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1Resumen—Los requerimientos alimentarios en el mundo han 
aumentado, evidenciando la necesidad de mejorar las técnicas 
estándar de producción agrícola. Para abordar este problema, 
una alternativa de solución es la inclusión de elementos 
tecnológicos como el sensado remoto de vegetación y los cultivos 
a partir de imágenes hiperespectrales. El sensado remoto y las 
imágenes hiperespectrales son métodos no invasivos, que 
permiten monitorear grandes espacios de terreno en cantidades 
de tiempo reducidas. Estas características han hecho que el 
sensado remoto a partir de imágenes hiperespectrales sea una 
herramienta poderosa para desarrollo de procesos de agricultura 
de precisión. En este artículo se presenta una aplicación de 
software que permite generar y procesar índices espectrales de 
vegetación y sus respectivas imágenes de pseudo color, utilizando 
imágenes hiperespectrales. Las imágenes hiperespectrales 
utilizadas fueron tomadas de la base de datos del sensor Airborne 
Visible-Infrared Imaging Spectrometer (AVIRIS), diseñado por 
la NASA. El objetivo de la aplicación de software es mostrar 
diferentes elementos asociados con el monitoreo remoto de 
vegetación y cultivos a partir de imágenes hiperespectrales. 

 
1Producto derivado del proyecto de investigación “Sistema de 

reconocimiento y clasificación no supervisado basado en aprendizaje 
automático para la segmentación de cultivos a partir de imágenes 
hiperespectrales”. Presentado por el Grupo de Investigación Percepción y 
Sistemas Inteligentes PSI, de la Universidad de Valle. 
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Finalmente, se presentan pruebas funcionales para verificar el 
cumplimiento de los requisitos del software.  

Palabras clave— Imágenes hiperespectrales, sensado remoto, 
bandas espectrales, índice de vegetación, longitud de onda.   

 
Abstract— Food requirements in the world have increased, 

evidencing the necessity to improve standard techniques of 
agricultural production. To do so, one option is through 
technological elements like hyperspectral remote sensing of 
vegetation and crops. Remote sensing and hyperspectral imagery 
are not invasive methods. They allow covering large land space in 
a reduced amount of time. These features have done the hyper-
spectral remote sensing a powerful tool used in precision 
agriculture. This paper presents a software application to process 
hyperspectral images and generating pseudo-color images 
computed using spectral indices. This work uses the 
hyperspectral images were taken by Airborne Visible-Infrared 
Imaging Spectrometer (AVIRIS) sensor, which was designed by 
the NASA. The software application aims to show different 
elements associated with the hyperspectral remote sensing of 
vegetation and crops.  Functional tests are presented to verify the 
software requirements. Finally, quantitative results are reported 
comparing the results of the software proposes in this work with 
the ERDAS Imagine software tool. 

Keywords— Hyperspectral Images, Remote Sensing, Spectral 
Bands, Spectral Indices, Wavelength. 

 
I. INTRODUCTION 

 
SUALLY the development of monitoring tasks of 
vegetation and crops are done manually, using low 
qualification human resources. One or some workers with 

specialized equipment go over the region of interest, 
collecting information plant by plant like biomass, water stress 
level, height, number of leaves, among others. This manual 
monitoring system is inefficient due to a large amount of time, 
equipment, and human resources needed  [1].   

Remote sensing systems allow capturing these features of 
interest without direct contact with the plants, providing a fast, 
efficient, and nondestructive way to develop this task [2]. It is 
possible because a hyperspectral sensor can capture the level 

U
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of reflectance emitted by an object in different spectral 
wavelengths. The level of reflectance depends on the 
molecular composition and texture of the object [2].    

Recent advances in remote sensing through hyperspectral 
images or spectroscopy have shown their importance to 
several applications related to vegetation and crop monitoring 
[3].  Right now, it possibly makes diagnostics and 
discriminates between different kinds of crops through remote 
sensing systems. In fact, the use of hyperspectral imagery 
allows making a deeper analysis with better results than an 
analysis made with multispectral data [4].  

The relationship between biochemical and biophysical 
features of vegetation or crops with the level of reflectance for 
different wavelengths registered by a hyperspectral sensor is 
named “vegetation spectral indices.” The vegetation spectral 
indices were proposed to quantify biochemical and 
biophysical features of crops, through the relationship between 
the spectral information and the feature of interest  [1]. 

