VALUATION RELATIONSHIPS UNDER GROWTH

JULIÁN BENAVIDES FRANCO
Ingeniero Eléctrico (Universidad de losAndes, 1988). Especializaciones en Finanzas y Administración de la Universidad Icesi; Máster of Management (Tulane University, EE.UU., 2001); Ph.D.(C) in Business (Tulane U niversity, EE.UU.); director del Departamento de Finanzas y profesor de tiempo completo de la Universidad Icesi; consultor de empresas privadas y públicas; miembro del C entro Icesi de Gobierno Organizacional.

SUMARIO

U no de los tópicos más importantes en valoración es la relación apropiada entre flujos de caja y tasas de retorno. Yo reviso esta relación con la premisa, por Myers (1974), de que el costo de la deuda es la tasa de descuento apropiada para el escudo fiscal. Diferentes hipótesis han sido estudiadas para el riesgo del escudofiscal; cada una de ellas produce diferentes resultados de valoración, especialmente cuando el crecimiento está presente. Una diferencia entre los resultados que yo obtengo y los resultados de otros es la presencia del crecimiento en las expresiones para las tasas de descuento, lo cual puede ser utilizado para estimar la
validez empírica de cada uno de los métodos propuestos.

PALABRAS CLAVES:

Costo de capital, tasa de descuento sobre el patrimonio, valor del escudo fiscal, beta apalancado.

Clasificación: A

ABSTRACT

One of the most important topics on valuation is the appropriate relationships between cash flows and rate of returns. I review those relationships under the premise, by Myers (1974), of the cost of debt as the right discount for the tax shield. Different hypotheses have been advanced for
the tax shield risk, each one producing different valuation results, especially when growth is present. The consequences of some common mistakes on valuation are explored. One difference between the results I obtain and results by others is the presence of growth in the expressions for
the discount rates, which can be used to asses the empirical validity of each of the approaches.

KEYWORDS:

Cost of capital, return on equity, tax shield value, levered beta.

I review the calculations of the appropriaterates of return for free cash flows under alternative assumptions. One of the most contested assertions on this issue is the appropriate rate of return for the tax shield. Different assumptions led to differences on valuation. The seminal contributions of Modigliani and Miller (M\&M) (1958 \& 1963) generated tractable ways to deal with cash flows and rates of return. In their 1963 correction M\&M discounted the sure tax shield of a perpetuity with the risk free rate, which was the debt interest rate, and established an enduring paradigm for this term. Myers (1974) argue that the appropriate rate of return for the tax shield is the debt rate, taking distance of $M \& M$ but producing a simiIar result for perpetuities. Harris and Pringle (1985) suggest, instead, that the tax shield bears the operational risk, which means that theappropriate discount rate is k_{0}, the discount rate for the firm's assets. Fernandez (2003) definetheTax shield as thedifference in taxes paid by the unlevered firm and the levered firm, and for the case of unlevered firms arrive to the same answer of $M \& M$ and M yers.

I go through the valuation relationships for the case of growing perpetuities and finish the paper with some suggestions of how to solve the ongoing debate. Growing perpetuities are more realistic models of firm's cash flows, firms always grow, or at least they always forecast grow. I derive somewhat modified versions of the relationship between the weighted average cost of capital (kWACC) and the cost of equity (kS) and the valuation consequences of the modified assumptions. The results critically
depend on the appropriate rate of return for the tax shield. The predicted effects on the betas can be used to shed some light on the ongoing controversy about the appropriate rate of return for the tax shields.

I finish my discussion with the most general case with the relevant relationships solved period by period.

The basic assumptions I use are:

1. The capital structure is constant:

$$
\frac{\mathrm{D}}{\mathrm{~V}_{\mathrm{L}}}=\mathrm{K}, \frac{\mathrm{~S}}{\mathrm{~V}_{\mathrm{L}}}=1-\frac{\mathrm{D}}{\mathrm{~V}_{\mathrm{L}}}
$$

2. The tax rate T is constant

I begin with the most fundamental equations:

Let EBITDA , be earnings before interests, taxes, depreciation and amortization for period i, Dep= Depreciation, $\mathrm{D}=$ Debt, $\mathrm{k}_{\mathrm{D}}=$ Cost of Debt, $\mathrm{T}=$ Tax rate, $\Delta N w C=$ Increment in net working capital and $\Delta \mathrm{FA}=$ = ncrement in fixed assets.

Then ECF $_{i}=\left(\right.$ EBITDA $_{i}-$ Dep $_{i}-$ $\left.D_{i} k_{D}\right)(1-T)+\operatorname{Dep}_{i}+g D_{i}-\Delta N w c_{i}-\Delta F A_{i}$ is the equity cash flow and $\mathrm{FCF}_{\mathrm{i}}=$ $\left(\right.$ EBITDA $_{i}-$ Dep $\left._{i}\right)(1-T)+$ Dep $_{i}-\Delta N$ wc $_{i}$ $-\Delta \mathrm{FA}_{\mathrm{i}}$ is the free cash flow. The relationship between both is $\mathrm{FCF}_{\mathrm{i}}=$ $E C F_{i}+D_{i} k_{D}(1-T)-g D_{i}$
Tosimplify things I suppose $\Delta \mathrm{NwC}_{1}=$ k_{w} EBITDA $_{i} ; \Delta$ FA $_{i}=k_{F A}$ EBITDA $_{i}$. The free cash flow becomes FCF $_{i}=$ (EBIT$\left.D A_{i}\right)\left(1-T-k_{w}-k_{F A}\right)+$ TDep $_{i}$
Under this approach Dep ${ }_{\mathrm{i}}$ also becomes proportional to EBITDA:

