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     1Abstract— Molecular Dynamics (MD) simulations on grain 

collisions allow to incorporate complex properties of dust 

interactions. We performed simulations of collisions of porous 

grains, each with many particles, using the MD software 

LAMMPS. The simulations consisted of a projectile grain 

striking a larger immobile target grain, with different impact 

velocities. The disadvantage of this method is the large 

computational cost due to a large number of particles being 

modeled. Machine Learning (ML) has the power to manipulate 

large data and build predictive models that could reduce MD 

simulation times.  Using ML algorithms (Support Vector 

Machine and Random Forest), we are able to predict the outcome 

of MD simulations regarding fragment formation after a number 

of steps smaller than in usual MD simulations. We achieved a 

time reduction of at least 46%, for 90% accuracy. These results 

show that SVM and RF can be powerful yet simple tools to 

reduce computational cost in collision fragmentation simulations. 
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Resumen— Las simulaciones de dinámica molecular (MD) en 

colisiones de granos permiten incorporar propiedades complejas 

de interacciones de polvo. Realizamos simulaciones de colisiones 

de granos porosos, cada uno con muchas partículas, utilizando el 

software LAMMPS de MD. Las simulaciones consistieron en un 

grano de proyectil que golpeó un grano objetivo inmóvil más 

grande, con diferentes velocidades de impacto. La desventaja de 

este método es el gran costo computacional debido a que se 

modela una gran cantidad de partículas. Machine Learning (ML) 

tiene el poder de manipular grandes datos y construir modelos 

predictivos que podrían reducir los tiempos de simulación MD. 

Usando algoritmos ML (Support Vector Machine y Random 

Forest) podemos predecir el resultado de las simulaciones MD 

con respecto a la formación de fragmentos, después de varios 

pasos más pequeños que en las simulaciones MD habituales. 

Logramos una reducción de tiempo de al menos un 46%, para 

una precisión del 90%. Estos resultados muestran que SVM y RF 

pueden ser herramientas poderosas pero simples para reducir el 

costo computacional en simulaciones de fragmentación de 

colisiones. 

  Palabras Clave— simulaciones granulares, aprendizaje 

automático, análisis de clasificación, análisis de rendimiento. 

 

 

I. INTRODUCTION 

 

HE study of mechanical impacts in physics has been of 

interest for decades, particularly collisions between small 

aggregates of dust grains (granular clusters). To model these 

clusters, one of the commonly used strategies is molecular 

dynamics (MD) simulations, which solve Newton’s equations 

of motion for an ensemble of particles interacting through a 

force field. This method allows incorporating complex 

properties of dust interactions. Typically, the grains 

themselves represent solid material that remains unchanged 

internally during the collision process, while the whole 

ensemble (the cluster) will undergo restructuring, aggregation, 

or fragmentation. This strategy has been used successfully to 

describe the collision of granular clusters containing up to 

several thousand grains [1]. 

T 
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     MD granular simulations usually demand a high 

computational cost (in hardware and compute time) due to the 

number of objects simulated. For statistical analysis, it is 

always an advantage to decrease this time. ML supervised 

algorithms are good candidates for this purpose. The basic aim 

of these algorithms is to build predictive models, which 

attempt to discover and model the relationship between the 

predictor variable (independent variables) and the other 

variables. To build a predictive model, it is necessary to train 

the algorithm by giving instruction on what it needs to learn 

and how it is intended to learn it. Specifically, given a dataset, 

the learning algorithm attempts to optimize the model to find 

the combination of features that result in the target output. ML 

has been used successfully in combination with MD 

simulations in previous works such as: to accelerate ab initio 

MD simulations [2], to predict atomization energies in organic 

molecules [3], and to improve protein recognition [4], 

amongst others. 

     Machine learning is a branch of artificial intelligence 

interested in the development of computer algorithms for 

transforming data into intelligent action, and it has become the 

most popular and suitable tool for manipulating large data. 

