
117

Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

Entre Ciencia e Ingeniería, año 12 (vol 12), no. 23 – Primer semestre de 2018, página 117 - 122
ISSN 1909-8367 (Impreso), ISSN 2539-4169 (En línea)

Resumen—Existen numerosos enfoques orientados a
aspectos presentando soluciones para las diferentes fases
del Ciclo de Vida del Desarrollo de Software (SDLC, por su
nombre en inglés). Pero no existen propuestas con un proceso
coherente y empleando notaciones y herramientas estándares
a lo largo de todo el SDLC. Hemos elaborado una alternativa
llamada Aspect-Oriented Process for a Smooth Transition
(AOP4ST), que permite la incorporación paulatina del
paradigma orientado a aspectos en los proyectos actuales en la
industria y ofrece una propuesta completa y homogénea para
todas las fases del SDLC. En este artículo presentamos cómo
encontrar las incumbencias en las primeras etapas de AOP4ST,
cuando pasamos del modelo de negocio al modelo de requisitos
de software, llevando a cabo la actividad de desarrollo de los
requisitos dentro de la ingeniería de requisitos.

Palabras Clave—modelo de procesos de negocio, modelo
de requisitos de usuario, modelo de requisitos de software,
desarrollo de software orientado a aspectos, incumbencias
transversales, AOP4ST.

Abstract—There are a lot of aspect-oriented approaches

1Producto derivado del proyecto de investigación “Ingeniería de
requisitos orientada a aspectos en AOP4ST”, a través del grupo de
investigación de Ingeniería de Software del Instituto de Investigaciones
de la Facultad de Informática y Diseño de la Universidad Champagnat,
Mendoza, Argentina

F. Pinciroli, Universidad Champagnat, Mendoza, Argentina, email:
pincirolifernando@uch.edu.ar

Como citar este artículo: Pinciroli, F. D. Concern detection along the
requirement development, Entre Ciencia e Ingeniería, vol. 12, no. 23, pp. 117-
122, enero - junio, 2018. DOI: http://dx.doi.org/10.31908/19098367.3711

Concern detection along the requirement development1

Detección de incumbencias en el desarrollo de los requisitos

Detecção de incumbências no desenvolvimento dos requisitos

F. Pinciroli

Recibido: diciembre 10 de 2017 – Recibido: febrero 15 de 2018

presenting solutions for the diff erent phases of the Software
Development Life Cycle (SDLC). However, there is no approach
with a coherent process and employing standard representations
and tools along the whole SDLC. We have elaborated an
alternative called Aspect-Oriented Process for a Smooth
Transition (AOP4ST), that allows the smooth incorporation of
the aspect-oriented paradigm in the current industrial projects
and off ers a complete homogenous proposal for the phases of
the SDLC. In this paper, we present how to fi nd concerns at
the fi rst stages of AOP4ST, when we move from the business
model to the software requirements model, performing the
requirement development activity of requirement engineering.

Keywords—business process model, user requirement
model, software requirement model, aspect-oriented software
development, crosscutting concerns, AOP4ST.

Resumo—Existem inúmeros abordagens orientados a
aspectos apresentando soluções para as diferentes fases do Ciclo
de Vida do Desenvolvimento de Software (SDLC, pelo nome
em inglês). Mas não há propostas com um processo coerente e
usando notações e ferramentas padrão em todo o SDLC. Temos
desenvolvida uma alternativa denominada Aspect-Oriented
Process for a Smooth Transition (AOP4ST), que permite a
incorporação gradual do paradigma orientado a aspectos em
projetos atuais da indústria e oferece uma proposta completa
e homogênea para todas as fases do SDLC. Neste artigo,
apresentamos como encontrar as incumbências nas fases
iniciais de AOP4ST, quando passamos do modelo de negócios
para o modelo de requisitos de software, realizando a atividade
de desenvolvimento de requisitos dentro da engenharia de
requisitos.