Let $D_{r}=1 / y$ ($y=y e a r s$ for full depreciation), suppose D_{r} is constant over the years (for 10 years depreciation, $\mathrm{D}_{\mathrm{r}}=10 \%$); TGA = Total gross assets, FDA $=$ Fully depreciated assets, then: $\operatorname{Dep}_{i}=\left[\mathrm{TGA}_{\mathrm{i}-1}-\mathrm{FDA}_{\mathrm{i}-1}\right] \mathrm{D}_{\mathrm{r}}$
For $\mathrm{i}>\mathrm{y}$,

Dep $_{\mathrm{i}}=\left[\sum_{\mathrm{i}=0}^{\mathrm{i}-1} \Delta \mathrm{FA}_{\mathrm{i}}-\sum_{\mathrm{i}=0}^{\mathrm{i}-1-\mathrm{y}} \Delta \mathrm{FA}_{\mathrm{i}}\right] \mathrm{D}_{\mathrm{r}}$ $=\left[\sum_{j=i-y}^{\mathrm{i}-1} \Delta \mathrm{FA}_{\mathrm{j}}\right] \mathrm{D}_{\mathrm{r}}$ $=\left[\mathrm{k}_{7 \mathrm{~A}} \sum_{j=i \mathrm{i} \cdot \mathrm{y}}^{\mathrm{i} 1}\right.$ EBITDA $\left._{j}\right] \mathrm{D}_{\mathrm{r}}$ $=\left[\sum_{i=1}^{y} \frac{1}{(1+\mathrm{g})^{i}} \mathrm{k}_{\mathrm{FA}}\right.$ D $_{\mathrm{r}}$ EBITDA $_{\mathrm{i}}$ $=\delta_{y} k_{\mathrm{FA}}$ D $_{\mathrm{r}}$ EBITDA $_{\mathrm{i}}$
Where $\delta_{y}=\sum_{i=1}^{y} \frac{1}{(1+g)^{i}}$

The FCF ${ }_{i}$ becomes FCF $_{i}=$ EBITDA $_{i}$ ($1-\mathrm{T}-\mathrm{k}_{\mathrm{w}}-\mathrm{k}_{\mathrm{FA}}\left(1-\delta_{\mathrm{y}} \mathrm{TD}_{\mathrm{r}}\right)$). If g is the EBITDA growing percentage, we have $\mathrm{FCF}_{\mathrm{i}+1}=\mathrm{FCF}_{\mathrm{i}}(1+\mathrm{g})$. In this scenario (an infinite growing perpetuity) the unlevered firm value, when k_{0} is less than g , is:

$$
\begin{equation*}
V_{u}=\frac{\mathrm{FCF}_{1}}{\mathrm{k}_{0}-\mathrm{g}} \tag{1}
\end{equation*}
$$

k_{0} is the discount rate for the firm assets, under a cero leverage policy (more on this rate follows). When leverage is greater than cero, the firm value results from the combined effects on the cash flows to debt holders and shareholders. As per assumption 1 , the debt increases at the samerate (g) that the cash flows, then $D_{i+1}=D_{i}(1+g) .{ }^{1}$
The cash flow to the debt holders is: $D C F_{i}=-g D_{i}+k_{D} D_{i}$
Then cash flow to the investors, shareholders (ECF) and debt holders (DCF) is:
$C F\left(V_{L}\right)_{i}=E C F_{i}+D C F_{i}$
$=\left(\right.$ EBITDA $_{i}-$ Dep $\left._{i}-D_{i} k_{D}\right)(1-T)+$ Dep $_{i}$
$+g D_{i}-\Delta N w c_{i}-\Delta F A_{i}-g D_{i}+k_{D} D_{i}$
$=F C F_{i}+k_{D} D_{i} T^{2}$
$C F\left(V_{L}\right)=F C F_{1}+k_{D} D_{0} T$, discounting the flows at the appropriate ${ }^{3}$ rates yields:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{L}}=\frac{\mathrm{FCF}_{1}}{\mathrm{k}_{0}-\mathrm{g}}+\frac{\mathrm{k}_{\mathrm{D}} \mathrm{D}_{0} T}{\mathrm{k}_{\mathrm{D}}-\mathrm{g}}=\mathrm{V}_{\mathrm{u}}+\mathrm{D}_{0} \mathrm{~T}^{*}, \\
& \text { where } T^{*}=\frac{\mathrm{k}_{\mathrm{D}}}{\mathrm{k}_{\mathrm{D}}-\mathrm{g}} \mathrm{~T} \tag{2}
\end{align*}
$$

1. Tocheck this assertion is enough to note that $\mathrm{VL}_{\mathrm{i}+1}=\mathrm{VL}_{\mathrm{i}}(1+\mathrm{g})$, without $\mathrm{FCF}_{\mathrm{i}+1}$, Given that the debt proportion is constant, it follows that D grows at the same rate. Interest payments are due at the end of period.
2. Under Fernandez (2003) approach:

Tax Shield $=T_{x u}-T_{x L}=E B I T D A\left(1-\delta_{y} k_{F A} D_{r}\right) T-\left[E B I T D A\left(1-\delta_{y} k_{F A} D_{r}\right)+k_{D} D\right] T=k_{D} D T$.
The result is the same. The key difference is that for Fernandez $T x_{J}$ and $T x_{L}$ have different risk and should be discounted independently, under the assumptions of this paper that doesn't hold.
3. As I said, the discount rate for the tax shield is an unsolved issue on valuation, here I assume that this rate is the debt rate as Myers (1974).