The aim of machine learning is to uncover hidden patterns, 

unknown correlations and find useful information from data. 

Furthermore, it has extensively succeeded in performing 

predictive analysis [5], which is particularly of interest in this 

work.  

     For this work, the main purpose was to build such a model 

using ML algorithms to classify the grains of a collision, 

trying to find a “threshold time” for which the analyst knows 

with a certain accuracy what will be the outcome of the 

collision. With this threshold, the MD simulation can be 

stopped without simulating the entire collision process. It is 

expected that this cut time is shorter than the overall time of 

the simulation. The results showed that this method allows an 

improvement of at least more than 40 % of the total simulation 

time, which is encouraging. 

     This work is organized as follows. Section II presents a 

description of the type of granular simulations (subsection II-

A) that are analyzed along with a description of the Machine 

Learning algorithm used (subsection II-B). The description of 

the software tools used can be seen in subsection II-C and the 

hardware used is in subsection II-D. The results and 

discussion are in section III. Finally, the main conclusions are 

in section IV. 

 

II. MATERIAL AND METHODS 

 

This section describes the type of granular simulations 

executed and the software that was used to perform them. 

Next, a description of the Machine Learning algorithms with 

their corresponding parameters is presented with the 

computational tools used. 

 

A. Granular Mechanics Simulations 

The collision of micro-metric dust grains is analyzed to 

find the speed limit that separates a process of agglomeration 

from the fragmentation. Understanding the mechanism of 

these processes in this scale is fundamental when trying to 

explain the formation of planetary rings, protoplanets, the 

distributions of powder grain sizes in different scenarios, etc. 

[6],[7]. 

Considering a model of granular matter where we 

incorporate cohesion forces [8], we perform simulations using 

Molecular Dynamics of collisions of porous grains composed 

of a Ni number of identical SiO2 particles of size 0.76 μm, 

where each grain has a variable fill factor between 0.15 and 

0.35. We have studied the effect of the collision of two grains, 

a small one (the projectile) against a much larger one (the 

target), initially at rest. The projectile moves along the z-axis 

with a certain initial velocity between 0.1 and 1 m/s, and both 

the projectile and the target have the same filling factor (see 

figure 1). The filling factor is defined as the total grain volume 

of the number of grains Nδ in a sphere of radius δ around a 

certain grain i, divided by the sphere volume [9]. Once the 

projectile hits the target, the system is fragmented into two 

parts: one carried along by the projectile (blue grains in figure 

1) and one that remains immobile (red grains in figure 1). 

The critical rate of fragmentation depends on the grain's 

filling factor and is the result of a “piston” effect that moves in 

a sustained manner some of the particles of the larger cluster. 

The usual models estimate that the minimum speed for grain 

fragmentation of these characteristics is of the order of 1-10 

m/s [6], [10], [11]. In our work, we found fragmentation for 

speeds higher than 0.02 m/s, well below the previous 

estimates. We also found strong dependencies on fragment 

sizes with the filling factor, which has not been taken into 

account in current models. These results may involve 

modifications in the agglomeration/fragmentation models 

used. 

The simulations were executed using LAMMPS 

(http://lammps.sandia.gov) in GPUs (Graphics Processing 

Unit). The granular pair style used was initially developed by 

Ringl et al. [8] to run in CPUs and later ported by Millán et al.  

[12] to run in NVIDIA GPUs with CUDA. As a reference, the 

simulations in GPU run ~3.6x times faster than in one CPU 

core and ~1.6x faster than 8 CPU cores (NVIDIA Titan Xp 

compared with an AMD EPYC 7281 CPU). More in-depth 

benchmarks can be seen in section III-B. 

The granular simulations use input data generated with a 

model presented in [9] and a code developed by Millán and 

Planes (both authors of this work). The input data is composed 

of two spheres of grains: a projectile with a radius of ~14 μm 

and a target with a radius of ~31 μm. The samples have a 

filling factor of 15%, 25%, and 35%. The filling factor defines 

how much volume is occupied in both spheres (projectile and 

target). The number of grains in each simulation depends on 

the size of the spheres and the filling factor.  
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Fig. 1. Slice snapshots at different time steps (t=0 initial time step and tf final 

step) of granular simulations with three filling factors for the same initial 

velocity of 1m/s. Grains in different color indicate the two fragments at the 

end of the simulation. 