Some researchers have shown applications related to remote 
sensing of vegetation and crops using hyperspectral images. 
This includes: water stress level detection [5]–[7], 
measurement of chlorophyll content [8], variance detection of 
green percentage of the crops [2], [9], extraction of 
biochemical variables like nitrogen and lignin [10], [11], crop 
types discrimination [9], detection of moisture levels [6], 
variation on pigmentations leaves [2], [12], improvement in 
vegetation changes detection [2], among others. 

In this paper, it is presented the design and development of 
a software tool that allows generating some vegetation spectral 
indices from hyperspectral images taken by the Airborne 
Visible-Infrared Imaging Spectrometer sensor (AVIRIS) 
designed by NASA. The software application developed is 
oriented to spectral indices implementation and generation. 
This kind of information can be further analyzed to provide 
insights into water level, water stress affectation area, biomass 
level, and crop classification. 
 

II. VEGETATION SPECTRAL INDICES 
 

The vegetation spectral indices are features that represent 
directly or indirectly the biochemical and biophysics 
vegetation or crops characteristics. Some researches around 
the world have demonstrated the efficiency and potential of 
generating vegetation indices for the estimation of useful 
variables for agricultural activities. These indices are obtained 
through information provided by spectral sensors. Some 
spectral bands are merge thought algebraic manipulations, 
which relates the reflectance of the scene with a phenomenon 
of interest [3]. 

The accuracy of the estimation depends on the bandwidth of 
the sensor used.  When the sensor has not enough spectral 
accuracy, the resulting values could be inexact and affect the 
stability of the prediction process [3].  

Narrowband hyperspectral sensors allow overcoming these 
limitations due to its high spectral resolution.  A narrow band 
hyperspectral sensor has a bandwidth less of 10 nm and could 
take information over hundreds of wavelengths, usually in a 
range of 400 nm to 2500 nm [13].  

One of the most important challenges in the generation of 
vegetation spectral indices is how to select and merge a group 

of spectral bands, which can be related to a phenomenon of 
interest. Not all spectral bands have relevant information for 
spectral index generation. Then, four types of structures are 
used to create spectral indices. The performance of each 
spectral index structure is evaluated through the R2 correlation 
between the spectral index and the phenomenon of interest. 
These four indices structures are discussed in the following 
paragraphs [1].   

 

A.  Hyperspectral Two Bands Vegetation Index 

A hyperspectral two bands vegetation index (HTBVI) is 
generated from bands i and j  as shown in (1) [1]. 
 

 
 

 
(1) 

 

Where i,j=( 1 … N ), R is the reflectance of the bands and  
N is the total number of bands. A hyperspectral sensor with 
the ability to capture information in 220 spectral bands (N) 
provides sufficient information to generate (NxN-N)/2=24.090 
spectral two bands vegetation indices (HTBVI). However, just 
a few indices will contain relevant information. The rest may 
contain redundant or irrelevant information [10]. 

  

B.   Hyperspectral Multi-Band Models  

The hyperspectral multi-band models (HMBMs) are 
calculated as described in (2) [1].  
 

 
 

 
(2) 

 

Where HMBM is the vegetation index i, R is the band 
reflectance j = (1 … N ), and aij is a weight coefficient for 
band reflectance j.  

This process involves the implementation of a statistical 
regression model with any biophysical or biochemical variable 
as the dependent variable and some other hyperspectral bands 
as independent variables.  

The process begins finding a spectral band Rj which 
generates the best coefficient R2. Later it adds to the model a 
new spectral band that increases the value of R2. The 
comparison is repeated until the addition of new bands does 
not modify in a negative way the value of R2. 
 
C. Hyperspectral Derivative Greenness Vegetation Indices 

 
When a vegetation index is generated using two spectral 

bands very close to each other in the green region (514-556 
nm), a slope is generated on the reflectance levels, indicating a 
gradient of the green levels. This behavior could represent a 
variation of chlorophyll levels, kind of crops, growing level, 
or healthy.  Hyperspectral Derivative Greenness Vegetation 
Indices HDGVI is given in (3)  [1].   

