
© The author; licensee Universidad Nacional de Colombia.
Revista DYNA, 90(226), pp. 17-26, April - June, 2023, ISSN 0012-7353

DOI: https://doi.org/10.15446/dyna.v90n226.107112

Support vector machines implementation over integers modulo-M
and Residue Number System•

Sergio Andrés Arenas-Hoyos & Álvaro Bernal-Noreña

Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle, Santiago de Cali, Colombia. sergio.arenas@correounivalle.edu.co,
alvaro.bernal@correounivalle.edu.co

Received: February 3rd, 2023. Received in revised form: April 27th, 2023. Accepted: May 11th, 2023

Abstract
In low-power hardware implementations for classification algorithms, it is often essential to use physical resources efficiently. In this sense,
the use of modulo-M integer operations instead of floating-point arithmetic, can lead to better performance, especially when M represents
the dynamic range of an arithmetic block of the Residue Number System (RNS) [1,2]. Following this premise, this work is aiming to
provide a methodology for implementing a classifier, specifically a Support Vector Machine (SVM) [3], using modulo-M integers and
proposing a method for the use of Residue Number System.

Keywords: modular arithmetic; pattern recognition; Residue Number System (RNS); Support Vector Machines (SVN); digital signal
processing; radial basis function.

Implementación de máquinas de vectores de soporte sobre enteros
módulo-M y en el Sistema Numérico de los Residuos

Resumen
En las implementaciones en hardware de baja potencia para algoritmos de clasificación, a menudo es esencial utilizar los recursos físicos
de manera eficiente. En este sentido, la utilización de operaciones con enteros módulo-M en lugar de aritmética de punto flotante puede
conducir a un mejor rendimiento, especialmente cuando M representa el rango dinámico de un bloque aritmético del Sistema Numérico de
los Residuos (RNS) [1,2]. Siguiendo esta premisa, el objetivo de este trabajo es proporcionar una metodología para implementar un
clasificador, en concreto, una Máquina de Vectores de Soporte (SVM) [3], utilizando enteros módulo-M y proponer un método para la
utilización del Sistema Número de Residuos.

Palabras clave: aritmética modular; reconocimiento de patrones; Sistema Numérico de los Residuos (SNR); Máquinas de Vectores de
Soporte (MVS); procesamiento digital de señales; funciones de base radial.

1 1. Introduction

Supervised learning techniques are commonly used in
Machine Learning applications to design specific classifiers
that can solve pattern recognition problems. One such
classifier is the Support Vector Machine (SVM), which aims
to find a decision surface that maximizes the margin between
two distinct groups in binary categorization [3,4].

In embedded systems, hardware limitations can pose
restrictions on implementing sophisticated algorithms.
However, methods such as modular arithmetic can assist in

How to cite: Arenas-Hoyos, S. and Bernal-Noreña, A., Support vector machines implementation over integers modulo-M and residue number system. DYNA, 90(226), pp. 17-
26, April - June, 2023.

overcoming these limitations by leading to less complex
functional units compared to floating-point arithmetic. One
specific approach to utilizing modular arithmetic in parallel
hardware operations is the Residue Number System (RNS),
which enables the representation of large numbers using a set
of smaller numbers [5].

Although the RNS exhibits fast operations such as
addition, subtraction, and multiplication, it poses challenges
when dealing with non-linear operations like comparison and
division [6]. Overcoming this limitation requires a specific
approach: first, developing a method to represent input

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 90(226), pp. 17-26, April - June, 2023.

18

features using integers modulo-M; second, mapping non-
linear functions such as the Kernel in SVM to integers
modulo-M; and finally, utilizing the model to design an
equivalent RNS-based implementation of SVM (SVM-
RNS).

By leveraging the SVM-RNS equivalent as a
foundational component in pattern recognition, it is indeed
feasible to explore more complex architectures for multi-
class classifiers in subjects such as surface
electromyographic (sEMG) signal analysis [7,8].

2 Support Vector Machines (SVM)

In SVM classifiers, the surface decisions aim to the find

optimal margin, which involves maximizing the minimum
margin between two classes.

This problem can be formulated in terms of optimization
using dual problem formulation:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜆𝜆) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜆𝜆𝑖𝑖

𝑁𝑁

𝑖𝑖=1

−
1
2 .�𝜆𝜆𝑖𝑖 . 𝜆𝜆𝑗𝑗 . 𝑙𝑙𝑖𝑖 . 𝑙𝑙𝑗𝑗 .𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ , 𝑚𝑚𝚥𝚥���⃗ �

𝑁𝑁

𝑖𝑖,𝑗𝑗

𝑠𝑠. 𝑡𝑡: 0 ≤ 𝜆𝜆𝑖𝑖 ≤ 𝐶𝐶;�𝜆𝜆𝑖𝑖

𝑃𝑃

𝑖𝑖=1

𝑙𝑙𝑖𝑖 = 0

(1)

Here, each λ corresponds to Lagrange Multipliers, K

represents the Kernel function, C is the maximum bound for
λ, x represents an input feature from training set, and l is the
class label. Numerical optimization methods such as a
simplified version of Sequential Minimal Optimization
(SMO) algorithm [9] can be employed to obtain the Lagrange
Multipliers and Support Vectors (S.V), which form a
hyperplane:

𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ � = � 𝜆𝜆𝑖𝑖 . 𝑙𝑙𝑖𝑖 .𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ , 𝑚𝑚𝚥𝚥���⃗ �
𝑇𝑇

𝑖𝑖∈𝑆𝑆.𝑉𝑉

+ 𝑏𝑏 (2)

The Kernel function is a powerful tool that can be used to

transform non-separable categories into separable ones. One
well-known example is the Gaussian Kernel, which can map
finite-dimensional features onto a space characterized by an
infinite number of dimensions [10]. This transformation is
achieved by calculating the Euclidean distance between the
Support Vectors xi, which involves performing inner product
operations:

𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ , 𝑚𝑚𝚥𝚥���⃗ � = 𝑒𝑒−𝛾𝛾�𝑥𝑥𝚤𝚤���⃗ −𝑥𝑥𝚥𝚥����⃗ �

2
→ 0 < 𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ , 𝑚𝑚𝚥𝚥���⃗ � ≤ 1 (3)

After training stage, the Lagrange Multipliers lie within

the interval:

0 ≤ 𝜆𝜆𝑖𝑖 ≤ 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀 (4)

The class labels are defined as 1 for Class 1 and -1 for

Class 2, indicating that labels belong to the set {-1,1}:

𝑙𝑙𝑖𝑖 ∈ {−1,1} (5)

For classification purposes, the hyperplane g is utilized as
the input for the sign function:

𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ � = �
≥ 0 → 𝑚𝑚𝚥𝚥���⃗ ∈ 𝐶𝐶𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠1

0 → 𝑚𝑚𝚥𝚥���⃗ ∈ 𝐶𝐶𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠2 (6)