Fernández (2003) arrives to a different expression for the Tax Shield:
$\frac{k_{0} D_{0} T .}{\mathrm{k}_{0}-\mathrm{g}} \quad \begin{aligned} & \text { He avoids cash flows and } \\ & \text { employs valuation equi } \\ & \text { valences. }\end{aligned}$
k_{D} is the interest rate for the firm debt, here I assume that this rate is the same rate that the debt holders are receiving. Under certain conditions these rates differ. The convergence condition is more severe, it requires that $\mathrm{g}<\mathrm{k}_{\mathrm{D}}{ }^{4}$ Thesecond termD D^{*}, is known as the tax shield, except that the effective tax rate is higher, yielding a higher firm value.

A market balance at $\mathrm{t}=0$ follows

Market Balance

Assets	Liabilities
V_{u}	D_{0}
$D_{0} T \frac{k_{D}}{k_{D}-g}$	S

Solving the accounting identity for V_{u}, we find an additional definition for the unlevered firm:
$V_{u}=S+D_{0}\left(1-T^{*}\right)$

\mathbf{k}_{s}, the equity cost for the levered firm

Now we have enough tools to find k_{s}. The cash flows produced by the assets and by the liabilities should be the same, then it must be that
$V_{u} \mathrm{k}_{0}+\mathrm{D}_{0} \mathrm{~T}^{*} \mathrm{k}_{\mathrm{D}}=\mathrm{Sk}_{\mathrm{s}}+\mathrm{D}_{\mathrm{o}} \mathrm{k}_{\mathrm{D}}{ }^{5}$ replacing V_{u} with equation 3 and solving for k_{s}, we obtain:

$$
\begin{equation*}
k_{s}=k_{0}+\frac{D_{0}}{S}-\left(1-T^{*}\right)\left(k_{0}-k_{D}\right) \tag{4}
\end{equation*}
$$

The above result is the familiar definition of ${ }_{\text {s }}$, modified by thenew effectivetax rate. Interestingly, increasing flows reduce the required rate of return for the shareholders (Figure 1), when $k_{0}>\mathrm{k}_{\mathrm{D}}$. We can al so express this result as a combination of the standard equity cost with no growth $\mathrm{k}_{\mathrm{s} \text { ng }}$ and the growth effect.

[^0]5. The result is the same if the equation is written for increasing flows
$V_{U}\left(k_{0}-g\right)+D_{0} T^{*}\left(k_{D}-g\right)=S\left(k_{s}-g\right)+D_{0}\left(k_{D}-g\right)$.
$$
k_{S}=k_{0}+\frac{D_{0}}{S}\left(\frac{1-T k_{D}}{\left.k_{D}-g\right)}\right)\left(k_{0}-k_{D}\right)
$$
$$
k_{s}=k_{0}+\frac{D_{0}}{S}\left(1-T \frac{k_{D}}{k_{D}-g}+T \frac{g}{k_{D}-g}\right)\left(k_{0}-k_{D}\right)-\frac{D_{0}}{S}\left(T \frac{g}{k_{D}-g}\right)\left(k_{0}-k_{D}\right)
$$
$$
k_{s}=k_{0}+\frac{D_{0}}{S}(1-T)\left(k_{0}-k_{D}\right)-\frac{D_{0}}{S}\left(\Gamma \frac{g}{\left(k_{D}-g\right.}\right)\left(k_{0}-k_{D}\right)
$$
$$
k_{s}=k_{s n g}-\frac{g D_{0} T}{S\left(k_{D}-g\right)}\left(k_{0}-k_{D}\right)
$$

As long as $k_{0}>k_{\mathrm{D}}$, the growth effect is negative. Lets proceed to check if under these conditions continue to hold another basic financial result: That discounting the unlevered flows at the weighted average cost of capital yields thesamenumber that dis-
counting the unlevered flows at the required rate of return for the firm assets plus the increased tax shield. To do this, is enough to find what definition of $k_{\text {wacc }}$ solves the following equality:

$$
V_{L}=\frac{\mathrm{FCF}_{1}}{\mathrm{k}_{\mathrm{wacc}}-g}=\frac{\mathrm{FCF}_{1}}{\mathrm{k}_{0}-g}+\mathrm{D}_{0} T^{*}
$$