 

 

 
(3) 
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Where i and j are the numbers of the spectral band, λ is the 
center of wavelength and ρ' is the derivative reflectance, 
obtained from the division between the difference of the 
reflectance levels of the bands, and the distance between both.  

D. Hyperspectral Hybrid Vegetation Index  

These models use combinations from previously described 
models for the generation of hyperspectral vegetation index. 
Some examples of these indices are presented in [1]. 
 
III. VEGETATION AND CROPS REMOTE SENSING BY 
HYPERSPECTRAL IMAGES AND SPECTRAL INDICES 

 
Agricultural crops are significantly better characterized, 

modeled, and classified when the hyperspectral images are 
used [1], [4], [14], [15]. Many researches have shown the 
veracity of this affirmation for a wide number of biophysical 
and biochemical variables [6], [13].  

The hyperspectral remote sensing has been widely studied 
in the early detection of nitrogen levels as an important 
characteristic of productivity and the future quality of crops. 
[11]. The early knowledge of nitrogen level in growth crop 
season is essential for effective harvest. The nitrogen in leaves 
is an essential element to estimate the growth status of the 
crop, fertilization levels, and it can be used as a productivity 
index. The low nitrogen content can be evaluated using the 
ratio of the spectral band reflectance R743 and R1316  [11]. 

In [1] is presented a research on crops like cotton 
(Gossypium), potatoes (Solanum erianthum), soy (Glycine 
max), corn (Zea mays), sunflowers (Helianthus spp.), barley 
(Hordeum vulgare L.), wheat (Triticum aestivum L. or 
Triticum durum Desf.), lentil (Lens esculenta (Moench)), 
cumin (Cuminum cyminum L.), chickpea (Cicer arietinum L.), 
and pea (Vicia narbonensis L.). This investigation studied and 
found parameters like LAI (leaf area index m2/m2), WBM (wet 
biomass kg/m2), PLNTHT (plant height mts), CP (crude 
protein percentage), N (nitrogen percentage) y CC (ground 
area covered by the canopy), they are used to estimate the 
status, quality, and crop profitability. From spectral 
measurements, the authors were able to identify twelve 
spectral bands ideal to crops remote sensing in the range of 
400 to1050 nm.  

In [14], [16] is modeled variables like weight, basal area, 
and biomass for forest regions. The normalized vegetation 
difference index (NVDI) is used like a feature that takes values 
depending on the plant structure, composition (nitrogen, 
lignin, chlorophyll) and quantitative characteristics like 
biomass per area unit, plant height, among others. In [12] is 
presented an analysis based on the optical properties of big 
size plants, where is presented a relation between the spectral 
features and water stress levels and chlorophyll concentration. 
This paper allows watching that the level of light reflected by 
the plant leaves, which is showed in its color, is a good 
indicator of water stress. Similarly, in [6] and [13] is shown 
using spectral indices and thermal information that is possible 
to determine physiological conditions linked to water levels at 
olive trees.  

In [2] is presented some spectral indices which are used as 
an effective tool for nondestructive phenotyping of 
morphologies in wheat crops at arid lands. In [8] is made the 

estimation of chlorophyll level using thermal and 
hyperspectral images taken by an unmanned autonomous 
vehicle. The authors make use of thermal and spectral 
information, which in addition to machine learning 
algorithms, provide a powerful tool to develop a strong 
estimation of the chlorophyll concentration level.   

 
TABLE I 

SPECTRAL BANDS USED FOR THE VEGETATION AND CROP STUDY 
Wavelength 

(nm) 
Relationships with Vegetation Features  

Blue Bands 
375 Photosynthetic activity, water content.  
466 A and b chlorophyll levels in vegetation.  
490 Aging, chlorophyll loss and crop efficiency.  

Green Bands 
515 Leaves nitrogen, vegetation humidity.  
520 Pigmentation, Biomass changes.  
525 Vegetation Status, pigmentation, nitrogen.  
550 Biomass, total chlorophyll, nutritional levels, fertility, 

vegetation classification. 
575 Pigmentation, biomass changes. 

Red Bands 
675 Chlorophyll absorption, differences between crops and 

ground.  
 

682 
Biophysical and productive amounts, chlorophyll 
absorption, wet and dry biomass, plant size, 
productivity, crop type.  