Palavras chave— modelo de processos de negócio,
modelo de requisitos do usuário, modelo de requisitos de
software, desenvolvimento de software orientado a aspectos,
incumbências transversais, AOP4ST.

I. Introduction

The emergence of the aspect-oriented paradigm
brought new expectations about the possibility of

building software in a more modular way and improving

DOI: http://dx.doi.org/10.31908/19098367.3711

118

its quality attributes, such as maintainability, flexibility,
comprehensibility, reusability, etc. [1].

However, the new paradigm also came with new
challenges, since there is not enough casuistry of its use
in the industry guiding towards a way to apply it properly,
particularly with regard to techniques, tools, notations and
good practices.

Software development projects must deal with a large
number of risks. It is not advisable to add new ones, such
as incorporating an approach that is not sufficiently mature
and that requires training people in poorly known tools
and techniques, applying not well-tested methods, lacking
support from vendors, and many more.

Similarly, there are no methodological proposals
employing standard symbolizations and covering the full
SDLC, so in case of applying the aspect-oriented paradigm,
we are obliged to compose a method by picking up parts
from different authors, who worked each phase of the SDLC
in isolation [2].

In this context, we decided to move forward with an
alternative that allows us to incorporate the aspect-oriented
paradigm in the current projects in the industry and offering
a complete proposal by unifying homogenously the different
phases of the SDLC.

In this paper, we present how to find concerns during the
user requirement development, from AOP4ST’s business
model until software requirements model. AOP4ST is a
framework process for software development whose aim
is the integration of the aspect-oriented paradigm in a
smooth way, causing the least possible negative impact in
the industry, but trying to make the most with all of the
advantages that current aspect-oriented paradigm offers.

In section two (II) we briefly present the AOP4ST’s
schema. The subsequent sections explain the evolution of
concerns along the first phases of the SDLC: in Section three
(III) we offer an explanation about how to find concerns in
the business model, and Section four (IV) describes how
to do the same in the user requirement model. Section five
(V) presents how to define new concerns in the software
requirements model. Finally, Section VI presents the
conclusions and highlights some open issues and future
work.

II. About AOP4ST
AOP4ST is a framework process; it is not a method

nor a methodology. It covers the whole SDLC, but we are
presenting here its structure for the early phases, commonly
known as “early aspects” [3][4].

AOP4ST’s name highlights two main concepts: a) the
AOP, “Aspect-oriented Process”, indicates that it is truly
aspect-oriented, ensuring that can be reached the widely
known benefits of this paradigm; b) the 4ST, “for a Smooth
Transition”, points to the possibility of applying this process
in the industry immediately, because it employs widespread
techniques, notations, standards, tools, etc. and allows
to move to an aspect-oriented reality, taking advantage
of the current state of the paradigm, until their own tools,
techniques, etc. were imposed and completely accepted on

the market.
The problem that AOP4ST tries to solve is how to bring

the benefits of the aspect-oriented paradigm to the whole
SDLC at the same time that are being used techniques,
tools and standards currently widespread in the industry. In
addition, the use of well-known techniques and tools allows
incorporating this paradigm gradually, until the different
existing proposals have enough diffusion and maturity to
permit their employment in real and complex projects.

The whole SDLC includes the business model, generally
not considered by the authors offering aspect-oriented
approaches for the early stages of the SDLC. There are
few incomplete proposals about aspect-oriented business
modeling [5].

Our approach arises from several factors, which we have
to face in the industry and in the adoption of new technologies
for software development. First, it is well known that the
different software development paradigms initially appear in
the programming phase and then continue their definitions
upstream, along with the SDLC [6][7]. The aspect-oriented
paradigm follows the same pattern, that is why it is easier to
find more proposals for the programming phase than for the
early phases of the SDLC.

Second, many proposals about software development
sound promising and offer benefits difficult to refuse, but their
massive use in industry depends on many factors. A well-
known case is the object-oriented databases, which beyond
the benefits they offered and the enormous popularity of the
object-oriented languages and development tools today, they
have not at all achieved the leading role in an industry that
could be expected [8].