First multiply both sides of the equality by $\frac{\mathrm{k}_{0}-\mathrm{g}}{\mathrm{FC}_{1}}$, the result is

$$
\frac{\mathrm{k}_{0}-\mathrm{g}}{\mathrm{k}_{\mathrm{wACC}}-\mathrm{g}}=1+\frac{\mathrm{D}_{0} \mathrm{~T}^{*}}{\frac{\mathrm{FCF}_{1}}{\mathrm{k}_{0}-\mathrm{g}}}
$$

The last result is the same (by equation 1) that $\frac{k_{0}-g}{k_{\text {wacc }}-g}=1+\frac{D_{0} T^{*}}{V_{u}}$

Replacing V_{U} by equation 3 yields
$\frac{k_{0}-g}{k_{\text {wacc }}-g}=1+\frac{D_{0} T^{*}}{S+D_{0}\left(1-T^{*}\right)}$

Solving equation 4 for k_{0} results in
$k_{0}=\frac{k_{s} S+k_{D} D_{0}\left(1-T^{*}\right)}{S+D_{0}\left(1-T^{*}\right)}$

We use this result in the equation 5 and solve for $\mathrm{k}_{\text {wacc }}$:
$k_{\text {wacc }}=\frac{k_{S} S+k_{D} D_{0}(1-T)}{S+D_{0}}=k_{S} \frac{S}{V_{L}}+k_{D}(1-T) \frac{D_{0}}{V_{L}}$
Here we find that the old expression for $k_{\text {wacc }}$ continues to hold (which means the results are coherent). Please note that here the tax rate is not the modified expression we defined above; the change confines to the

$$
\begin{equation*}
k_{\text {wacc }}=k_{0}\left(1-\frac{D_{0}}{S+D_{0}} T\right)+g \frac{D_{0}}{S+D_{0}} T^{*} \tag{8}
\end{equation*}
$$

Theprevious equation shows that the effects of the constant growth are two fold. First, is a decreasing effect caused by the interaction of k_{0} and T^{*}
$k_{\text {wacc ng }}=k_{0}\left(-\frac{D_{0}}{S+D_{0}} \boldsymbol{T}\right)$. With that in mind, modifying equation 8 yields ${ }^{6}$
6. A simpler approach is to note that.

$$
k_{\text {nucc }}=\left(\left(_{\text {smag }}-\frac{g D_{0} T}{S\left(k_{0}-9\right)}\left(k_{0}-k_{0}\right) \frac{S}{V_{L}}+k_{0}(1-T) \frac{D_{0}}{V_{L}}=k_{\text {naccan }}-\frac{g D_{0} T}{V_{L}\left(k_{0}-g\right)}\left(k_{0}-k_{0}\right)\right.\right.
$$

$$
\begin{aligned}
& k_{\text {wACC }}=k_{0}\left(1-\frac{D_{0}}{S+D_{0}} T \frac{k_{D}}{k_{D}-G} /+g \frac{D_{0}}{S+D_{0}} T \frac{k_{D}}{k_{D}-g}\right. \\
& k_{\text {wACC }}=k_{0}-\frac{D_{0}}{S+D_{0}} T \frac{k_{D}}{k_{D}-g}+\frac{D_{0}}{S+D_{0}} T \frac{g}{k_{D}-g}+g \frac{D_{0}}{S-D_{0}} T \frac{k_{D}}{k_{D}-g}-k_{0} \frac{D_{0}}{S+D_{0}} T \frac{g}{k_{D}-g} \\
& k_{\text {wACC }}=k_{0} 1-\frac{D_{0}}{S+D_{0}} T / \frac{g D_{0} T}{\left(S+D_{0}\right)\left(k_{D}-g\right)}\left(k_{0}-k_{0}\right) \\
& k_{\text {WACC }}=k_{\text {wACC } n g}-\frac{g D_{0} T}{\left(S+D_{0}\right)\left(k_{D}-g\right)} \quad\left(k_{0}-k_{D}\right)
\end{aligned}
$$

As we saw before, under normal conditions $\left(k_{0}>k_{D}\right)$ the decreasing effect dominates (Figure 1).

The effects of leverage on the diffe- It is noteworthy to understand that rent required rates of return (Figure only with the corrections here deve2) shows how the $k_{\text {wacc }}$ decreases at a higher rate with constant growth and the k_{s} increases at a lower rate. Again the benefits of growth aresignificant.

Parameters		kwacc ${ }^{\text {c }}$				ks 35.0%
T	40.00\%	24.0%		a		34.5%
g	x -variable	23.5\% *	:	: :		34.0\%
kd	12.00\%	23.\%				33.5\%
kf	10.00\%					33.0\%
km-kf	15.00\%	22.5\%				32.5\%
Bass	1.20	22.05				32.0\%
Bdebt	13.33\%					31.5\%
	28.00\%	21.5\%				31.0\%
$\begin{aligned} & \mathrm{K}_{0} \\ & \mathrm{D} / \mathrm{V}_{\mathrm{L}} \end{aligned}$	40.00\%	0.00\%	2.00\%	4.00\%		\%
			ace no gro no grow th			9

Figure 1: Required rates of return sensitivity to growth

$$
V_{L}=\frac{\mathrm{FCF}_{1}}{k_{\text {WACC }}-g}=\frac{F C F_{1}}{k_{0}-g}+D_{0} T^{*}
$$