 

The simulations were configured to generate one dump file 

every 10000 steps. A dump file is a text file (with a format 

similar to csv or comma separated values with the 

configuration of the simulated system at a certain time step, 

including positions and velocities of each grain. For our 

simulations, each compressed (gzip) dump file sizes are 

between approx. 400 KB to 1000 KB (from 0.15 to 0.35 filling 

factor) and the number of dumps files generated varies 

between the different simulated configurations. Simulations 

with a faster velocity (1 m/s) ran fewer Total Steps than 

simulations with slower velocities (0.1 m/s), which needed 

more Total Steps to produce fragmentation. The total size of 

each compressed simulation varies from approx. 1 GB (0.15 

fill factor for 1 m/s) to 8.5 GB (0.35 fill factor for 0.1 m/s) 

with a total of 42 GB of compressed data considering all 15 

simulations tested in this work. 

We performed the ML algorithms analysis on five different 

initial projectile velocities in small simulations, each with 

three filling factors (0.15, 0.25, and 0.35), giving a total of 15 

simulations with different input conditions. These filling 

factors determined the total number of grains in each 

simulation (11200, 18785, and 26206 respectively). The same 

radius of the projectile was maintained in all three cases, and it 

represented around 9% of the total number of grains. Five 

projectile velocities were tested: 1.0, 0.75, 0.5, 0.25 and 0.1 

m/s. 

 

B. Machine Learning Algorithms 

    In this work, we have tested two supervised classification 

models: Support Vector Machine (SVM) and Random 

Forest(RF).  

    SVM is a class of powerful, highly flexible modeling 

techniques. It uses a surface that defines a boundary (called 

hyperplane) between various points of data leading to fairly 

homogeneous partitions of data according to the class labels 

(discrete attributes whose value is to be predicted based on the 

values of other attributes). SVM basic task is to find this 

separation among a set (sometimes infinite) of possibilities, 

choosing the Maximum Margin Hyperplane (MMH) that 

creates the greatest separation between classes. For no linearly 

separable data, a slack variable creates a soft margin, and a 

cost value C is applied to all points that violate these 

constraints, and rather than finding the maximum margin, the 

algorithm attempts to minimize the total cost. If the cost 

parameter is increased, it will be more difficult to achieve a 

100 percent separation. On the other hand, a lower cost 

parameter will place emphasis on a wider overall margin. A 

balance between these two must be created in order to create a 

model that generalizes well to future data [13]. 

    Random Forest is an ensemble-based method that focuses 

only on ensembles of decision trees (a recursive partitioning 

method that chooses the best candidate feature each time until 

a stopping criterion is reached). After the ensemble of trees is 

generated, the model uses a vote to combine the predictions. It 

is possible to define the number of decision trees in the forest 

and also how many features are randomly selected at each 

split. Random forests can handle extremely large datasets, but 

at the same time, its error rates for most learning tasks are on 

par with nearly any other method [13].  

 

C. Computational Tools 

    Several computational tools were used in this work. To 

perform the granular simulations, the LAMMPS software was 

used, running primarily in GPUs. The generated output for 

each simulation is in a compressed gzip format to save disk 

space and transfer time between computers. The Classification 

Analysis was performed using the R language with several 

packages: dplyr for data manipulation, ggplot2 for plot 

generation, caret for machine learning algorithms, purrr to use 

the map() function and tictoc to easily measure compute time 

of sections of R code. The source code used to perform the 

analysis is available in the following url: 

https://sites.google.com/site/simafweb/. 

    The next subsection describes the hardware and software 

used to perform the granular simulations and the ML analysis.  