Red Edge 
700 Stress by Nitrogen, growth, chlorophyll.   
720 Stress Chlorophyll levels, Healthy vegetation.  
740 Nitrogen accumulation 

Near Infrared 
845 Wet and dry biomass, size, productivity, crop type.  
915 Biophysical and productivity amounts.  
975 Humidity, biomass, water content.   

Far Near Infrared Edge  
1100 Biomass, Leaf Area Index (LAI). 
1215 Humidity, biomass.  
1245 Water sensitivity, leaf water, biomass.  

Short Wave Infrared 
1316 Nitrogen content in crops.  
1446 Vegetation classification and discrimination.  
1518 Sensitivity to humidity and biomass.  
1725 Lignin, biomass, starch, humidity. Discrimination 

between crops and vegetation.  
2035 Humidity and biomass levels.  
2173 Protein, nitrogen.  
2260 Vegetation status, humidity, biomass.  
2295 Sensitivity according to the ground, crop stress.  
2359 Cellulose, protein, nitrogen, stress, lignin, starch.   

 
Proposals, as previously mentioned, demonstrates the 

potential of the remote sensing methods from hyperspectral 
images in applications of monitoring of vegetation and crops. 
However, it is important that each development will be 
formulated thinking in the particular features of the zone and 
the crop of interest. The relation between vegetation features 
and spectral index can change considerably through different 
kinds of vegetation, species, weather and topographical 
conditions [12]. 

In Table I is shown a summary of the spectral bands used 
by some studies for the generation of several spectral indexes.  

There are a lot of challenges in the development of a remote 
sensing system based on hyperspectral images [1]. Any 
system based on spectral indices involves to determinate 
according to the application, the number of bands, the kind of 
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index or the algebraic manipulation used to adjust the spectral 
data with the feature of interest. However, as the previous 
work, it is necessary to develop suitable calibration 
proceedings that allow getting reflectance values in 
accordance with atmospheric and topographic features of the 
scene [1].  

The set of values stored in a hyperspectral image is known 
as digital numbers (DN). These digital numbers do not directly 
represent any biophysical or biochemical variable, even 
though it is not appropriate to obtain any spectral index using 
those digital values. The spectral indices are developed to 
work with spectral reflectance values of the surface of the 
earth [2]. So, it is necessary to turn the DN values into 
reflectance values. This process is done in two stages as 
follows [17]:  

 DN to radiance conversion. Captured data are digitized and 
adjusted to a binary value scale (1bit, 2bits, 4bits, 8bits, 
16bits o 32bits) selected by the sensor manufacturer. The 
process of digitizing the radiance readings and adjust them 
to a binary scale is known as Digital Numbers. The inverse 
of this process is called radiometric calibration.  

 Radiance to apparent reflectance conversion that is the 
reflectance calculus at the sensor.  

If the atmospheric effects are removed, it is possible to 
convert the reflectance in the sensor into reflectance on the 
surface. In this case, it will have been done a full atmospheric 
correction process. 
 

IV. SOFTWARE TOOL FOR VEGETATION INDICES 
GENERATION THROUGH HYPERSPECTRAL IMAGES 

 
In the development of the software tool for vegetation 

indices generation, the RUP software development 
methodology was followed [18]. Using this methodology, the 
functional and non-functional requirements, the conceptual 
diagram, the real use cases, the sequence diagrams, the 
flowcharts and integration tests were documented.  The next 
sections describe part of this documentation due to space 
reasons. 

A. Software Functional Requirements  

The software tool presented in this paper was developed 
considering the following functional requirements: 
 
Selecting and loading hyperspectral data. 
 Allowing users to select specific hyperspectral data set. 
 Determining the format and loading the selected data in 

memory. 

 Plotting representative RBG image of the selected 
hyperspectral data. 

 Sending messages from events generated by the process.  

Performing calculation of known spectral indexes 

 Allowing users to select the spectral index to be 
calculated.  

 Extracting the spectral bands required for the 
calculation of the selected spectral index. 

 Calculating and plotting the result obtained from the 
selected spectral index. 

 Allowing users to save the results obtained from the 
calculation of the spectral index. 

 Sending messages of events generated by the process.  

 

Programming spectral index defined by the users 

 Verifying the existence in memory of a data set 
previously selected. 