Finally, software development projects have to deal with
many risks, and the main function of project leaders is to
minimize the damage that these risks can cause. The use
of immature technologies, tools newcomers to the market,
techniques that have not been tested enough, etc., would be
very risky decisions to take by who has the responsibility
to carry out a successful software development project. On
the other hand, the availability of well-known tools and
techniques and the adherence to standards and best practices
will help professionals to make good estimates and to take
better decisions.

AOP4ST is based on the hypothesis that it is possible
to design an aspect-oriented software development process
that encompasses techniques, tools, notations, and standards
of widespread use in the current practice. This development
process is suitable for the early stages of the SDLC, making
the most with the benefits of the aspect-oriented paradigm
in real-world settings. Under certain circumstances, it is
possible to make use of existing techniques, tools, and
standard notations, right now, while specific theoretical
and practical instruments are developed and introduced in
the market, achieving enough dissemination and support to
justify its use in real software development projects.

AOP4ST’s basic structure for early aspects is composed
by three models: business model, user requirements model
and software requirements model. The last one is divided
into three views: functional, static and state views. Concerns
can be progressively discovered along these models and
views.

Entre Ciencia e Ingeniería, vol. 12, no. 23, pp. 117-122, enero - junio, 2018.

119

III. Concerns in The Business Model
The business model starts the process in AOP4ST,

since we seek to have it as the first layer of the enterprise
architecture [9]. In enterprise architecture, this layer has
to pull on the rest of the models downstream to meet the
business goals. Besides this, an early concern detection can
help to improve the software robustness.

Five main aspect-oriented activities must be done in
AOP4ST’s business model: concern detection, concern
separation, and modeling, composition rules checking,
conflict resolution, aspect-oriented modeling.

After concern detection, the business model is
composed by three kinds of processes: primary, support
and management processes [10], and besides to them, the
reusable processes. The last ones are processes that are not
instantiated in themselves but are done from any of the first
kinds of processes and can be shared. Regardless of the type
of process to which they belong, each process is located
within a specific package. All these packages correspond to
the concerns that are detected in this first model and will host
the concerns throughout the whole SDLC. In AOP4ST, each
concern must be allocated in a package.

Reusable processes can be of two types: belonging to
the domain of the problem and not belonging to it. In the
first case, these are typical activities of the domain of the
problem, that are repeated in several processes and which
we, normally, could associate with functional requirements.

In the second case, these are activities that are
independent of the problem domain and can be found even
in different problem domains, e.g., access control, security,
audit, logging, etc. They are, typically, quality attributes,
also known as non-functional requirements (Fig. 1), that are
tangled with the activities belonging to the problem domain
and scattered along all the processes.

in a systematic way. Manual or automated aspect mining
techniques can be used to detect concerns [11].

Concerns must be placed into packages, along with
the rest of the common elements of the model, and using a
notation based on the proposal of Charfi et al. [12] although
adjusted to use only elements belonging to the standard
BPMN 2.0. This notation is also used to specify pointcuts,
which are conditions that explicitly indicate join points. Join
points are the points were the concerns will be composed
again. In the base process, we use an annotation element to
indicate the join point (Fig. 2), and the separated concern
is modeled inside of a pool element. This pool includes a
“Proceed” activity which represents the join points, and that
indicates if the composition must be done before, after or
around the join point (Fig. 3).

Fig. 1. Tangled and scattered crosscutting concerns.

To achieve a better success, we try to detect separately,
the concerns corresponding to functional requirements
and to non-functional ones. The former concerns are more
difficult to be detected because they depend on the wording
of the modeler. The latter are simpler, because they are
clearly distinguishable from the activities belonging to the
problem domain and, besides, it is possible to have a list of
standard categories of non-functional requirements to follow

Fig. 2. Pointcut represented with annotation elements and indicating the
join points.

Fig. 3. Concern modeled and encapsulated, with a “Proceed” activity
indicating the join points.