Figure 2: Required rates of return sensitivity to leverage

MODIFIED BETA

CALCULATIONS

The fundamental equation of CAPM permit us to find some additional equivalences. By the CAPM we have
$k_{s}=k_{f}+B_{s}\left(k_{m}-k_{f}\right)$ and $k_{o}=k_{f}+B_{o}$ ($k_{m}-k_{f}$), where the meaning of the different terms correspond to the usual ones. Rewriting equation 4 yields:
$k_{s}=k_{0} \quad 1+\frac{D_{0}}{S}\left(1-T^{*}\right)-k_{D} \frac{D_{0}}{S}\left(1-T^{*}\right), \quad$ combining it with the former
CAPM equations produces:
$k_{f}+B_{s}\left(k_{m}-k_{f}\right)=\left(k_{f}+\beta_{0}\left(k_{m}-k_{f}\right)\left(1+\frac{D_{0}}{S}\left(1-T^{*}\right)\right)-k_{D} \frac{D_{0}}{S}\left(1-T^{*}\right)\right.$,
reordering terms gives the following result:
$k_{f}+B_{s}\left(k_{m}-k_{f}\right)=k_{f}+k_{f} \frac{D_{0}}{S}\left(1-T^{*}\right)+B_{0}\left(k_{m}-k_{f}\right)\left(L+\frac{D_{0}}{S}\left(1-T^{*}\right)\right)-k_{D} \frac{D_{0}}{S}\left(1-T^{*}\right)$
$\left.B_{s}\left(k_{m}-k_{f}\right)=B_{0}\left(k_{m}-k_{f}\right) \quad 1+\frac{D_{0}}{S}\left(1-T^{*}\right)-k_{D}-k_{f}\right) \frac{D_{0}}{S}\left(1-T^{*}\right)$

$$
\begin{equation*}
B_{s}=B_{0}\left(1+\frac{D_{0}}{S}\left(1-T^{*}\right)-\frac{k_{D}-k_{f} D_{0}}{k_{m}-k_{f} S}\right. \tag{*}
\end{equation*}
$$

By CAPM $B_{D}=\frac{k_{D}-k_{f}}{k_{m}-k_{f}}$ then
$B_{s}=B_{0}\left(1+\frac{D_{0}}{S}\left(1-T^{*}\right)\right)-B_{D} \frac{D_{0}}{S}\left(1-T^{*}\right)$
or
$B_{0}=B_{s} \frac{S}{V_{u}}+B_{D} \frac{D_{0}\left(1-T^{*}\right)}{V_{u}}$
$B_{0}=\frac{B_{S}}{1+\frac{D_{0}}{S}\left(1-T^{*}\right)}+\frac{B_{D}}{1+\frac{S}{D_{0}}\left(1-T^{*}\right)}$

The previous equations also shows that we have to reformulate our beta calculations when considering constant growth. Figures 3 and 4 illus-
trate the consequences of ignoring the corrections here contemplated. Note how the practice of ignoring β_{D} increases the gap.

[^1]

Figure 3: Levered Beta (BL) sensitivity to growth

Figure 4: Levered Beta (BL) sensitivity to leverage

OPERATIONAL REMARKS

The next paragraphs explore different approaches that use the concepts devel oped above. In particular they cover:

1. Thevaluation consequences of ignoring T^{*}
2. Tax shield estimation for constant debt but increasing CF, which means a variable capital structure.
3. How to use market betas.
4. A valuation approach.

1. Valuation Consequences

Here I performed sensitivity analysis to growth rates and leverage similar to those performed for the required rates of return and betas. Not
surprisingly the consequences of ignoring the adjustments lead to undervaluation, that increases with growth and leverage.

The valuation formula we use is

$$
V_{L}=\frac{\mathrm{FCF}_{1}}{\mathrm{k}_{\text {wacc }}-g} \text { an infinite growing perpetuity. }
$$

Figure 5: Levered firm value (VL) sensitivity to growth

Figure 6: Levered firm value (VL) sensitivity to leverage;
2. Tax shield estimation for constant debt
Under this scenario the basic assumptions does not hold and we cannot usea uniquek ${ }_{\text {wacc }}$ to discount the cash flows, because it is changing each period. The only option left is to estimate thetax shield directly. If the debt is increasing but a different rate $\left(g_{1}\right)$, it is still possibleto use the same technique. For the estimation of the tax shield in the general case see the valuation example.

3. Market Betas

The use of market betas is implicitly explained in the previous section.

Here the lesson it is do not forget the correction for β_{D} or its proxy ($\mathrm{k}_{\mathrm{D}}-\mathrm{k}_{\mathrm{f}}$)/ $\left(k_{m}-k_{f}\right)$. M easuring β_{0} correctly implies to adjust for the cost of debt.