3 Residue Number Systems (RNS)

In hardware implementations, several techniques are

available to execute operations in parallel based on modular
arithmetic [11]. For instance, considering an integer number
X that can be decomposed into a set of residues {x1, x2, …,
xn} with respect to moduli set {m1, m2, …, mn}. It is essential
to note that each modulus mi is coprime with each other
modulus mj. Similarly, when this procedure is applied to an
integer Y, the following system can be defined:

𝑋𝑋 → 𝑋𝑋 = ⟨𝑚𝑚1, 𝑚𝑚2,⋯ , 𝑚𝑚𝑛𝑛⟩ (7)
𝑌𝑌 → 𝑌𝑌 = ⟨𝑦𝑦1, 𝑦𝑦2,⋯ , 𝑦𝑦𝑛𝑛⟩

𝑚𝑚𝑖𝑖 = 𝑋𝑋𝑚𝑚𝑋𝑋𝑋𝑋𝑚𝑚𝑖𝑖
𝑦𝑦𝑖𝑖 = 𝑌𝑌𝑚𝑚𝑋𝑋𝑋𝑋𝑚𝑚𝑖𝑖

𝑋𝑋 ∘ 𝑌𝑌 = ⟨𝑚𝑚1 ∘ 𝑦𝑦1, 𝑚𝑚2 ∘ 𝑦𝑦2,⋯ , 𝑚𝑚𝑛𝑛 ∘ 𝑦𝑦𝑛𝑛⟩

𝑀𝑀 = �𝑚𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖=1

Where ◦ denotes any operator from the set {+, -, *}, and

M represents the Dynamic Range of the moduli set, which
defines the number of possible representations in the ring [9].
Furthermore, the RNS is specified in this work under the
following constraints:

𝑚𝑚𝑋𝑋𝑋𝑋𝑠𝑠𝑒𝑒𝑡𝑡 = {𝑚𝑚3,𝑚𝑚2,𝑚𝑚1} = �2𝛽𝛽 − 1, 2𝛼𝛼 , 2𝛽𝛽 + 1�

𝑀𝑀 = 𝑚𝑚1.𝑚𝑚2.𝑚𝑚3 = 22𝛽𝛽+𝛼𝛼 − 2𝛼𝛼
𝑀𝑀 𝑖𝑖𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(8)

Each integer X represented in this finite field must satisfy

the following condition:

−𝑀𝑀
2 ≤ 𝑋𝑋 ≤

𝑀𝑀
2 − 1 (9)

This main constraint is thoroughly analyzed in this work

as it significantly influences every aspect of the SVM, as
discussed in the following sections.

4 Implementation constraints over integers

Recalling the previous analysis, it can be inferred that the

SVM hyperplane satisfies the following equation:

𝐺𝐺1.𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ � = �
≥ 0 → 𝑚𝑚𝚥𝚥���⃗ ∈ 𝐶𝐶𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠1

0 → 𝑚𝑚𝚥𝚥���⃗ ∈ 𝐶𝐶𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠2

𝐺𝐺1 > 0,𝐺𝐺1𝑖𝑖𝑠𝑠𝑚𝑚𝑖𝑖𝑋𝑋𝑒𝑒𝑠𝑠𝑡𝑡𝑚𝑚𝑒𝑒𝑡𝑡
(10)

Where G1 represents a gain that can assists in mapping

g(xj) within a limited scale. In the case of integer
implementation, there are more specific restrictions for each
part of the hyperplane. Firstly, finite fields only allow the
representation of a subset P composed of integers:

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 90(226), pp. 17-26, April - June, 2023.

19

𝑃𝑃 = �
−𝑀𝑀

2 ,⋯ ,
𝑀𝑀
2 − 1�

𝑃𝑃 ⊆ 𝑍𝑍
(11)

This implies that an equivalent representation in the

subset P must be obtained for every component of the SVM,
including Lagrange Multipliers, feature vectors, Kernel
function, class labels and comparator function.

5 Proposed Kernel function mapping over integers

modulo-M

The Kernel function is an essential component of Support

Vector Machines (SVMs) which maps features into a space
with higher dimensions. In Radial Basis Functions (RBFs),
the distance between two finite-dimensional vectors is
measured, forming an inner product between two infinite-
dimensional vectors. This approach enhances separability,
and by utilizing the Kernel Trick [10] in SVM with RBF
Kernel, the hyperplane can be calculated without explicitly
computing the infinite-dimensional inner product. The
calculations can be performed using the following equation,
which proposes a mapping over integers modulo-M:

𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ , 𝑚𝑚𝚥𝚥���⃗ � = 𝑒𝑒−𝛾𝛾�𝑥𝑥𝚤𝚤���⃗ −𝑥𝑥𝚥𝚥����⃗ �

2
 (12)

Where γ is a positive constant parameter. The exponential

function delimits the range of the function to:

0 < 𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ ,𝑚𝑚𝚥𝚥���⃗ � ≤ 1 (13)

This function can be interpreted as being dependent on

the distance d:

𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ , 𝑚𝑚𝚥𝚥���⃗ � = 𝑧𝑧(𝑋𝑋) = 𝑒𝑒−𝛾𝛾𝑑𝑑2
𝑋𝑋2 = �𝑚𝑚𝚤𝚤���⃗ − 𝑚𝑚𝚥𝚥���⃗ �

2

(14)

Based on this, the behavior of function z is illustrated in

Fig.1.

Figure 1. RBF Kernel function
Source: The authors

This function has its domain and range in real numbers,
but they can be mapped into integers by determining their
respective bounds. The first step is to find the bounds of the
domain. Essentially, d2 represents the Euclidean distance
between two k-dimensional vectors xi and xj:

𝑚𝑚𝚤𝚤���⃗ = �𝑚𝑚𝑖𝑖0𝑚𝑚𝑖𝑖1𝑚𝑚𝑖𝑖2 ⋯𝑚𝑚𝑖𝑖(𝑘𝑘−1)�
𝑚𝑚𝚥𝚥���⃗ = �𝑚𝑚𝑗𝑗0𝑚𝑚𝑗𝑗1𝑚𝑚𝑗𝑗2 ⋯𝑚𝑚𝑗𝑗(𝑘𝑘−1)�

(15)

𝑋𝑋2 = ��𝑚𝑚𝐼𝐼 − 𝑚𝑚𝑗𝑗𝑗𝑗�
2

𝑘𝑘−1

𝑗𝑗=0

If the x vectors are normalized, their components must be

within in interval [0,1]. Under this assumption, the maximum
distance between each pair of components is 1. Therefore, it
can be inferred that the maximum distance between vectors
is:

𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀2 = � (1)2
𝑘𝑘−1

𝑗𝑗=0

= 𝑘𝑘 (16)

This implies that:

0 ≤ 𝑋𝑋2 ≤ 𝑘𝑘 (17)

0 ≤ �
𝑋𝑋2

𝑘𝑘 � ≤ 1

Taking this inequality into account, and defining the

mapping function as 𝑋𝑋2� :

𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥 =
𝑀𝑀
2 − 1 (18)

𝑋𝑋2� =
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘 .𝑋𝑋2

Then:

0 ≤ 𝑋𝑋2� ≤ 𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥 (19)

This last inequality is useful for achieving the mapping of

d2 to integers, indicating that:

𝑋𝑋2� =
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
.𝑋𝑋2 = �𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. �𝑚𝑚𝚤𝚤���⃗ − 𝑚𝑚𝚥𝚥���⃗ �

𝑇𝑇.�
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. �𝑚𝑚𝚤𝚤���⃗

− 𝑚𝑚𝚥𝚥���⃗ �

(20)

By utilizing the floor function to approximate the mapped

distance, the following relationship is obtained:

�𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. �𝑚𝑚𝚤𝚤���⃗ − 𝑚𝑚𝚥𝚥���⃗ � ≈ ��

𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. 𝑚𝑚𝚤𝚤���⃗ � − ��

𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. 𝑚𝑚𝚥𝚥���⃗ � (21)

This approximation provides a method for converting a

normalized feature vector into its integer equivalent:

�⃗�𝑚� = � �
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘 . �⃗�𝑚� (22)

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 90(226), pp. 17-26, April - June, 2023.