Since base processes and concerns are modeled within
packages, the composition relationships and the relationships
among concerns can be represented with a “concern model”,
build with UML package diagrams (Fig. 4).

In addition, it is possible to present a more detailed
application of the concerns in the different join points by
means of a “join point model,” where the packages are
presented as “white boxes”, showing the join points inside
(Fig. 5).

IV. The User Requirements Model in AOP4ST
The business model and the user requirements model

crosscut the systems belonging to the organization. Each
business process can describe activities that are supported
by different systems. Similarly, the implementation of a user
requirement could impact several systems, so this model of
user requirements does not belong to a particular system, but
to the global solution.

Entre Ciencia e Ingeniería, vol. 12, no. 23, pp. 117-122, enero - junio, 2018.

120

In the business model, the processes were described
by placing them into specific packages that correspond to
concerns. The same packages existent in the business model
must be copied into this model of user requirements so that
the user requirements that are now detected are perfectly
delimited to the process that requires them.

Functional user requirements will be easier to locate
within a specific concern, while non-functional user
requirements and business rules are more likely to be global,
that is, to apply to several or even all concerns. They are
usually referred to as crosscutting concerns. In the business
model, several cross-cutting concerns had already been
detected when we modeled processes not belonging to the
domain of the problem, but in this model, will arise new
crosscutting concerns (Fig. 6). These concerns also have
an important influence among them, due to the positive and
negative contribution relationships [13].

In addition to modeling the user requirements in the
corresponding packages, it will be necessary to specify the
relationships among them, so that the aspect-oriented models
mentioned in the previous section (concern and join point
models) are used again, now including the relationships
among user requirements.

The analysis of each functional user requirements will
allow finding new concerns at this stage. To do this, it is
necessary to follow these rules:
• Requirement tracing against business model elements

belonging to an only one concern: no new concern
is added; the requirement is located into the package

corresponding to the same concern coming from the
previous model.

• Requirement tracing against business model elements
belonging to more than one concern: it is a many-to-
many relationship among concerns and requirements; we
explain this below.

• Concerns with no requirements in the user requirement
model: something did not work well since it is no
possible to have empty packages; it is not possible not to
find requirements for every business process.

• Concerns with only one user requirement: this situation
may be caused because the requirement was set at a too
high abstraction level (coarse-grained) and it needs a
deeper analysis, or because the concern is too simple and
should be revised whether it is a concern or not.

Fig. 4. Concern model.

Fig. 6. Traceability between business and user requirements models.

There is no problem if we have many-to-many
relationships among concerns and requirements. Of course,
it is better to find one-to-many relationships [14], but in case
this is not possible, the requirements must be allocated to the
concern belonging to the most important business process.
However, a deeper analysis should be done, because this
situation is more frequent when requirements are defined at
a high abstraction level. A greater granularity will improve
the requirement allocation to an only one concern.

Non-functional requirements (quality attributes) will
be allocated in the concern corresponding to each non-
functional requirement category. Here, the problem is the
positive and negative contribution relationships among them
that it is necessary to analyze, because there could be an
undesirable impact on the overall quality of the system if are
defined non-functional requirements with too many negative
contribution relationships among them [13].

Allocating business rules is easier: they must be classified
into incumbencies following a criterion of homogeneity. A
future analysis could be done, when the concerns can be split
into new ones, depending of the degree of cohesion among
the business rules sharing the same package.

Entre Ciencia e Ingeniería, vol. 12, no. 23, pp. 117-122, enero - junio, 2018.

Fig. 5. Join point model.

121

Concerns found in this model are by no means the
definitive ones. The next AOP4ST’s model is the software
requirement model, where user requirements are traced to
use cases. Each use case will correspond to a concern, so it is
clear that new concerns will arise in that model.

V. The Software Requirements Model in AOP4ST
We do not think that the requirement specification

process will be performed in a cascade manner, but we need
to describe it in any way. Of course, it can be iterative and
incremental or whatever else it must be.