4. Valuation Example

How we implement a working model of these developments. The answer is that real calculations should use expressions that very each period; then thefirm value needs to be sol ved backwards. Suppose the estimations of FC cover period 1 to period m, after that a constant growth g_{L} is expected. ${ }^{8}$ F or any period $\mathrm{j} \leq \mathrm{m}$ holds
$V_{U j}=\sum_{i=+1}^{m} \frac{\mathrm{FC}_{\mathrm{i}}}{\left(1+k_{0}\right)^{i}}+\frac{1}{\left(1+k_{0}\right)^{m-j}} \frac{\mathrm{FC}_{m}\left(1+\mathrm{g}_{\mathrm{L}}\right)}{\mathrm{k}_{0}-\mathrm{g}_{\mathrm{L}}}$
The Tax Shield is
$\operatorname{TxSh}_{j}=\sum_{i=1+1}^{m} \frac{D_{i-1} k_{D} T}{\left(1+k_{D}\right)^{i}}+\frac{1}{\left(1+k_{D}\right)^{m-j}} \frac{D_{m} k_{D} T}{k_{D}-g_{L}}$
$\mathrm{V}_{\mathrm{Lj}}=\mathrm{V}_{\mathrm{Uj}}+\mathrm{TxSh}_{\mathrm{j}}=\mathrm{S}_{\mathrm{j}}+\mathrm{D}_{\mathrm{j}}$, which gives us an expression for the unlevered firm for the period j :
$V_{u j}=S_{j}+D_{j}-T x S h_{j}$

The cash flows produced by the assets and the liabilities should be the same, then
$S_{j} k_{s j}+D_{j} k_{D}=V_{U j} k_{0}+T x S_{j} k_{D}=\left(S_{j}+D_{j}-T x S h_{j}\right) k_{0}+T x S h_{j} k_{D}$
8. The idea here is to present a methodology where the calculations are applied for the different periods.

Even though we suppose that $k_{p^{\prime}}$, ${ }^{\top}$ and K_{0} are constant over time, this is not required and a subindex can be incorporated for a complete genera-
lization. The assumption 1 (A constant leverage) is also relaxed for periods less than m (which applies to $\mathrm{m}+1$ cash flows). Solving for k_{sj} yields
$k_{s j}=k_{0}+\left(k_{0}-k_{D}\right) \frac{D_{j}-T x S h_{j}}{S_{j}}$
Now for each period holds:

Again the expression for $\mathrm{k}_{\text {wacc }}$ is
$k_{\text {wacc } j}=k_{s j} \frac{S_{j}}{V_{L j}}+k_{D}(1-T) \frac{D_{j}}{V_{L j}}$

Each period has a set of simultaneous equations; implementing those equations in a spreadsheet produces circularities, which are solved through iterations. ${ }^{9}$

The implementation, which is illustrated in Table 1, begins when the forecasted flows begin to growth at a constant rate. Here holds all the equations we deduced in the above paragraphs: ${ }^{10}$
$V_{L m}=\frac{F C_{m}\left(1+g_{L}\right)}{k_{\text {WACC } m}-g_{L}} ; \operatorname{TxSh}_{m}=\frac{D_{m} k_{D} T ;}{k_{D}-g_{L}}$
$k_{s m}=k_{0}+\left(k_{0}-k_{D}\right) \frac{D_{m}-T x S h_{m}}{S_{m}} ; k_{\text {wacc } m}=k_{s m} \frac{S_{m}}{V_{L m}}+k_{D}(1-T) \frac{D_{m}}{V_{L m}}$
$k_{\text {wacc } m}=k_{0}\left(1-\frac{\mathrm{TxSh}_{m}}{\mathrm{~V}_{\mathrm{Lm}}}\right)+\mathrm{k}_{\mathrm{D}}\left(\frac{\mathrm{TxSh}_{m}-\mathrm{TD}_{\mathrm{n}}}{\mathrm{V}_{\mathrm{Lm}}}\right)$
9. To activate that feature in Excel go to Tools, choose Options, then Calculations; check in the Iterations box. See Velez and Tham (2001).
10. Implicitly we went back to assumption 1 (constant leverage).

To solve the equations system, some inputs are required:
$F C_{m}, T, k_{D}, k_{0}, g_{\llcorner }$and either D_{m} or the target leverage D_{m} / S_{m}.
Now we go backwards to solve the equations for the period $\mathrm{m}-1$:
$V_{L m-1}=\frac{V_{L m}+F C_{m} ;}{1+k_{\text {WACC } m-1}} \quad \operatorname{TxSh}_{m-1}=\frac{T x S h_{m}+D_{m-1} k_{D} T ;}{1+k_{D}}$
$k_{s m-1}=k_{0}+\left(k_{0}-k_{D}\right) \frac{D_{m-1} T x S h_{m-1}}{S_{m-1}} ; k_{\text {WACC } m-1}=k_{s m-1} \frac{S_{m-1}}{V_{L m-1}}+k_{D}(1-T) \frac{D_{m-1} i}{V_{L m-1}}$
$k_{\text {wacc } m-1}=k_{0}\left(1-\frac{T x S h_{m-1}}{V_{L m-1}}\right)+k_{D}\left(\frac{T x S h_{m-1}-T D_{m:-}}{V_{L m-1}}\right)$

The same formulas apply for the periods $\mathrm{m}-2$ to 0 . The algorithm stops when we reach the period 0 .
Having sketched the approach, the numerical example is worked.
The Table 1 shows how this technique produces similar valuations (period by period): (1) through the direct discount of the free cash flows with $\mathrm{k}_{\text {wacci; }}$ and (2) through the discount of free cash flows with k_{0} plus the Tax

Shield (The Adjusted Present Value proposed by Myers). The result holds for $\mathrm{k}_{\mathrm{D}}, \mathrm{k}_{0}$ and T not constant.
With this methodology the effect on k_{s} of the growing perpetuity only affects the period m . Given that the terminal value is not a negligible part of thefirm value, theeconomic effects of this correction continue to be significant.