20

Where M represents the dynamic range of the RNS and k
is the number of dimensions in feature vectors. This analysis
provides an integer equivalent for the distance, and the next
step is to convert γ and the function z(d) to integers.

To convert γ into an equivalent integer, it is necessary to
compensate for the effect of 𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘
 in the exponent.

Therefore, it is advisable to use the following mapping
function:

𝛾𝛾� = �
𝑘𝑘

𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥
. 𝛾𝛾� (23)

These approximations lead to the following model for the

exponential function:

𝑧𝑧(𝑋𝑋) ≈ 𝑒𝑒−𝛾𝛾�𝑑𝑑2� (24)

Finally, to adjust the RBF kernel, the following integer-

based equivalent is proposed:

�̂�𝑧��̂�𝑋� = ��
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘.𝐺𝐺𝑒𝑒
� . 𝑒𝑒−𝛾𝛾�𝑑𝑑2�� (25)

𝐺𝐺𝑒𝑒 ≥ 1

�̂�𝑧��̂�𝑋� ≈ �
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘.𝐺𝐺𝑒𝑒
� 𝑧𝑧(𝑋𝑋)

In this case, �̂�𝑧��̂�𝑋� represents a function with a range

contained in the interval�0, �𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘.𝐺𝐺𝑒𝑒

��, which is a valid
subset within the finite field. Ge is a positive constant gain
that allows adjusting the amplitude of the exponential
function according to the subsequent mapping of the SVM
hyperplane.

For example, if M = 510, Ge = 5 and k=2, the integer-
based exponential equivalent will have the following bounds:

𝐴𝐴𝑚𝑚𝑝𝑝𝑒𝑒 = �
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘.𝐺𝐺𝑒𝑒
� =

254
2.5 = 25,4 (26)

⌊𝐴𝐴𝑚𝑚𝑝𝑝𝑒𝑒⌋ = 25

𝑋𝑋2�𝑀𝑀𝑀𝑀𝑀𝑀 = ⌊𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥⌋ = �
510

2 − 1� = ⌊254⌋

𝑋𝑋2�𝑀𝑀𝑀𝑀𝑀𝑀 = 254

Thus, the integer exponential function will produce

values within the range [0,25], which is within the valid
subset of the finite field P.

This relationship is illustrated in Fig. 2.
The kernel function is typically stored in a Look-Up Table

(LUT) or an equivalent form to simplify its approximation.
Although other methods, such as using Taylor Series for finite
fields, exist, they can be challenging to implement. One major
issue with the Taylor Series approach is the difficulty of finding
a modular multiplicative inverse for the factorial function, which
is needed to calculate the series coefficient. If the modulo is not a
prime number and is not coprime with all Taylor coefficients, the
existence of a modular multiplicative inverse cannot be
guaranteed [12]. In the case of a composite number like M, it is
not certain that all the Taylor Series coefficients will be available.

Figure 2. Integer exponential equivalent.
Source: The authors

Figure 3. Block diagram for integer exponential approximation.
Source: The authors

To visualize the integer exponential approximation, a

block diagram is provided in Fig. 3.

6 Proposed support vector machine mapping over
integers modulo-M

Building on the analysis presented in the previous sections, it

is feasible to map the SVM hyperplane into integers by mapping
all its components individually. Starting with the Kernel function
represented in the modulo-M finite field, similar steps can be
taken to convert the other parameters. A summary of these
conversions is provided in Table 1.

Table 1.
Conversion functions summary.

Parameter Range Conversion
Function

Conversion
Function Range

Feature vector
�⃗�𝑚 0 ≤ 𝑚𝑚𝚤𝚤���⃗ ≤ 1

�⃗̂�𝑚

= ��
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. �⃗�𝑚�

0 ≤ �⃗�𝑚�̂�𝚤

≤ ⌊�
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘
. �⃗�𝑚⌋

Lagrange
Multipliers

𝜆𝜆𝑖𝑖

0 ≤ 𝜆𝜆𝑖𝑖
≤ 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀

𝜆𝜆�̂�𝚤
= �𝐺𝐺𝑙𝑙𝑚𝑚𝑗𝑗𝑙𝑙𝑑𝑑𝑚𝑚 .

𝜆𝜆𝑖𝑖
𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀

� 0 ≤ 𝜆𝜆�̂�𝚤 ≤ 𝐺𝐺𝑙𝑙𝑚𝑚𝑗𝑗𝑙𝑙𝑑𝑑𝑚𝑚

Gamma
parameter

𝛾𝛾
𝛾𝛾 > 0 𝛾𝛾 = ⌊

𝑘𝑘
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

. 𝛾𝛾⌋ 𝛾𝛾 > 0

Class labels
𝑙𝑙𝑖𝑖

𝑙𝑙𝑖𝑖 ∈ {−1,1} 𝑙𝑙�̂�𝚤 = 𝑙𝑙𝑖𝑖 𝑙𝑙�̂�𝚤 ∈ {−1,1}

Bias
𝑏𝑏 𝑏𝑏 > 0 𝑏𝑏 = ⌊𝐺𝐺𝑙𝑙𝑖𝑖𝑚𝑚𝑏𝑏.𝑏𝑏⌋ 𝑏𝑏 > 0

Source: The authors.

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 90(226), pp. 17-26, April - June, 2023.

21

Figure 4. Scheme for two-dimensional feature space and its hyperplane g.
Source: The authors

Figure 5. Scheme for 𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗 estimation.
Source: The authors

By utilizing these conversion functions, it becomes

possible to obtain the approximated bound of the hyperplane,
referred as glim. This parameter represents the maximum
value of g within a specific area of interest, which
corresponds to the vector space encompassing all possible
feature vectors. In the case of a two-dimensional normalized
feature, for instance, the area of interest is a square defined
within the range of [0,1] in both dimensions, as depicted in
Fig. 4.

To approximate the value of 𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗, the absolute value of g
can be evaluated at q randomly selected points within the area
of interest. By comparing these evaluations, the maximum
value can be determined, yielding the value of 𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗:

𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 {|𝑔𝑔𝑖𝑖|}} (27)

0 ≤ 𝑖𝑖 ≤ 𝑞𝑞

While using numerical analysis techniques such as SMO

(Sequential Minimal Optimization) or genetic algorithms
could potentially provide a more precise estimation of
𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗 ,for the sake of simplicity, this work utilizes the q random
points method, as depicted in Fig. 5. Although it may not
guarantee an optimal solution, it offers a practical and
straightforward approach for approximating 𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗.