 

D. Computational Tools 

     The MD simulations were executed using two different 

GPUs. The ML analysis was executed using one Workstation 

and the Toko cluster at FCEN-UNCuyo using only CPU cores. 



85 
 

 

 Entre Ciencia e Ingeniería, vol. 14, no. 28, pp.82-87, julio-diciembre 2020.                                                                                                                                        

The following list details the hardware and software 

specifications: 

 

• Workstation FX-8350 with: AMD FX-8350 with 8 cores 

running at 4 GHz with 32 GB of DDR3 RAM memory. 

With one NVIDIA GeForce GTX Titan X (Maxwell 

GM200 architecture) with 12 GB of memory. Slackware 

Linux 14.2 64 bit operating system with kernel 4.4.14, 

OpenMPI 1.8.4, GCC 5.3.0, R language version 3.5.1, 

and Cuda 6.5 with NVIDIA driver 375.66. 

• Workstation FX-8350 with: same specifications than 

previous workstation but with a NVIDIA GeForce GTX 

Titan Xp (Pascal GP102 architecture) with 12 GB of 

memory. 

•  Cluster Toko at the Universidad Nacional de Cuyo:  

◦ One node with four AMD Opteron 6376 CPU, with 

16 CPU cores at 2.3GHz (each, 64 cores total), 128 

GB of RAM, and Gigabit Ethernet.  

◦ One node with two AMD EPYC 7281 CPU, with 16 

CPU cores at 2.1GHz (each, 32 cores total), 128 GB 

of RAM and Gigabit Ethernet. 

◦ Both nodes with Slackware Linux 14.1 64 bit with 

kernel 4.4.14, OpenMPI 1.8.8, GCC 4.8.2 and Cuda 

6.5 with NVIDIA driver 396.26. 

 

 

III. RESULTS AND DISCUSSION 

 

In this section, the details of the performed simulations is 

described along with the ML analysis. Also, a small 

comparison of computational performance is shown for the 

hardware previously described. 

 

 

A. Classification Analysis 

    Each simulation has a large number of output files (dump 

files or snapshots of the state of the simulations); we chose to 

apply the SVM and RF prediction algorithms to only 50 

evenly spaced time steps of those output files. These 

algorithms were trained with the velocity in z as the predictor 

variable. The accuracy (number of correct classifications over 

the total number of grains) of each prediction is shown in 

detail in figure 2. As can be seen from the figure, as the initial 

velocity of the projectile increases, each test takes more steps 

to reach an accuracy of 90%. Also, for each speed, the 0.35 fill 

factor takes longer to reach this accuracy. 

    In general, the superiority of RF performance over SVM is 

evident. For lower speeds and higher fill factors, the SVM 

performance declines. We note in some cases, that the 

algorithms start with an accuracy higher than 0%. This is due 

to the predictor variable; the grains that belong to the 

projectile (in movement) and the grains belonging to the target 

which remains immobile throughout the collision are 

classified correctly at the initial step. For 0.35 fill factor, the 

amount of target grains that remain in the immobile fragment 

is very small, so the initial accuracy is quite poor. 

 

 

Fig 2. ML accuracy for 15 granular simulations with SVM (pink) and RF 

(blue) algorithms. Three filling factors are shown (0.15, 0.25 and 0.35) with 

five velocities (from -1 to -0.1 m/s). The dots represent 50 evenly spaced 

predictions for different time steps, to facilitate interpretation, the x-axis was 

rescaled with log function.  

 

      

Results of simulation time improvements are presented for 

two representative speeds and two fill factors in table 1. We 

define the gain percentage as the ratio of the time taken by the 

algorithms in reaching a prediction accuracy of 90% and the 

total computation time of the simulation. We have chosen this 

90% accuracy value as a reference point from which 

predictions start to be reliable. Analysts will determine the 

best accuracy value suitable for their purposes, particularly if 

it is desired to analyze fragment sizes. For example, to obtain 

99% accuracy in the case of 0.1 m/s initial velocity and a fill 

factor of 0.35, the gaining percentage is 79.7% using RF 

(90.6% with 90% accuracy) and 65.5% using SVM (80.4% 

with 90% accuracy). 