The use requirement must be specified in some way, and
we have chosen uses cases, because we think it is possible
to use them for different software development approaches:
they can be developed through a traditional software
development process, or their scenarios can be managed as
user stories on a product backlog for agile development.

concern, we must create two new concern in this model:
“Client management” and “Credit card management.”

VI. Conclusions
This article presents the main ideas about how to find

new concerns throughout the SDLC phases, according the
AOP4ST approach. The main virtue of this proposal lies
in the progressive concern appearance along the SDLC,
without losing the focus on the goal of each SDLC phase.

The search of requirements and concerns are, in this
way, an iterative and incremental work, where the finding
and the improvement in the definition of one of them allow
the finding and the improvement in the definition of the other
ones.

Another very important outcome is the homogeneity
and cohesion among the models, which allow for a coherent
transition from one to another, enabling pre and post-
requirement specification traceability and impact analysis.
Moreover, another outstanding feature is that concerns are
emerging naturally and progressively throughout the models.

So far, we have been able to perform some theoretical
and practical validations of AOP4ST. From the theoretical
point of view, we have submitted it for consideration to a
symposium of doctoral theses [16], from which we have
received very rich feedback. We have also applied the criteria
established by Jalali [5] for the measurement of AOP4ST’s
business model, and the results placed it in a privileged
position [17].

Regarding the practical validation, we were able to test the
AOP4ST’s models separately in several companies. AOP4ST
was fully applied to re-modeling a whole model of one of the
most important biochemical laboratories in Argentina, and at
this moment, we are successfully applying it in the modeling
of a beverage company. However, we believe that there is
still much effort needed to validate AOP4ST and to achieve a
greater maturity in the architectural and test models. We are
now working on these issues. For Spanish-speaking readers,
it is possible to find more information about AOP4ST in [16],
[18], and about AOP4ST’s business model in [19] and [20].

Referencias
[1] Kiczales G. et al., “Aspect-Oriented Programming”. ACM Comput.

Surv., vol. 28, no. June, pp. 220–242, 1997.
[2] Magableh, A., Shukur, Z. and Ali, N. M. “Systematic review

on aspect-oriented UML modeling: A complete aspectual UML
modeling framework,” J. Appl. Sci., vol. 13, no. 1, pp. 1–13, 2013.

[3] Bakker, J., Tekinerdogan, B. and Aksit, M. “Characterization of
Early Aspect Approaches,” Early Asp. Asp. Requir. Eng. Archit. Des.
Work., p. 7, 2005.

[4] Rashid, A., Moreira, A. and Tekinerdogan, B. “Early aspects:
aspect-oriented requirements engineering and architecture design,”
Software, IEE Proc., vol. 151, no. 4, pp. 153–155, 2004.

[5] Jalali, A. “Assessing Aspect Oriented Approaches in Business
Process Management,” in Perspectives in Business Informatics
Research, 13th International Conference, BIR 2014, pp. 231–245,
2014.

[6] Capretz, L. F. “A brief history of the object-oriented approach,”
SIGSOFT Softw. Eng. Notes, vol. 28, no. 2, p. 6, 2003.

[7] “History of Programming Languages,” in History of Programming
Lang. Conf.

[8] Leavitt, N. “Whatever Happened to Object-Oriented Databases?”

Fig. 7. Traceability between user requirements and software
requirements models.

We have told that every concern is located into a package.
Every package must be created again in this model, in order
to continue the concern traceability and to allow the concern
of discovering at this stage.

It is known that user requirements have a many-to-many
relationship with use cases since these realize the first ones.
However, in those cases where the relationship among them
is one-to-many, we will be probably creating more than one
use case for each user requirement. Moreover, since every
single use case is considered a unique concern [15], we will
be discovering new concerns at this phase of the SDLC.
Every use case is located into a package, so we will continue
having one package for each concern.