Looking back on the fact that the hyperplane can be
multiplied by a positive gain G1 without altering its sign, one
can utilize the following inequality:

��𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ ��� ≤ 𝑔𝑔lim (28)

Then:

𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ �^ = 𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒 .
𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ �
𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗

𝐺𝐺1 =
𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒
𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗

−𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒 ≤ 𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ �^ ≤ 𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒 (29)

In principle, Gplane can be used to map g into the range

�−𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘

, 𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘

�. However, considering the raw
approximation in 𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗, a slack of 20% is applied in Gplane,
which corresponds to the 80% of the total range:

𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒 = 0,8.

𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝑘𝑘 (30)

Nevertheless, Glambda is a parameter that scales the

Lagrange Multipliers in hyperplane function. If the Lagrange
Multipliers are significantly smaller compared to the range
�−𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘
, 𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘
�, Glambda can be defined as a small portion

of Gplane:

𝐺𝐺𝑙𝑙𝑚𝑚𝑗𝑗𝑙𝑙𝑑𝑑𝑚𝑚 = 0,01.𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒 (31)

Next, combining all the components of the SVM, the

integer SVM can be expressed as follows:

𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ �^ = � 𝜆𝜆�̂�𝚤. 𝑙𝑙�̂�𝚤. 𝑧𝑧𝚤𝚤�̂�𝚥

𝑇𝑇

𝑖𝑖∈𝑆𝑆.𝑉𝑉

+ 𝑏𝑏 (32)

Then, replacing gains:

𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒
𝑔𝑔lim

𝑔𝑔�𝑚𝑚𝚥𝚥���⃗ � = � 𝜆𝜆𝑖𝑖 . 𝑙𝑙𝑖𝑖 .𝐾𝐾�𝑚𝑚𝚤𝚤���⃗ ,𝑚𝑚𝚥𝚥���⃗ �
𝑇𝑇

𝑖𝑖∈𝑆𝑆.𝑉𝑉

.𝐺𝐺𝑙𝑙𝑚𝑚𝑗𝑗𝑙𝑙𝑑𝑑𝑚𝑚. �
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀.. 𝑘𝑘.𝐺𝐺𝑒𝑒
�

+ 𝐺𝐺𝑙𝑙 . 𝑏𝑏

(33)

From this model, the system gains can be determined

based on the following conditions:

𝐺𝐺𝑙𝑙 =
𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒
𝑔𝑔lim

𝐺𝐺𝑙𝑙𝑚𝑚𝑗𝑗𝑙𝑙𝑑𝑑𝑚𝑚. �
𝐷𝐷𝑚𝑚𝑡𝑡𝑚𝑚𝑗𝑗𝑚𝑚𝑥𝑥

𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀.. 𝑘𝑘.𝐺𝐺𝑒𝑒
� =

𝐺𝐺𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒
𝑔𝑔𝑙𝑙𝑖𝑖𝑗𝑗

(34)

7 Proposed SVM model using Residue Number Systems

Based on the previous approaches, a new objective can be

achieved: constructing an SVM classifier using RNS when
the SVM is modeled in a modulo-M ring. The initial step in
this approach is to select a suitable set of moduli. Using
moduli that are powers of two is often a suitable choice to
simplify the hardware implementation:

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 90(226), pp. 17-26, April - June, 2023.

22

Table 2.
Parameters conversion between modulo-M and RNS residues.

Model Integer
representation RNS representation

Lagrange multiplier in
modulo-M 𝜆𝜆�̂�𝚤 �𝜆𝜆�̂�𝚤�𝑗𝑗𝑖𝑖

Class label in modulo-M 𝑙𝑙�̂�𝚤 �𝑙𝑙�̂�𝚤�𝑗𝑗𝑖𝑖

Integer exponential in
modulo-M 𝑧𝑧𝚤𝚤�̂�𝚥 �𝑧𝑧𝚤𝚤�̂�𝚥�𝑗𝑗𝑖𝑖

Source: The authors.

𝑚𝑚𝑋𝑋𝑋𝑋𝑠𝑠𝑒𝑒𝑡𝑡 = {𝑚𝑚3,𝑚𝑚2,𝑚𝑚1} = �2𝛽𝛽 − 1, 2𝛼𝛼 , 2𝛽𝛽 + 1�

𝑀𝑀 = 𝑚𝑚1.𝑚𝑚2.𝑚𝑚3 = 22𝛽𝛽+𝛼𝛼 − 2𝛼𝛼
(35)

RNS residues for SVM parameters in the modulo-M

system can be obtained by applying the conversions outlined
in Table 2.

In Table 2, for each parameter p, there is a corresponding

3-tuple where each component is defined as follows:

⟨𝑝𝑝𝑖𝑖⟩𝑗𝑗𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑚𝑚𝑋𝑋𝑋𝑋𝑚𝑚𝑖𝑖
𝑖𝑖 ∈ {1,2,3}

(36)

When using a Look-Up Table with ⌊𝑀𝑀

2
⌋𝑚𝑚⌊𝑀𝑀

2
⌋ dimensions

to represent an integer exponential, there will be a
corresponding ⌊𝑀𝑀

2
⌋𝑚𝑚⌊𝑀𝑀

2
⌋𝑚𝑚3 size matrix in RNS representation.

With this parameter conversion, it becomes suitable to
create an equivalent hyperplane in RNS. However, it is
necessary to define a new function in RNS that can replace
the sign function:

𝑠𝑠𝑖𝑖𝑔𝑔𝑒𝑒{𝑔𝑔} → 𝑠𝑠𝑖𝑖𝑔𝑔𝑒𝑒𝑅𝑅𝑁𝑁𝑆𝑆{𝑔𝑔} (37)

Implementing the sign function, which involves

comparing a number with zero to determine whether it is less
than, greater than, or equal to zero, is not a straightforward
task in RNS. However, a variant of the LPN algorithm [13]
that is specifically designed for the chosen modulus set can
be utilized to accomplish the goal of performing the
comparison in RNS.