 Allowing users to enter an expression to program a new 
spectral index.  

 Providing a user interface to write the equations and 
calculate the new spectral index.  

 Plotting the new spectral index result. 

 Allowing users to select the limits of the graphic.  

 Allowing users to save and clear the new index equation 
for future use.   

 Allowing users to select, calculate and put into a graphic 
any index which has been stored in the list.  

 Sending messages from events generated by the process.  

 Feedback console regarding the process status. 

 Logging all events generated by users when they use the 
software tool. 

B. Non-Functional Requirements  

 The application uses hyperspectral images in ENVI 
format.  

 The application is compatible with Matlab® 8.6 or the 
latest. 

 It is necessary at least 300 Mbytes of RAM to execute the 
application.  

 
Fig. 1 shows the conceptual diagram that relates to the 

software functionalities and actors. 
 
C. Implementation 
To implement the software of vegetation indices generation, 

the database of hyperspectral images provided by Airborne 
Visible-Infrared Imaging Spectrometer sensor (AVIRIS) was 
used.  

AVIRIS is an optical sensor that can capture images 
calibrated radiometrically. It uses reflectance values in 224 
bands or spectral channels in a range of 400 to 2500 
nanometers. The database of AVIRIS project provides a huge 
compendium of hyperspectral images taken at several regions 
of US territory and provides both radiance and reflectance 
information. These data have been obtained after an 
atmospheric calibration process [19]. 
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Fig. 1. Software functionalities and actors. 
 
According to the functional requirements described above, 

the software implements twelve vegetation spectral indices, 
widely documented in literature such as Normalized Water 
Index 1 to 4 (NWI 1-4) and Water Band Index (WBI), used in 
the estimation of relative water content in plants subjected to 
water stress [2]. Normalized Difference Vegetation Index 
(NDVI) and Simple Ratio (SR) are indices used in finding 
vegetation parameters such as biomass, green quantity, status 
and type of vegetation, [6], [9]. The Green Normalized 
Difference Vegetation Index (GNDVI), Red Normalized 
Difference Vegetation Index (RNDVI) and Photosynthetic 
Reflectance Index (PRI) are used to determinate the quantity 
of photosynthetic area and radiation efficiency [2], [9].  

The software application also implements the combination 
of several spectral indexes like WBI and NDVI, the reflectance 
ratio between bands of 1000 and 1100 nanometers, 940 and 
960 nanometers, 940/960 nanometers and NDVI which are 
used as estimators of water levels in leaves [2]. 

Fig. 2 shows the graphical user interface (GUI) he elements 
and functions described in the functional requirements section 
are highlighted. In this GUI, the panel with tag number 1 
shows the tools corresponding to loading  
data, selecting spectral index, calculating and plotting the 
selected index and saving the results. The Panel with tag 
number 2 includes tools that correspond to the creation of new 
spectral indexes, saving data, editing the list of created 
indexes, selecting created indexes, calculating and plot the 
selected index. The panel with tag numbers 3 and 4 is showed  
the console of commands and the space for graphical 
presentation of results respectively. 
 

V. TESTS AND RESULTS 
 

To validate the compliance of the software tool 
requirements, two kinds of results are reported: first, from the 
RUP methodology point of view, the software integration 
tests; and second,  a quantitative comparison between the 
results generated through  ERDAS Imagine tool [20] and the 
software tool proposed in this paper. ERDAS Imagine 

software tool is one of the most common applications used for 
tele-detection tasks and hyperspectral images processing. 

 
A. Test – Calculate Known Spectral Index 
The goal of these tests is to prove the GUI operation 

through the execution of functions as calculating and plotting 
the NDVI and other indexes of the selected image. It will 
allow users to visualize several vegetation types in the image.   

To do this test, it was used a hyperspectral image with 
ENVI format that was obtained from AVIRIS data set, flight 
f130803t01p00r11. 

Then, users can select the index to compute, for instance, 
the NDVI. The expected result is to obtain a console message 
about the successful load of the image, another message 
relating to the successful NDVI calculation and image 
visualization. 

Fig. 3 shows the result of applying NVDI to the image 
displayed in Fig. 2. In Fig. 3 is possible to see that the applied 
spectral index allows users to distinguish the several levels of 
green. These green levels made possible to segment the types 
of crops, their growth status or healthy.  