    As can be seen from the table, in both velocities, the 

algorithms take longer to reach the 90% accuracy value for a 

0.15 fill factor. We are currently working in the physics of this 

behavior in a work which is soon to be published. 

    As it was said previously, in general, RF has a better 

performance than SVM with a gap of 10% or more between 

gainings. The time it takes to train each algorithm is less than 

1 minute, and the average time it takes to get the predictions 

of a file is less than 1 second, so they can be neglected. 

 

 

 



86 

 

Entre Ciencia e Ingeniería, vol. 14, no. 28, pp 82-87, julio-diciembre, 2020. 

 

TABLA I 
WALLCLOCK TIME (COMPUTATION TIME) FOR FOUR SELECTED GRANULAR 

SIMULATIONS COMPARED WITH THE TIME IT TOOK EACH ML ALGORITHM TO 

ACHIEVE A PREDICTION WITH AN 90% OF ACCURACY. THE GAIN PERCENTAGE 

COLUMN SHOWS THE REDUCTION IN COMPUTE TIME THAT CAN BE ACHIEVE BY 

USING THE ML PREDICTIONS. 

 

B. Computational Benchmarks 

    Granular simulations were executed in two NVIDIA GPUs, 

the Titan X and Titan Xp; see subsection II-D for more 

information on hardware and software infrastructure. In this 

section, a comparison between CPU and GPU performance is 

shown. Figure 3 shows the performance of one granular 

simulation executed in two CPU nodes from Toko cluster 

from 1 to 32 CPU cores. For this size of simulation (11200 

grains), the best performance is obtained with 16 CPU cores in 

both CPUs (AMD Epyc and Opteron). The Epyc processor is 

between ~1.5 and 2.1x times faster than the Opteron 

processor. 

 

Fig. 3. Results for granular simulation with 11200 grains, velocity 5.0m/s and 

filling factor of 0.15, executed in two CPU cluster nodes from 1 to 32 cores. 

Time in seconds, lower is better. 

 

For the same simulation shown in figure 3, the NVIDIA Titan 

Xp GPU has performance up to ~3.6x times faster than in one 

EPYC 7281 CPU core and ~1.6x faster than 8 EPYC 7281 

CPU cores. The 16 EPYC CPU cores are ~1.1x faster than the 

Titan Xp GPU. The size of the simulations is not ideal for 

benchmarking, bigger simulations can produce a better 

performance speedup using GPUs. See [14] and [15] for more 

benchmarks. 

 

 

IV. CONCLUSIONS AND FUTURE WORK 

 

    The computing time and HPC infrastructure needed to 

execute numerical simulations like the granular simulations 

presented in this work are a limiting factor for many 

researchers. Different tactics are required to reduce 

computational time or to improve the use of the available 

hardware infrastructure. Supervised ML algorithms used in 

this work were found suitable to build a predictive model to 

decrease simulation time. The overall results were 

encouraging: for the longest simulations, a potential 90% time 

reduction was achieved. The fill factor of the grains plays an 

important role in the algorithm’s prediction; for larger filling 

factors, the algorithms take more time to reach the desired 

accuracy. 

     As future work, we intend to try other suitable supervised 

algorithms and compare their performance with the ones used 

so far. We also plan to explore unsupervised algorithms such 

as DBSCAN [16], to improve the performance of SVM and 

RF. We also want to explore the dependence of the supervised 

algorithms with the different predictor variables (positions, 

velocities, angular velocities). An important subject that has to 

be addressed in future research is Transfer Learning, to be 

able to train the ML models with small simulations like the 

ones used in this work and make predictions about larger 

simulations. 

    We are also planning to use Hadoop with Mahout 

(https://mahout.apache.org/) to test SVM and RF (along with 

other algorithms) with granular simulations including 1e5 to 

1e6 grains. 
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