The first step in this process is to represent an integer
number in modulo-M, denoted as X, and its equivalent in
RNS, denoted as ⟨𝑅𝑅1,𝑅𝑅2,𝑅𝑅3⟩.The relationship between them
can be expressed as follows:

𝑋𝑋 → ⟨𝑅𝑅1,𝑅𝑅2,𝑅𝑅3⟩

⟨𝑋𝑋⟩2𝛽𝛽−1 = 𝑋𝑋𝑚𝑚𝑋𝑋𝑋𝑋�2𝛽𝛽 − 1� = 𝑅𝑅1
⟨𝑋𝑋⟩2𝛼𝛼 = 𝑋𝑋𝑚𝑚𝑋𝑋𝑋𝑋(2𝛼𝛼) = 𝑅𝑅2

⟨𝑋𝑋⟩2𝛽𝛽+1 = 𝑋𝑋𝑚𝑚𝑋𝑋𝑋𝑋�2𝛽𝛽 + 1� = 𝑅𝑅3

(38)

A periodicity is evident in the set of residues with respect

to the m1 and m3 moduli. This can be observed by defining:

𝑋𝑋′ = 𝑋𝑋 + 𝑚𝑚1.𝑚𝑚3 = 𝑋𝑋 + �2𝛽𝛽 − 1�. �2𝛽𝛽 + 1�
⟨𝑋𝑋′⟩2𝛽𝛽−1 = 𝑋𝑋′𝑚𝑚𝑋𝑋𝑋𝑋�2𝛽𝛽 − 1� = 𝑅𝑅1′𝑅𝑅1
⟨𝑋𝑋′⟩2𝛽𝛽+1 = 𝑋𝑋′𝑚𝑚𝑋𝑋𝑋𝑋�2𝛽𝛽 + 1� = 𝑅𝑅3′ 𝑅𝑅3

(39)

⟨𝑋𝑋′⟩2𝛼𝛼 = 𝑋𝑋′𝑚𝑚𝑋𝑋𝑋𝑋(2𝛼𝛼) = 𝑅𝑅2′

The last residue in the set can be defined as:

⟨𝑋𝑋′⟩2𝛼𝛼 = �𝑋𝑋 + �2𝛽𝛽 − 1�. �2𝛽𝛽 + 1��2𝛼𝛼
= ⟨𝑋𝑋 + (−1). (+1)⟩2𝛼𝛼 = ⟨𝑋𝑋 − 1⟩2𝛼𝛼
𝑅𝑅2′ = ⟨𝑅𝑅2 − 1⟩2𝛼𝛼

(40)

By generalizing and assuming a period T, where 𝑇𝑇 = 𝑚𝑚1.𝑚𝑚3,

it can be observed that if multiple periods of length kT are added
or subtracted to an integer number X, the residue R2 will be affected
in k units:

𝑋𝑋′ = 𝑋𝑋 ± 𝑘𝑘.𝑇𝑇 → �
𝑅𝑅1′ = 𝑅𝑅1

𝑅𝑅2′ = ⟨𝑅𝑅2 ∓ 𝑘𝑘⟩2𝛼𝛼
𝑅𝑅3′ = 𝑅𝑅3

𝑇𝑇 = 𝑚𝑚1.𝑚𝑚3
𝑘𝑘 ∈ 𝑁𝑁

(41)

To compare numbers in RNS, periodicity can be

leveraged by defining the following terms:
− Least Possible Number (LPN): this is the smallest

integer whose residues R1 and R3 match those of the
number being represented.

− Reference Residue (RR): this is the R2 residue of LPN.
Representing an integer in RNS using a modulus set can

be thought of as a linear combination of its LPN (LPNx) and
RR (RRx). This is illustrated by considering two integers, X
and X', and their corresponding RNS residues:

𝑋𝑋 → ⟨𝑅𝑅1,𝑅𝑅2,𝑅𝑅3⟩
𝑋𝑋′ → ⟨𝑅𝑅1′ ,𝑅𝑅2′ ,𝑅𝑅3′ ⟩

(42)

Now, X’ can be defined as a linear combination of LPNx, R2

and RRx:

𝑋𝑋′ = 𝑚𝑚1.𝑚𝑚3. (𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅2) + 𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥
= �2𝛽𝛽 − 1�. �2𝛽𝛽 + 1�. (𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅2)
+ 𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥

(43)

By means of modular arithmetic, it can be concluded that

X is equivalent to X’ in RNS representation:

⟨𝑅𝑅1′ ⟩ = ⟨𝑋𝑋′⟩2𝛽𝛽−1 = ⟨𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥⟩2𝛽𝛽−1 = 𝑅𝑅1
⟨𝑅𝑅2′ ⟩ = ⟨𝑋𝑋′⟩2𝛼𝛼 = ⟨𝑅𝑅2 − 𝑅𝑅𝑅𝑅𝑥𝑥 + 𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥⟩2𝛼𝛼

= ⟨𝑅𝑅2 − 𝑅𝑅𝑅𝑅𝑥𝑥 + 𝑅𝑅𝑅𝑅𝑥𝑥⟩2𝛼𝛼 = 𝑅𝑅2
⟨𝑅𝑅3′ ⟩ = ⟨𝑋𝑋′⟩2𝛽𝛽+1 = ⟨𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥⟩2𝛽𝛽+1 = 𝑅𝑅3

→ 𝑋𝑋′ = 𝑋𝑋
𝑋𝑋 = 𝑘𝑘.𝑚𝑚1.𝑚𝑚3 + 𝑟𝑟 = 𝑚𝑚1.𝑚𝑚3. (𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅2) + 𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥

→ ⟨𝑋𝑋⟩𝑗𝑗1.𝑗𝑗3 = ⟨𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥⟩𝑗𝑗1.𝑗𝑗3

(44)

Since LPNx is within the first period T = m1.m3, it follows that:

⟨𝑋𝑋⟩𝑗𝑗1.𝑗𝑗3 = 𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 (45)

Then, an algorithm based on these principles can be

utilized to compare two integer numbers, denoted as X and
Y, represented in RNS:

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 90(226), pp. 17-26, April - June, 2023.

23

𝑋𝑋 = 𝑘𝑘𝑥𝑥 .𝑚𝑚1.𝑚𝑚3 + 𝑟𝑟𝑥𝑥 → 𝑋𝑋 ≡ ⟨𝑅𝑅𝑥𝑥1,𝑅𝑅𝑥𝑥2,𝑅𝑅𝑥𝑥3⟩
𝑌𝑌 = 𝑘𝑘𝑦𝑦 .𝑚𝑚1.𝑚𝑚3 + 𝑟𝑟𝑦𝑦 → 𝑋𝑋 ≡ �𝑅𝑅𝑦𝑦1,𝑅𝑅𝑦𝑦2,𝑅𝑅𝑦𝑦3�

(46)

Then:

𝑖𝑖𝑖𝑖⟨𝑘𝑘𝑥𝑥⟩𝑗𝑗2 > �𝑘𝑘𝑦𝑦�𝑗𝑗2
→ 𝑋𝑋 > 𝑌𝑌

𝑖𝑖𝑖𝑖⟨𝑘𝑘𝑥𝑥⟩𝑗𝑗2 < �𝑘𝑘𝑦𝑦�𝑗𝑗2
→ 𝑋𝑋 < 𝑌𝑌

𝑖𝑖𝑖𝑖⟨𝑘𝑘𝑥𝑥⟩𝑗𝑗2 = �𝑘𝑘𝑦𝑦�𝑗𝑗2
�
𝑟𝑟𝑥𝑥 > 𝑟𝑟𝑦𝑦 → 𝑋𝑋 > 𝑌𝑌
𝑟𝑟𝑥𝑥 < 𝑟𝑟𝑦𝑦 → 𝑋𝑋 < 𝑌𝑌
𝑟𝑟𝑥𝑥 = 𝑟𝑟𝑦𝑦 → 𝑋𝑋 = 𝑌𝑌