Finally, following the same procedure outlined before, we have:

$$
\begin{aligned}
& B_{s j}=B_{0}+\frac{D_{j}-T x S h_{j}}{S_{j}}-\frac{k_{D}-k_{f}}{k_{m}-k_{f}} \frac{D_{j}-T x S h_{j}}{S_{j}} \text { or } \\
& B_{0}=\frac{B_{s j}}{1+\frac{D_{j}-T x S h_{j}}{S_{j}}+\frac{\left(\frac{k_{D}-k_{f}}{k_{m}-k_{f}}\right)}{\frac{S_{j}}{\left.J_{j}-T x S h_{j}\right)}+} \text { or } B_{0}=\beta_{s j} \frac{S_{j}}{V_{U j}}+B_{D} \frac{D_{j}-T x S h_{j}}{V_{U j}} \text {; for the }}
\end{aligned}
$$

operational model we develop.

Another history results if we accept the correction tothe $\mathrm{M} \& \mathrm{M}$ model proposed by Harris and Pringle (1985). For them the tax shield bears the assets risk (k_{o}) not the debt risk. In this universe $\mathrm{k}_{\mathrm{sj}}=\mathrm{k}_{0}+\left(\mathrm{k}_{\mathrm{o}}-\mathrm{k}_{\mathrm{D}}\right) \mathrm{D}_{\mathrm{j}} \mathrm{S}_{\mathrm{j}}$ and the effect of growth is not explicitly incorporated to the expression of k_{sj},
here the effect is indirect and only present when the leverage is not constant (or the amount of debt is constant). As expected the valuation results are lower and the difference increases with the distance between k_{0} and k_{D}. The corresponding expressions for the betas are:
$B_{s j}=B_{0}\left(1+\frac{D_{j}}{S_{j}}-\frac{k_{D}-k_{f} D_{j}}{k_{m}-k_{f} S_{j}}\right.$ or $B_{0}=B_{s j} \frac{S_{j}}{V_{L j}}+B_{D} \frac{D_{j}}{V_{L j}}$

The Fernandez (2003) model also doesn't incorporates the effect of
growth in their cost of capital or beta, the equations are:
$k_{5 j}=k_{0}+\left(k_{0}-k_{D}\right) \frac{D_{j}}{S_{j}}(1-T)$ and
$\left.B_{s j}=B_{0} \quad 1+\frac{D_{j}(1-T}{S_{j}}\right)-B_{D} \frac{D_{j}(1-T)}{S_{j}}$

He critics M\&M (1963) and Myers (1974) on the grounds of $k_{s}<k_{0}$ for some values of g , but all the models of growing perpetuities (including Fernandez) depend critically of this measure. The question if the expected growth should reduce the cost of capital is important, herewe differentiate the operational risk and its re-
quired return from expected growth. If the Myers (1974) approach is correct, growth should reduce the cost of capital: Are investors more prone to invest in firms with high growth, other things equal (specially assets risk)? If the answer is yes (which sounds reasonable) the empirical data should confirm it.
Table 1
Valuation of the Levered Firm
Variable Leverage