 In the same way, the developed software tool allows users 
to calculate the next known vegetation indices: RNDVI, WBI, 
NWI1, NWI2, NWI3, NWI4, R1000/R1100, R940/R960, 
WBI/NDVI, PRI, and SR. 

B. Test – Programming New Spectral Indices  

The goal of this test is to prove the functionality of 
calculating indexes proposed by the user and plotting the 
resulting image. The GUI allows writing an algebraic 
expression that represents the new desired vegetation index, 
such as the ratio between bands R1000 and R2000 given in 
(4).  

 

(4) 
 

 
Where R is the band reflectance and 1000 or 2000 is the 

wavelength in nanometers of that band.  In this test, it was 
used a hyperspectral image in ENVI format that was obtained 
from AVIRIS data set, flight f130803t01p00r11. 
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Fig. 2. Application to Vegetation Index Generation 
 
 

 
  

 
Fig. 3. Result to Apply NDVI to an image with several vegetation types.  
 

The procedure to follow is as follows: first, to select a 
hyperspectral image, and second, into the edition window 
users must program the desired expression for the new 
spectral index. The expected result is to obtain a message in 
the console about the success of the index programming by the 
user, the saving data process of the new spectral index, and the 
visualization of the resulting image.  

 This test shows the correct operation to introduce and 
visualize the results of new spectral indexes created by uses. 

Fig. 4 shows the result of applying a spectral index defined 
by the expression R1000/R2000. The programming interface 
allows users to perform any math operation such as 
multiplication, addition, scalar products, among others. 

 
 

C. Test – Quantitative comparison between ERDAS Imagine 
and the proposed software tool 

The aim of this test is to establish the accuracy level of the 
indexes computed by the software tool proposed in this paper. 
To do so, a comparison between the results of the proposed 
software tool and the results obtained through ERDAS 
Imagine were considered.  

 

 
Fig. 4.  Creation of a New Spectral Index R1000/R2000.   
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Fig. 5.  Mean Quadratic Error (MCE).   
 

Fig. 5 shows the mean quadratic error obtained from the 
two image results, one belonging to the ERDAS Imagine tool, 
and the other to the proposed software tool. The vegetation 
indices used in this test were: NDVI, GNDVI, RNDVI, WBI, 
NWI1, NWI2, NWI3, NWI4, PRI, and SR. 

Considering the results showed in Fig. 5, it can be observed 
that the average mean quadratic error between the indices 
generated by both tools was 1.63e-7. This means that the 
software tool proposed in this paper is an efficient alternative 
to the commonly used application in the analysis of 
hyperspectral data.   
  

VI. CONCLUSIONS 

 
The vegetation spectral indices are developed to create a 

relationship between the features of vegetation or crops with 
the levels of reflectance captured in several wavelengths over 
the electromagnetic spectrum. This allows developing remote 
sensing systems which might be used to estimate useful 
variables for an agricultural production process. 

The developed software tool implements several vegetation 
spectral indexes such as the Normalized Water Index 1 to 4 
(NWI 1-4) and Water Band Index (WBI), which are used in 
estimation of relative water content and water stress, the 
Normalized Difference Vegetation Index (NDVI) and Simple 
Ratio (SR) which are indices used in finding vegetation 
parameters such as biomass, green quantity, status and type of 
vegetation. The Green Normalized Difference Vegetation 
Index (GNDVI), Red Normalized Difference Vegetation 
Index (RNDVI) and Photosynthetic Reflectance Index (PRI) 
are used to determinate the quantity of photosynthetic area and 
radiation efficiency. The software also implements the 
combination of several spectral indexes like WBI and NDVI, 
the reflectance ratio between bands of 1000 and 1100 
nanometers, 940 and 960 nanometers, 940/960 nanometers 
and NDVI, which are used as estimators of water levels in 
leaves. Additionally, the software tool allows users to 
introduce custom spectral indexes. This functionality provides 
greater versatility in the analysis and handling of the 
hyperspectral information. 

The tests performed in this paper show that the software 
tool proposed in this paper is an efficient alternative to the 
commonly used application in the analysis of hyperspectral 
data. 
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