(47)

In terms of LPNs and RRs:

𝑖𝑖𝑖𝑖⟨(𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥2)⟩𝑗𝑗2 > ��𝑅𝑅𝑅𝑅𝑦𝑦 − 𝑅𝑅𝑦𝑦2��𝑗𝑗2
→ 𝑋𝑋 > 𝑌𝑌

𝑖𝑖𝑖𝑖⟨(𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥2)⟩𝑗𝑗2 < ��𝑅𝑅𝑅𝑅𝑦𝑦 − 𝑅𝑅𝑦𝑦2��𝑗𝑗2
→ 𝑋𝑋 < 𝑌𝑌

𝑖𝑖𝑖𝑖⟨(𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥2)⟩𝑗𝑗2 = ��𝑅𝑅𝑅𝑅𝑦𝑦

− 𝑅𝑅𝑦𝑦2��𝑗𝑗2
�
𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 > 𝑚𝑚𝑃𝑃𝑁𝑁𝑦𝑦 → 𝑋𝑋 > 𝑌𝑌
𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 < 𝑚𝑚𝑃𝑃𝑁𝑁𝑦𝑦 → 𝑋𝑋 < 𝑌𝑌
𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 = 𝑚𝑚𝑃𝑃𝑁𝑁𝑦𝑦 → 𝑋𝑋 = 𝑌𝑌

(48)

To simplify the comparison function in RNS, the

subtraction of RRs with their corresponding 𝑅𝑅2 residues is
carried out in modulo m2 to ensure positive values. In terms
of hardware implementation, if LPNs and RRs are obtained
from a memory-based LUT, the comparison function can be
calculated solely using the LUTs and the residues from X and
Y. This approach overcomes the main challenge in RNS,
which is the conversion from RNS to Binary using methods
such as the Chinese Remainder Theorem. The comparison
function can be defined as follows:

𝑖𝑖𝑋𝑋𝑚𝑚𝑝𝑝𝑅𝑅𝑁𝑁𝑆𝑆{𝑋𝑋,𝑌𝑌}

=

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑖𝑖𝑖𝑖⟨(𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥2)⟩𝑗𝑗2 > ��𝑅𝑅𝑅𝑅𝑦𝑦 − 𝑅𝑅𝑦𝑦2��𝑗𝑗2

→ 𝑋𝑋 > 𝑌𝑌

𝑖𝑖𝑖𝑖⟨(𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥2)⟩𝑗𝑗2 < ��𝑅𝑅𝑅𝑅𝑦𝑦 − 𝑅𝑅𝑦𝑦2��𝑗𝑗2
→ 𝑋𝑋 < 𝑌𝑌

𝑖𝑖𝑖𝑖⟨(𝑅𝑅𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥2)⟩𝑗𝑗2 = ��𝑅𝑅𝑅𝑅𝑦𝑦 − 𝑅𝑅𝑦𝑦2��𝑗𝑗2
�
𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 > 𝑚𝑚𝑃𝑃𝑁𝑁𝑦𝑦 → 𝑋𝑋 > 𝑌𝑌
𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 < 𝑚𝑚𝑃𝑃𝑁𝑁𝑦𝑦 → 𝑋𝑋 < 𝑌𝑌
𝑚𝑚𝑃𝑃𝑁𝑁𝑥𝑥 = 𝑚𝑚𝑃𝑃𝑁𝑁𝑦𝑦 → 𝑋𝑋 = 𝑌𝑌

 (49)

This last function can be implemented efficiently using adders

and comparators. In signed RNS, positives numbers are
represented in the range �0, 𝑀𝑀

2
− 1�, while negative numbers are

represented in the range �−𝑀𝑀
2

,−1�, or equivalently in the nominal

range �𝑀𝑀
2

,𝑀𝑀 − 1�. Using complete nominal range [0,𝑀𝑀 − 1],
the decision boundary between positive and negative numbers is
𝑀𝑀
2

. Therefore, sign function in RNS can be defined as follows:

𝑠𝑠𝑖𝑖𝑔𝑔𝑒𝑒{𝑋𝑋} ≡ 𝑖𝑖𝑋𝑋𝑚𝑚𝑝𝑝𝑅𝑅𝑁𝑁𝑆𝑆 �𝑋𝑋,
𝑀𝑀
2 �

(50)

This property enables the use of RNS for representing

SVM-RBF classifiers.

8 Results

The previous methods discussed in the sections were

implemented to demonstrate the feasibility of SVMs with

Radial Basis Function in both modulo-M and RNS
representations. The implementation was carried out using
the Python programming language along with various
libraries such as Numpy, sklearn, and matplotlib. The SVM
training method used was a simplified SMO-algorithm-based
approach (SMO-lite).

Python proved to be a versatile and widely used platform
for implementing SVM-RBF models. The powerful
numerical computing library, Numpy, facilitated efficient
mathematical operations and array manipulation. The sklearn
library provided convenient tools for machine learning,
including SVM implementations. Matplotlib was utilized for
visualizing the results and analyzing the performance of the
models.

As an example, a dataset of 25 two-dimensional feature
vectors was analyzed, which were divided into two distinct
groups with the main group centered around a cluster. To
ensure consistency, all samples were normalized and
subjected to Gaussian noise with a standard deviation of 0.1.
The Radial Basis Function (RBF) kernel used a γ parameter
set to 1.

Figs. 6-8 compare the decision boundaries of the SVM-
RBF approximation in modulo-M to the original SMO-lite
algorithm, sklearn SVM, and a Maclaurin Series
approximation with a ninth-degree polynomial. The effect
of changing the dynamic range (M) is also depicted, with α
and β parameters influencing the shape of the decision
boundaries.

Fig. 9 shows the plot of the sign function in Python using
the LPN-method. The plot labels the first half of the
nominal range as positive 1, the second half of the nominal
range as negative 1, and zero value in the input represents a
0 sign according to the Dirichlet Conditions.

Finally, Fig. 10 compares four previous methods to a
fifth SVM approach, known as SVM-RNS, which maps the
modulo-M equivalent to the RNS representation. The figure
provides a visual comparison of the performance and
accuracy of these different methods. The implementation
was carried out using the Python programming language
and libraries such as Numpy, Scikit-learn, and Matplotlib,
which facilitated efficient mathematical operations,
machine learning tools, and data visualization.

Figure 6. SVM in integers modulo-M using α= 2, β= 6, M = 16380.
Source: The authors.

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 90(226), pp. 17-26, April - June, 2023.

24

Figure 7. SVM in integers modulo-M using α= 4, β= 5, M = 16368.
Source: The authors.

Figure 8. SVM in integers modulo-M using α= 5, β= 7, M = 524256.
Source: The authors.

Figure 9. Sign function developed in Python for RNS using α= 4, β= 5, M =
16368
Source: The authors.

Figure 10. SVM in RNS using α= 4, β= 5, M = 16368
Source: The authors.

Table 3.
Literature review

Autor Year Main objective Comments

[14] 2020
To reduce the resources
required to build and operate
CNN based on RNS.