			0	1	2	3	4	5	6-ss:g ${ }_{\text {L }}$	
Growth	gi	= Input data			7.00\%	9.00\%	6.00\%	5.50\%	5.00\%	
Free cashflow	FC	$=\mathrm{FC}_{j-1}\left(1-g_{j}\right) \mid=$ Input data		\$100.00	\$107.00	\$116.63	\$123.63	\$130.43	\$136.95	
MV of Debt	D	= Input data	\$600.00	\$620.00	\$640.00	\$660.00	\$680.00	\$700.00		
MV of Equity	S	$=V_{L J} \cdot D_{j}$	\$964.38	\$1,027.02	\$1,092.83	\$1,163.51	\$1,232.19	\$1,311.65		
Leverage	$\mathrm{D}_{\mathrm{j}} \mathrm{N}_{\mathrm{LJ}}$	= Direct calculation	38.35\%	37.64\%	36.93\%	36.19\%	35.56\%	34.80\%		
	$S_{\text {S }} \mathrm{N}_{\mathrm{w}}$	$=1-\mathrm{D} / \mathrm{N}_{\mathrm{LJ}}$	61.65\%	62.36\%	63.07\%	63.81\%	64.44\%	65.20\%		
Tax rate	T	= Input data	35.00\%	35.00\%	35.00\%	35.00\%	35.00\%	35.00\%		
Periodic TS	TS'	$=D_{\text {j-1 }}$ Tk $^{\text {d }}$		21.00	21.70	26.88	20.79	28.56	24.50	
Cummulated TS	TS	$=\left(\mathrm{TS}_{j+a}^{*}+\mathrm{TS}_{j+1}\right) /\left(1+\mathrm{k}_{0}\right)$	384.37	401.81	420.29	443.84	463.00	490.00	$<\cdots=D_{m} \mathrm{Tk}_{\mathrm{d}} /\left(\mathrm{k}_{\mathrm{D}}-g_{L}\right)$	
Cost of Assets	k_{0}	$=$ Input dat	14.00\%	14.00\%	14.00\%	14.00\%	14.00\%	14.00\%		
Cost of Equity	$\mathrm{k}_{\mathrm{s} \text { j }}$	$=k_{0}+\left(k_{0}-k_{0}\right)\left(D_{j}-T S_{j}\right) / S_{j}$	14.89\%	14.85\%	14.40\%	14.93\%	14.35\%	14.64\%		
Cost of Debt	k_{0}	= Input data	10.00\%	10.00\%	12.00\%	9.00\%	12.00\%	10.00\%		
Average Cost	$\mathrm{k}_{\text {Wacc }}$	$=k_{s}\left(S_{j} / N_{L J}\right)+k_{0}(1-T)\left(D / V_{L}\right)$	11.67\%	11.71\%	11.96\%	11.64\%	12.02\%	11.81\%		
Levered Firm	$\mathrm{V}_{\text {LJ }}$	$=\left(\mathrm{FC}_{i+1}+\mathrm{V}_{\text {Li+1 }}\right) /\left(1+\mathrm{k}_{\text {WaCC }}\right)$	\$1,564.38	\$1.647.02	\$1,732.83	\$1.823.51	\$1,912.19	\$2,011.65	$<\cdots=\mathrm{FC}_{m}\left(1+g_{l}\right) /\left(\mathrm{kwaCOm}^{\text {W }}\right.$ - $\left.\mathrm{l}_{\mathrm{l}}\right)$	
Valuation of the Unlevered Firm plus the Tax Shield										
Terminal Value	TV ${ }_{\text {j }}$							\$1,521.65	$<\cdots \mathrm{TV}_{m}=\mathrm{FC}_{m}\left(1+g_{L}\right) /\left(\mathrm{k}_{0}-g_{L}\right)$	
	FC. ${ }_{+}$TV ${ }_{\text {j }}$	$=$ Direct calculation		\$100.00	\$107.00	\$116.63	\$123.63	\$1,652.08		
Unlevered Firm	$V_{u j}$	$=\left(\mathrm{FC}_{j+1}+\mathrm{V}_{\mathrm{u}+1}\right) /\left(1+\mathrm{k}_{0}\right)$	\$1,180.01	\$1,245.21	\$1,312.54	\$1,379.67	\$1,449.19	\$1,521.65		
	+TS	=From above	\$384.37	\$401.81	\$420.29	\$443.84	\$463.00	\$490.00		
Levered Firm	$=V_{\text {LJ }}$	$=$ Direct calculation	\$1.564.38	\$1.647.02	\$1.732.83	\$1.823.51	\$1.912.19	\$2.011.65		

CONCLUSIONS

The equations we have worked here present a coherent system that preserves under all conditions the equality $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{u}}+\mathrm{TS}$. They al so show that a higher continuing and constant growth produces a lower cost of equity. If this conclusion is true, the empirical data should confirmit. Among firms working in the same business (similar k_{0}), those with higher growth should have lower equity risk. On the other side, if the corrections by Harris and Pringle (1985) or Fernandez (2003) holds, the cost of equity shouldn't be affected by growth. As it has been stated before, the tax shield becomes more risky when leverage increases or when the firm size does not isolate the firm of market adjustments. The tax shield also depends of the firm's ability to collect it, even after continuing losses.

A empirical test seems appropriate; after all, corporations al ways forecast growth. That test is feasible. Firms with higher growth should have a lower $\mathrm{k}_{\text {wacc }}$. Measuring $\mathrm{k}_{\text {wacc }}$ does not depend of how k_{s} is stated. We can estimate k_{s} through its CAPM definition $k_{s}=k_{f}+\beta_{s}\left(k_{m}-k_{f}\right)$. The cost of debt does not change and can be ignored. Controlling for industry and size should be enough to see how the predictions deals with reality.

BIBLIOGRAPHY

Fernández, Pablo. 2003. Thevalue of tax shields is NOT equal to the present value of tax shiedds. J ournal of Financial Economics, forthcoming.
Harris, Robert S., J ohn J. Pringle. 1985. Risk-adjusted discount ratesextensions from theaverage-risk case TheJ ournal of Financial Research 8, 237-244.

Modigliani, Merton, Merton Miler. 1958. The cost of capital, corporation financeand thetheory of investment. American Economic Review 48, 261297.
incomet' . 1963. Corporate income taxes and the cost of capital: a correction. American Economic Review 48, 261-297.

Myers, Stewart C. 1974. I nteractions of corporate financing qand investment decision-I mplications for capital budgeting. TheJ ournal of Finance 29, 1-25.

Ross, Stephen A., Randolph W. Westerfield and J effery J affe. 1999. Corporate Finance, 5th Edition, Irwin McGraw-Hille

[^0]: 4. It is not difficult to conceive firms with $\mathrm{g}>\mathrm{k}_{\mathrm{D}}$, the only attenuant is that it is difficult to maintain indefinite growth rates higher than the cost of debt.
[^1]: 7. Most of the time the second term of this equation is ignored, the unique occasion when this practice is right is for $k_{D}=k_{F}$, which implies that $\beta_{D}=0$.