Fig.7 shows the creation of new concerns in the software
requirements model. The three concerns present in the user
requirements model are copied in the software requirements
model. Next, user requirements are analyzed to find the use
cases that must realize them. Two use cases are needed to
realize the user requirements existent in “Credit card grant”
concern. Since each use case is equivalent to a unique

Entre Ciencia e Ingeniería, vol. 12, no. 23, pp. 117-122, enero - junio, 2018.

122

Computer (Long. Beach. Calif)., vol. 33, no. 8, pp. 16–19, 2000.
[9] Greefhorst, D. and Proper, E. Architecture Principles. The

Cornerstones of Enterprise Architecture, vol. 6, no. 3, 2011.
[10] ABPMP, BPM CBOK V.3.0 - Business Process Management BPM

Common Body of Knowledge, 2013.
[11] Pinciroli, F. “Considerações acerca da mineração de aspectos,”

Perspect. em Ciências Tecnológicas, vol. 5, no. 5, pp. 83–101, 2016.
[12] Charfi, A., Müller, H. and Mezini, M. “Aspect-oriented business

process modeling with AO4BPMN,” Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 6138 LNCS, pp. 48–61, 2010.

[13] Pinciroli, F. “Improving software applications quality by considering
the contribution relationship among quality attributes”. Procedia
Comput. Sci. 3rd Int. Work. Comput. Antifragility Antifragile Eng.
(ANTIFRAGILE 2016), vol. 83, pp. 970–975, 2016.

[14] Clarke, S. and Baniassad, E. Aspect-oriented analysis and design.
The Theme Approach. Boston: Addison-Wesley, 2005.

[15] I. Jacobson and P. Ng, Aspect-oriented software development with
use cases. Addison-Wesley, 2005.

[16] Pinciroli, F. “Aspect-Oriented Process for a Smooth Transition,”
in Ph.D. Symposium of the IEEE 11 Congreso Colombiano de
Computacion, 2016.

[17] Pinciroli, F. and Barros Justo, J.L. Early aspects in “Aspect-Oriented
Process for a Smooth Transition”. Accepted article at CACIC 2017,
not yet published (http://cacic2017.info.unlp.edu.ar/).

[18] Pinciroli, F. “AOP4ST – Aspect-Oriented Process for a Smooth
Transition,” in WICC 2015 - XVII Workshop de Investigadores en
Ciencias de la Computación, 2015.

[19] Pinciroli, F. and Zeligueta, L. “El modelo de negocio en AOP4ST,”
in WICC 2016 - XVIII Workshop de Investigadores en Ciencias de la
Computación, 2016.

[20] Pinciroli, F. and Zeligueta, L. “Modelado de negocios orientado
a aspectos con AOP4ST,” in WICC 2017 - XIX Workshop de
Investigadores en Ciencias de la Computación, 2017.

Fernando Pinciroli nació en Buenos
Aires, Argentina, en 1965. Es Licenciado
en Sistemas y Computación por la
Universidad Católica Argentina y candidato
a Dr. en Ciencias de la Informática en la
Universidad Nacional de San Juan. Es
Decano de la Facultad de Informática y
Diseño de la Universidad Champagnat
(Mendoza, Argentina) y miembro del grupo
de investigaciones en ingeniería de software
del Instituto de Investigaciones de esa misma

facultad. Dictó cursos de posgrado y alrededor de 250 cursos y conferencias
en más de veinte países. Publicó más de 40 artículos científicos en
numerosos eventos internacionales y es coautor de tres libros publicados
en España, Argentina e Italia. Participó en la definición del UML a través
del Object Technology User Group. Es consultor en ingeniería de software
desde 1993 y actualmente es el presidente de Solus S.A., en Mendoza,
Argentina, y presidente de Sparx Systems Argentina, compañía hermana
de Sparx Systems Ltd. Pty. de Australia, ya que produce y comercializa
la versión en español de la herramienta Enterprise Architect en el mundo
hispanoparlante. Contacto: pincirolifernando@uch.edu.ar.

Entre Ciencia e Ingeniería, vol. 12, no. 23, pp. 117-122, enero - junio, 2018.