RNS proves to be
advantageous for
enhancing the
efficiency of
arithmetic operations
in CNNs.

[15] 2021

To design a CNN accelerator
that operates entirely in
RNS, handling data, stored
weights, and
communication/computation
tasks.

The results
demonstrate that
integrating RNS into
a CNN based on a
Processing-in-
Memory architecture
leads to enhanced
computational
performance and
reduced energy
consumption.

[16] 2022

To propose a systematic
methodology called
ReFACE for the efficient
implementation of
computing-in-memory
(CIM) accelerators for FIR
filters. ReFACE leverages
the benefits of the residue
number system (RNS) to
enhance the performance of
digital filters.

The utilization of
RNS in FIR filters
resulted in significant
reductions in power
consumption and
latency.

[17] 2023

To present a novel design
approach for ultralow-power
arithmetic circuits, which
leverages the Residue
Number System (RNS) in
combination with
deterministic bit-streams

The proposed method
offers a cost-efficient
design in terms of
area occupancy and
power consumption.
These features make
it an ideal choice for
edge devices,
particularly energy
harvesting and bio-
implantable devices.

Source: The authors.

The results obtained indicate that the SVM in RNS and SVM

in modulo-M demonstrate similar performance to the other
methods, with decision boundaries that are almost identical
across different modulo sets. In contrast, the LPN method for
implementing the sign function has been shown to be effective
for classification purposes in SVM-RNS. This suggests that the
LPN-based approach provides a viable solution for implementing
the sign function in RNS-based SVM classifiers.

9 Literature review

Table 3 provides a summary of recent research studies

that have focused on utilizing of RNS in machine learning
applications to enhance computing performance. The
literature review reveals that incorporating RNS in signal
processing systems can lead to substantial benefits such as
improved power efficiency and reduced latency.

10 Conclusions

The results show that it is possible to implement SVMs

using integer numbers, even with nonlinear kernel functions

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 90(226), pp. 17-26, April - June, 2023.

25

such as Radial Basis Functions. The modulo-M
approximation provides a better fit to the original SVM when
the dynamic range is increased, allowing for more possible
represented values. However, this approach requires a larger
Look-Up Table (LUT) size, which may demand more
memory resources.

Furthermore, the implementation of SVM-RNS
demonstrates that Residue Number System (RNS) is suitable
for SVMs with RBF kernels. This opens possibilities for
future research in developing hardware-based methods for
implementing classifiers. RNS-based SVMs provide a
promising avenue for efficient and robust hardware
implementations of SVM classifiers, which can be explored
in future studies.

Both Look-Up Tables (LUTs) and Residue Number
System (RNS) have been effective techniques for feature
extraction, as in the case of Wavelet coefficients [18], and for
training Artificial Neural Networks (ANNs) [19]. In addition,
modular arithmetic has been used in various deep learning
acceleration techniques, such as employing Number
Theoretical Transforms (NTTs) in convolutional layers [20].

It is important to note that approaches like Convolutional
Neural Network (CNN) require more resources compared to
an SVM and may offer similar performance in certain
applications, such as EMG pattern recognition [21]. Thus, the
choice between SVMs and CNNs should depend on the
specific requirements and constraints of a given application.
Depending on the situation, SVMs can provide a simpler and
more resource-efficient solution while still achieving
satisfactory performance.

Nonlinear activation functions play a crucial role in
introducing complex decision boundaries in the stages of a
classifier. Commonly used nonlinear activation functions
include softmax, logistic, hyperbolic, and ReLU [22]. In the
context of neural network development with the RNS system,
advantages have been observed in performing addition,
subtraction, and multiplication operations [15].

However, when it comes to using nonlinear functions
such as divisions, comparisons, and exponentials in the RNS,
there is a high computational cost involved [23]. Previous
research has explored various implementations, including
representations in Mixed Radix Representation and the
Chinese Remainder Theorem [24]. However, these methods
can be complex to implement. In the case of the comparison
operation, the LPN method has been recently implemented in
a memristor array (PIM) [13]. In other recent research, a
comparable approach has been demonstrated utilizing the
Mixed Radix representation with dynamic range partitioning
[25]. It is noteworthy to emphasize that one of the major
contributions of this research is the proposal of a method to
utilize SVM with RNS. This method involves the use of the
LPN-based comparison operation with a modulus set distinct
from the one utilized in the implementation with PIM.

Additionally, the research presents a methodology for
performing the exponential operation in RNS. Both of these
objectives hold fundamental importance in advancing the
practical application of unconventional numerical systems,
such as RNS, in pattern recognition systems and digital signal
processing [11,15,16,24,26].

References

[1] Cardarilli, G.C., Nannarelli, A. and Re, M., Residue number system
for low-power DSP applications, in: 2007 Conference Record of the
Forty-First Asilomar Conference on Signals, Systems and Computers,
2007, pp. 1412-1416. DOI:
https://doi.org/10.1109/ACSSC.2007.4487461

[2] Albicocco, P., Cardarilli, G. C., Nannarelli A. and Re, M., Twenty
years of research on RNS for DSP: Lessons learned and future
perspectives, 2014 International Symposium on Integrated Circuits
(ISIC), pp. 436-439, 2014. DOI:
https://doi.org/10.1109/ISICIR.2014.7029575

[3] Boser, B.E., Guyon, I.M. and Vapnik, V.N., A training algorithm for
optimal margin classifiers, in: Proceedings of the fifth annual
workshop on Computational learning theory, 1992, pp. 144-152.

[4] Cortes, C. and Vapnik, V., Support-vector networks, Machine
learning, 1995, pp. 273-297.

[5] Chang, C.H., Molahosseini, A.S., Zarandi, A.A.E. and Tay, T.F.,
Residue number systems: a new paradigm to datapath optimization for
low-power and high-performance digital signal processing
applications., IEEE Circuits and Systems Magazine, 15, pp. 26-44,
2015. DOI: https://doi.org/10.1109/MCAS.2015.2484118

[6] Arthireena, S. and Shanmugavadivel, G., Efficient sign detection using
parallel prefix adder, in: IEEE International Conference on Electrical,
Instrumentation and Communication Engineering (ICEICE), 2017, pp.
1-5. DOI: https://doi.org/10.1109/ICEICE.2017.8191852

[7] Hakonen, M., Piitulainen, H. and Visala, A., Current state of digital
signal processing in myoelectric interfaces and related applications,
Biomedical Signal Processing and Control, 18, pp. 334-359, 2015.
DOI: https://doi.org/10.1016/j.bspc.2015.02.009

[8] Liao, L.Z., Tseng, Y.L., Chiang, H.H. and Wang, W.Y., EMG-based
control scheme with SVM classifier for assistive robot arm, in: 2018
International Automatic Control Conference, 2018, pp. 1-5. DOI:
https://doi.org/10.1109/CACS.2018.8606762

[9] Tymchyshyn, V. and Khlevniuk A., Yet more simple SMO algorithm,
2020.

[10] Shashua, A., Introduction to machine learning: class notes, in
Introduction to machine learning: class notes, 2009, pp. 30-39.

