RNS in signal 
processing systems can lead to substantial benefits such as 
improved power efficiency and reduced latency. 

 
10 Conclusions 

 
The results show that it is possible to implement SVMs 

using integer numbers, even with nonlinear kernel functions 
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such as Radial Basis Functions. The modulo-M 
approximation provides a better fit to the original SVM when 
the dynamic range is increased, allowing for more possible 
represented values. However, this approach requires a larger 
Look-Up Table (LUT) size, which may demand more 
memory resources. 

Furthermore, the implementation of SVM-RNS 
demonstrates that Residue Number System (RNS) is suitable 
for SVMs with RBF kernels. This opens possibilities for 
future research in developing hardware-based methods for 
implementing classifiers. RNS-based SVMs provide a 
promising avenue for efficient and robust hardware 
implementations of SVM classifiers, which can be explored 
in future studies. 

Both Look-Up Tables (LUTs) and Residue Number 
System (RNS) have been effective techniques for feature 
extraction, as in the case of Wavelet coefficients [18], and for 
training Artificial Neural Networks (ANNs) [19]. In addition, 
modular arithmetic has been used in various deep learning 
acceleration techniques, such as employing Number 
Theoretical Transforms (NTTs) in convolutional layers [20].  

It is important to note that approaches like Convolutional 
Neural Network (CNN) require more resources compared to 
an SVM and may offer similar performance in certain 
applications, such as EMG pattern recognition [21]. Thus, the 
choice between SVMs and CNNs should depend on the 
specific requirements and constraints of a given application. 
Depending on the situation, SVMs can provide a simpler and 
more resource-efficient solution while still achieving 
satisfactory performance. 

Nonlinear activation functions play a crucial role in 
introducing complex decision boundaries in the stages of a 
classifier. Commonly used nonlinear activation functions 
include softmax, logistic, hyperbolic, and ReLU [22]. In the 
context of neural network development with the RNS system, 
advantages have been observed in performing addition, 
subtraction, and multiplication operations [15].  

However, when it comes to using nonlinear functions 
such as divisions, comparisons, and exponentials in the RNS, 
there is a high computational cost involved [23]. Previous 
research has explored various implementations, including 
representations in Mixed Radix Representation and the 
Chinese Remainder Theorem [24]. However, these methods 
can be complex to implement. In the case of the comparison 
operation, the LPN method has been recently implemented in 
a memristor array (PIM) [13]. In other recent research, a 
comparable approach has been demonstrated utilizing the 
Mixed Radix representation with dynamic range partitioning 
[25]. It is noteworthy to emphasize that one of the major 
contributions of this research is the proposal of a method to 
utilize SVM with RNS. This method involves the use of the 
LPN-based comparison operation with a modulus set distinct 
from the one utilized in the implementation with PIM. 

Additionally, the research presents a methodology for 
performing the exponential operation in RNS. Both of these 
objectives hold fundamental importance in advancing the 
practical application of unconventional numerical systems, 
such as RNS, in pattern recognition systems and digital signal 
processing [11,15,16,24,26]. 
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