[11] Jenkins, W.K., Soderstrand, M.A. and Radhakrishnan, C., Historical
patterns of emerging residue number system technologies during the
evolution of computer engineering and digital signal processing, in:
IEEE International Symposium on Circuits and Systems (ISCAS), pp.
2018, pp. 1-5. DOI: https://doi.org/10.1109/ISCAS.2018.8351066

[12] Shoup, V., Congruences, in a computational introduction to number
theory and algebra, Cambridge University Press, U.K., 2009, 15 P.
DOI: https://doi.org/10.1017/CBO9781139165464

[13] Salamat, S., Imani, M., Gupta, S. and Rosing, T., Rnsnet: in-memory
neural network acceleration using residue number system, in: 2018
IEEE International Conference on Rebooting Computing (ICRC),
2018, pp. 1-12. DOI: https://doi.org/10.1109/ICRC.2018.8638592

[14] Chervyakov, N.I., Lyakhov, P.A., Deryabin, M.A., Nagornov, N.N.,
Valueva, M.V. and Valuev, G.V., Residue number system-based
solution for reducing the hardware cost of a convolutional neural
network, Neurocomputing, 407, pp. 439-453, 2020.

[15] Roohi, A., Taheri, M., Angizi, S. and Fan, D., Rnsim: efficient deep
neural network accelerator using residue number systems. In: 2021
IEEE/ACM International Conference on Computer Aided Design,
ICCAD, 2021, pp. 1-9, DOI:
https://doi.org/10.1016/j.neucom.2020.04.018

[16] Roohi, A., Angizi, S., Navaeilavasani, P, and Taheri, M., ReFACE:
efficient design methodology for acceleration of digital filter
implementations, in: 2022 23rd International Symposium on Quality
Electronic Design (ISQED), 2022, pp. 1-6. DOI:
https://doi.org/10.1109/ISQED54688.2022.9806144

[17] Givaki, K., Khonsari, A., Gholamrezaei, M.H., Gorgin, S. and Najafi,
M.H., A generalized residue number system design approach for ultra-
low power arithmetic circuits based on deterministic bit-streams, in:
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2023, 14 P. DOI:
https://doi.org/10.1109/TCAD.2023.3250603

[18] Ramírez, J., García, A., Meyer-Bäse, U., Taylor F. and Lloris, A.,
Implementation of RNS-based distributed arithmetic discrete wavelet

Arenas-Hoyos & Bernal-Noreña / Revista DYNA, 90(226), pp. 17-26, April - June, 2023.

26

transform architectures using field-programmable logic., Journal of
VLSI Signal Processing Systems for Signal, Image and Video
Technology, 33(1), pp. 171-190, 2003.

[19] Nakahara, H. and Sasao, T., A deep convolutional neural network
based on nested residue number system, in: 2015 25th International
Conference on Field Programmable Logic and Applications (FPL),
2015, pp. 1-6. DOI: https://doi.org/10.1109/FPL.2015.7293933

[20] Xu, W., You, X. and Zhang, C., Using Fermat number transform to
accelerate convolutional neural network, in: 2017 IEEE 12th
International Conference on ASIC (ASICON), 2017, pp. 1033-1036.
DOI: https://doi.org/10.1109/ASICON.2017.8252655

[21] Park, K.H. and Lee, S.W., Movement intention decoding based on deep
learning for multiuser myoelectric interfaces, in: 2016 4th international
winter conference on brain-computer Interface (BCI), 2016, pp. 1-2.
DOI: https://doi.org/10.1109/IWW-BCI.2016.7457459

[22] Lin, L.Y., Schroff, J., Lin, T P. and Huang, T.C., Residue number
system design automation for neural network acceleration, in: IEEE
International Conference on Consumer Electronics-Taiwan (ICCE-
Taiwan), 2020, pp. 1-2. DOI: https://doi.org/10.1109/ICCE-
Taiwan49838.2020.9258020

[23] Sakellariou, V., Paliourasy, V., Kouretasy, I., Saleh, H. and Stouraitis,
T., A High-performance RNS LSTM block, in: IEEE International
Symposium on Circuits and Systems (ISCAS), 2022, pp. 1264-1268.
DOI: https://doi.org/10.1109/ISCAS48785.2022.9937633

[24] Sousa, L., Nonconventional computer arithmetic circuits, systems and
applications, IEEE Circuits and Systems Magazine, 21(1), pp. 6-40,
2021. DOI: https://doi.org/10.1109/MCAS.2020.3027425

[25] Samimi, N., Kamal, M., Afzali-Kusha, A. and Pedram, M., Res-DNN:
a residue number system-based DNN accelerator unit., IEEE
Transactions on Circuits and Systems I: regular papers, 67(2), pp. 658-
671, 2019. DOI: https://doi.org/10.1109/TCSI.2019.2951083

[26] Soloviev, R., Telpukhov, D., Mkrtchan, I., Kustov, A. and
Stempkovskiy, A., Hardware implementation of convolutional neural
networks based on residue number system, in: Moscow Workshop on
Electronic and Networking Technologies (MWENT), 2020, pp. 1-7.
DOI: https://doi.org/10.1109/MWENT47943.2020.9067498

[27] Ran, S., Zhao, B., Dai, X., Cheng, C. and Zhang,Y., Software-
hardware co-design for accelerating large-scale graph convolutional
network inference on FPGA., Neurocomputing, 532, pp. 129-140,
2023. DOI: https://doi.org/10.1016/j.neucom.2023.02.032.

S. Arenas-Hoyos, received the BSc. in Electronic Eng. from the Universidad
del Valle, Colombia in 2015. In September 2011, he joined the Digital
Architectures and Microelectronic Group at Universidad del Valle as a
researcher. Currently, he is pursuing a PhD degree in Engineering with a
focus on Electrical and Electronics Engineering from the same university.
Alongside his studies, he holds the position of professor at the Engineering
Faculty of Unidad Central del Valle and Universidad del Valle in Tuluá,
Colombia. His research interests include programmable architectures, digital
systems design, hardware description languages, embedded systems, and
digital signal processing.
 ORCID: 0000-0002-5396-241X

A. Bernal-Noreña, received the BSc. in Electrical Eng. in 1987 from the
Universidad del Valle, Cali, Colombia, the MSc. degree in Science in
Electrical Engineering majoring in VLSI circuit design from Escola
Politécnica da Universidade de São Paulo, São Paulo, Brazil in 1997, and
the PhD degree in Microelectronics from Institute National Polytechnique
de Grenoble, Grenoble, France in 1999. Currently, is full professor at the
Engineering Faculty of Universidad del Valle, Cali, Colombia and leader of
the Group of Digital Architectures and Microelectronic.
ORCID: 0000-0003-4766-8086

	1 1. Introduction
	2 Support Vector Machines (SVM)
	3 Residue Number Systems (RNS)
	4 Implementation constraints over integers
	5 Proposed Kernel function mapping over integers modulo-M
	6 Proposed support vector machine mapping over integers modulo-M
	7 Proposed SVM model using Residue Number Systems
	8 Results
	9 Literature review
	10 Conclusions
	References

